From 6d25b4f3fc23601b3a84b4a70aab40ba429ac4b9 Mon Sep 17 00:00:00 2001 From: xleroy Date: Tue, 30 Dec 2008 14:48:33 +0000 Subject: Reorganized the development, modularizing away machine-dependent parts. Started to merge the ARM code generator. Started to add support for PowerPC/EABI. Use ocamlbuild to construct executable from Caml files. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@930 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e --- powerpc/Selectionproof.v | 1398 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1398 insertions(+) create mode 100644 powerpc/Selectionproof.v (limited to 'powerpc/Selectionproof.v') diff --git a/powerpc/Selectionproof.v b/powerpc/Selectionproof.v new file mode 100644 index 00000000..6d629794 --- /dev/null +++ b/powerpc/Selectionproof.v @@ -0,0 +1,1398 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + +(** Correctness of instruction selection *) + +Require Import Coqlib. +Require Import Maps. +Require Import AST. +Require Import Integers. +Require Import Floats. +Require Import Values. +Require Import Mem. +Require Import Events. +Require Import Globalenvs. +Require Import Smallstep. +Require Import Cminor. +Require Import Op. +Require Import CminorSel. +Require Import Selection. + +Open Local Scope selection_scope. + +Section CMCONSTR. + +Variable ge: genv. +Variable sp: val. +Variable e: env. +Variable m: mem. + +(** * Lifting of let-bound variables *) + +Inductive insert_lenv: letenv -> nat -> val -> letenv -> Prop := + | insert_lenv_0: + forall le v, + insert_lenv le O v (v :: le) + | insert_lenv_S: + forall le p w le' v, + insert_lenv le p w le' -> + insert_lenv (v :: le) (S p) w (v :: le'). + +Lemma insert_lenv_lookup1: + forall le p w le', + insert_lenv le p w le' -> + forall n v, + nth_error le n = Some v -> (p > n)%nat -> + nth_error le' n = Some v. +Proof. + induction 1; intros. + omegaContradiction. + destruct n; simpl; simpl in H0. auto. + apply IHinsert_lenv. auto. omega. +Qed. + +Lemma insert_lenv_lookup2: + forall le p w le', + insert_lenv le p w le' -> + forall n v, + nth_error le n = Some v -> (p <= n)%nat -> + nth_error le' (S n) = Some v. +Proof. + induction 1; intros. + simpl. assumption. + simpl. destruct n. omegaContradiction. + apply IHinsert_lenv. exact H0. omega. +Qed. + +Hint Resolve eval_Evar eval_Eop eval_Eload eval_Econdition + eval_Elet eval_Eletvar + eval_CEtrue eval_CEfalse eval_CEcond + eval_CEcondition eval_Enil eval_Econs: evalexpr. + +Lemma eval_lift_expr: + forall w le a v, + eval_expr ge sp e m le a v -> + forall p le', insert_lenv le p w le' -> + eval_expr ge sp e m le' (lift_expr p a) v. +Proof. + intro w. + apply (eval_expr_ind3 ge sp e m + (fun le a v => + forall p le', insert_lenv le p w le' -> + eval_expr ge sp e m le' (lift_expr p a) v) + (fun le a v => + forall p le', insert_lenv le p w le' -> + eval_condexpr ge sp e m le' (lift_condexpr p a) v) + (fun le al vl => + forall p le', insert_lenv le p w le' -> + eval_exprlist ge sp e m le' (lift_exprlist p al) vl)); + simpl; intros; eauto with evalexpr. + + destruct v1; eapply eval_Econdition; + eauto with evalexpr; simpl; eauto with evalexpr. + + eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto. + + case (le_gt_dec p n); intro. + apply eval_Eletvar. eapply insert_lenv_lookup2; eauto. + apply eval_Eletvar. eapply insert_lenv_lookup1; eauto. + + destruct vb1; eapply eval_CEcondition; + eauto with evalexpr; simpl; eauto with evalexpr. +Qed. + +Lemma eval_lift: + forall le a v w, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m (w::le) (lift a) v. +Proof. + intros. unfold lift. eapply eval_lift_expr. + eexact H. apply insert_lenv_0. +Qed. + +Hint Resolve eval_lift: evalexpr. + +(** * Useful lemmas and tactics *) + +(** The following are trivial lemmas and custom tactics that help + perform backward (inversion) and forward reasoning over the evaluation + of operator applications. *) + +Ltac EvalOp := eapply eval_Eop; eauto with evalexpr. + +Ltac TrivialOp cstr := unfold cstr; intros; EvalOp. + +Ltac InvEval1 := + match goal with + | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] => + inv H; InvEval1 + | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] => + inv H; InvEval1 + | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] => + inv H; InvEval1 + | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] => + inv H; InvEval1 + | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] => + inv H; InvEval1 + | _ => + idtac + end. + +Ltac InvEval2 := + match goal with + | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] => + simpl in H; inv H + | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] => + simpl in H; FuncInv + | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] => + simpl in H; FuncInv + | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] => + simpl in H; FuncInv + | _ => + idtac + end. + +Ltac InvEval := InvEval1; InvEval2; InvEval2. + +(** * Correctness of the smart constructors *) + +(** We now show that the code generated by "smart constructor" functions + such as [Selection.notint] behaves as expected. Continuing the + [notint] example, we show that if the expression [e] + evaluates to some integer value [Vint n], then [Selection.notint e] + evaluates to a value [Vint (Int.not n)] which is indeed the integer + negation of the value of [e]. + + All proofs follow a common pattern: +- Reasoning by case over the result of the classification functions + (such as [add_match] for integer addition), gathering additional + information on the shape of the argument expressions in the non-default + cases. +- Inversion of the evaluations of the arguments, exploiting the additional + information thus gathered. +- Equational reasoning over the arithmetic operations performed, + using the lemmas from the [Int] and [Float] modules. +- Construction of an evaluation derivation for the expression returned + by the smart constructor. +*) + +Theorem eval_notint: + forall le a x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (notint a) (Vint (Int.not x)). +Proof. + unfold notint; intros until x; case (notint_match a); intros; InvEval. + EvalOp. simpl. congruence. + EvalOp. simpl. congruence. + EvalOp. simpl. congruence. + eapply eval_Elet. eexact H. + eapply eval_Eop. + eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity. + eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity. + apply eval_Enil. + simpl. rewrite Int.or_idem. auto. +Qed. + +Lemma eval_notbool_base: + forall le a v b, + eval_expr ge sp e m le a v -> + Val.bool_of_val v b -> + eval_expr ge sp e m le (notbool_base a) (Val.of_bool (negb b)). +Proof. + TrivialOp notbool_base. simpl. + inv H0. + rewrite Int.eq_false; auto. + rewrite Int.eq_true; auto. + reflexivity. +Qed. + +Hint Resolve Val.bool_of_true_val Val.bool_of_false_val + Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof. + +Theorem eval_notbool: + forall le a v b, + eval_expr ge sp e m le a v -> + Val.bool_of_val v b -> + eval_expr ge sp e m le (notbool a) (Val.of_bool (negb b)). +Proof. + induction a; simpl; intros; try (eapply eval_notbool_base; eauto). + destruct o; try (eapply eval_notbool_base; eauto). + + destruct e0. InvEval. + inv H0. rewrite Int.eq_false; auto. + simpl; eauto with evalexpr. + rewrite Int.eq_true; simpl; eauto with evalexpr. + eapply eval_notbool_base; eauto. + + inv H. eapply eval_Eop; eauto. + simpl. assert (eval_condition c vl m = Some b). + generalize H6. simpl. + case (eval_condition c vl m); intros. + destruct b0; inv H1; inversion H0; auto; congruence. + congruence. + rewrite (Op.eval_negate_condition _ _ _ H). + destruct b; reflexivity. + + inv H. eapply eval_Econdition; eauto. + destruct v1; eauto. +Qed. + +Theorem eval_addimm: + forall le n a x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (addimm n a) (Vint (Int.add x n)). +Proof. + unfold addimm; intros until x. + generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro. + subst n. rewrite Int.add_zero. auto. + case (addimm_match a); intros; InvEval; EvalOp; simpl. + rewrite Int.add_commut. auto. + destruct (Genv.find_symbol ge s); discriminate. + destruct sp; simpl in H1; discriminate. + subst x. rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut. +Qed. + +Theorem eval_addimm_ptr: + forall le n a b ofs, + eval_expr ge sp e m le a (Vptr b ofs) -> + eval_expr ge sp e m le (addimm n a) (Vptr b (Int.add ofs n)). +Proof. + unfold addimm; intros until ofs. + generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro. + subst n. rewrite Int.add_zero. auto. + case (addimm_match a); intros; InvEval; EvalOp; simpl. + destruct (Genv.find_symbol ge s). + rewrite Int.add_commut. congruence. + discriminate. + destruct sp; simpl in H1; try discriminate. + inv H1. simpl. decEq. decEq. + rewrite Int.add_assoc. decEq. apply Int.add_commut. + subst. rewrite (Int.add_commut n m0). rewrite Int.add_assoc. auto. +Qed. + +Theorem eval_add: + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (add a b) (Vint (Int.add x y)). +Proof. + intros until y. + unfold add; case (add_match a b); intros; InvEval. + rewrite Int.add_commut. apply eval_addimm. auto. + replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)). + apply eval_addimm. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. apply Int.add_permut. + replace (Int.add x y) with (Int.add (Int.add i y) n1). + apply eval_addimm. EvalOp. + subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + apply eval_addimm. auto. + replace (Int.add x y) with (Int.add (Int.add x i) n2). + apply eval_addimm. EvalOp. + subst y. rewrite Int.add_assoc. auto. + EvalOp. +Qed. + +Theorem eval_add_ptr: + forall le a b p x y, + eval_expr ge sp e m le a (Vptr p x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (add a b) (Vptr p (Int.add x y)). +Proof. + intros until y. unfold add; case (add_match a b); intros; InvEval. + replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. apply Int.add_permut. + replace (Int.add x y) with (Int.add (Int.add i y) n1). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + apply eval_addimm_ptr. auto. + replace (Int.add x y) with (Int.add (Int.add x i) n2). + apply eval_addimm_ptr. EvalOp. + subst y. rewrite Int.add_assoc. auto. + EvalOp. +Qed. + +Theorem eval_add_ptr_2: + forall le a b x p y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vptr p y) -> + eval_expr ge sp e m le (add a b) (Vptr p (Int.add y x)). +Proof. + intros until y. unfold add; case (add_match a b); intros; InvEval. + apply eval_addimm_ptr. auto. + replace (Int.add y x) with (Int.add (Int.add i i0) (Int.add n1 n2)). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. + rewrite (Int.add_commut n1 n2). apply Int.add_permut. + replace (Int.add y x) with (Int.add (Int.add y i) n1). + apply eval_addimm_ptr. EvalOp. + subst x. repeat rewrite Int.add_assoc. auto. + replace (Int.add y x) with (Int.add (Int.add i x) n2). + apply eval_addimm_ptr. EvalOp. subst b0; reflexivity. + subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + EvalOp. +Qed. + +Theorem eval_sub: + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros; InvEval. + rewrite Int.sub_add_opp. + apply eval_addimm. assumption. + replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)). + apply eval_addimm. EvalOp. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm. EvalOp. + subst x. rewrite Int.sub_add_l. auto. + replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm. EvalOp. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. +Qed. + +Theorem eval_sub_ptr_int: + forall le a b p x y, + eval_expr ge sp e m le a (Vptr p x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (sub a b) (Vptr p (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros; InvEval. + rewrite Int.sub_add_opp. + apply eval_addimm_ptr. assumption. + subst b0. replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)). + apply eval_addimm_ptr. EvalOp. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm_ptr. EvalOp. + subst x. rewrite Int.sub_add_l. auto. + replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm_ptr. EvalOp. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. +Qed. + +Theorem eval_sub_ptr_ptr: + forall le a b p x y, + eval_expr ge sp e m le a (Vptr p x) -> + eval_expr ge sp e m le b (Vptr p y) -> + eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros; InvEval. + replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)). + apply eval_addimm. EvalOp. + simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm. EvalOp. + simpl. unfold eq_block. rewrite zeq_true. auto. + subst x. rewrite Int.sub_add_l. auto. + subst b0. replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm. EvalOp. + simpl. unfold eq_block. rewrite zeq_true. auto. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto. +Qed. + +Lemma eval_rolm: + forall le a amount mask x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (rolm a amount mask) (Vint (Int.rolm x amount mask)). +Proof. + intros until x. unfold rolm; case (rolm_match a); intros; InvEval. + eauto with evalexpr. + case (Int.is_rlw_mask (Int.and (Int.rol mask1 amount) mask)). + EvalOp. simpl. subst x. + decEq. decEq. + replace (Int.and (Int.add amount1 amount) (Int.repr 31)) + with (Int.modu (Int.add amount1 amount) (Int.repr 32)). + symmetry. apply Int.rolm_rolm. + change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one). + apply Int.modu_and with (Int.repr 5). reflexivity. + EvalOp. econstructor. EvalOp. simpl. rewrite H. reflexivity. constructor. auto. + EvalOp. +Qed. + +Theorem eval_shlimm: + forall le a n x, + eval_expr ge sp e m le a (Vint x) -> + Int.ltu n (Int.repr 32) = true -> + eval_expr ge sp e m le (shlimm a n) (Vint (Int.shl x n)). +Proof. + intros. unfold shlimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.shl_zero. auto. + rewrite H0. + replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)). + apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0. +Qed. + +Theorem eval_shruimm: + forall le a n x, + eval_expr ge sp e m le a (Vint x) -> + Int.ltu n (Int.repr 32) = true -> + eval_expr ge sp e m le (shruimm a n) (Vint (Int.shru x n)). +Proof. + intros. unfold shruimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.shru_zero. auto. + rewrite H0. + replace (Int.shru x n) with (Int.rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n)). + apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0. +Qed. + +Lemma eval_mulimm_base: + forall le a n x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (mulimm_base n a) (Vint (Int.mul x n)). +Proof. + intros; unfold mulimm_base. + generalize (Int.one_bits_decomp n). + generalize (Int.one_bits_range n). + change (Z_of_nat wordsize) with 32. + destruct (Int.one_bits n). + intros. EvalOp. + destruct l. + intros. rewrite H1. simpl. + rewrite Int.add_zero. rewrite <- Int.shl_mul. + apply eval_shlimm. auto. auto with coqlib. + destruct l. + intros. apply eval_Elet with (Vint x). auto. + rewrite H1. simpl. rewrite Int.add_zero. + rewrite Int.mul_add_distr_r. + rewrite <- Int.shl_mul. + rewrite <- Int.shl_mul. + EvalOp. eapply eval_Econs. + apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity. + auto with coqlib. + eapply eval_Econs. + apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity. + auto with coqlib. + auto with evalexpr. + reflexivity. + intros. EvalOp. +Qed. + +Theorem eval_mulimm: + forall le a n x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (mulimm n a) (Vint (Int.mul x n)). +Proof. + intros until x; unfold mulimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.mul_zero. + intro. eapply eval_Elet; eauto with evalexpr. + generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro. + subst n. rewrite Int.mul_one. auto. + case (mulimm_match a); intros; InvEval. + EvalOp. rewrite Int.mul_commut. reflexivity. + replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)). + apply eval_addimm. apply eval_mulimm_base. auto. + subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut. + apply eval_mulimm_base. assumption. +Qed. + +Theorem eval_mul: + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (mul a b) (Vint (Int.mul x y)). +Proof. + intros until y. + unfold mul; case (mul_match a b); intros; InvEval. + rewrite Int.mul_commut. apply eval_mulimm. auto. + apply eval_mulimm. auto. + EvalOp. +Qed. + +Theorem eval_divs: + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (divs a b) (Vint (Int.divs x y)). +Proof. + TrivialOp divs. simpl. + predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto. +Qed. + +Lemma eval_mod_aux: + forall divop semdivop, + (forall sp x y m, + y <> Int.zero -> + eval_operation ge sp divop (Vint x :: Vint y :: nil) m = + Some (Vint (semdivop x y))) -> + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (mod_aux divop a b) + (Vint (Int.sub x (Int.mul (semdivop x y) y))). +Proof. + intros; unfold mod_aux. + eapply eval_Elet. eexact H0. eapply eval_Elet. + apply eval_lift. eexact H1. + eapply eval_Eop. eapply eval_Econs. + eapply eval_Eletvar. simpl; reflexivity. + eapply eval_Econs. eapply eval_Eop. + eapply eval_Econs. eapply eval_Eop. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + apply eval_Enil. + apply H. assumption. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + apply eval_Enil. + simpl; reflexivity. apply eval_Enil. + reflexivity. +Qed. + +Theorem eval_mods: + forall le a b x y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (mods a b) (Vint (Int.mods x y)). +Proof. + intros; unfold mods. + rewrite Int.mods_divs. + eapply eval_mod_aux; eauto. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. +Qed. + +Lemma eval_divu_base: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (Eop Odivu (a ::: b ::: Enil)) (Vint (Int.divu x y)). +Proof. + intros. EvalOp. simpl. + predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto. +Qed. + +Theorem eval_divu: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (divu a b) (Vint (Int.divu x y)). +Proof. + intros until y. + unfold divu; case (divu_match b); intros; InvEval. + caseEq (Int.is_power2 y). + intros. rewrite (Int.divu_pow2 x y i H0). + apply eval_shruimm. auto. + apply Int.is_power2_range with y. auto. + intros. apply eval_divu_base. auto. EvalOp. auto. + eapply eval_divu_base; eauto. +Qed. + +Theorem eval_modu: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + y <> Int.zero -> + eval_expr ge sp e m le (modu a b) (Vint (Int.modu x y)). +Proof. + intros until y; unfold modu; case (divu_match b); intros; InvEval. + caseEq (Int.is_power2 y). + intros. rewrite (Int.modu_and x y i H0). + rewrite <- Int.rolm_zero. apply eval_rolm. auto. + intro. rewrite Int.modu_divu. eapply eval_mod_aux. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. + auto. EvalOp. auto. auto. + rewrite Int.modu_divu. eapply eval_mod_aux. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. auto. auto. auto. auto. +Qed. + +Theorem eval_andimm: + forall le n a x, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le (andimm n a) (Vint (Int.and x n)). +Proof. + intros. unfold andimm. case (Int.is_rlw_mask n). + rewrite <- Int.rolm_zero. apply eval_rolm; auto. + EvalOp. +Qed. + +Theorem eval_and: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (and a b) (Vint (Int.and x y)). +Proof. + intros until y; unfold and; case (mul_match a b); intros; InvEval. + rewrite Int.and_commut. apply eval_andimm; auto. + apply eval_andimm; auto. + EvalOp. +Qed. + +Remark eval_same_expr: + forall a1 a2 le v1 v2, + same_expr_pure a1 a2 = true -> + eval_expr ge sp e m le a1 v1 -> + eval_expr ge sp e m le a2 v2 -> + a1 = a2 /\ v1 = v2. +Proof. + intros until v2. + destruct a1; simpl; try (intros; discriminate). + destruct a2; simpl; try (intros; discriminate). + case (ident_eq i i0); intros. + subst i0. inversion H0. inversion H1. split. auto. congruence. + discriminate. +Qed. + +Lemma eval_or: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (or a b) (Vint (Int.or x y)). +Proof. + intros until y; unfold or; case (or_match a b); intros; InvEval. + caseEq (Int.eq amount1 amount2 + && Int.is_rlw_mask (Int.or mask1 mask2) + && same_expr_pure t1 t2); intro. + destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H4). + generalize (Int.eq_spec amount1 amount2). rewrite H6. intro. subst amount2. + exploit eval_same_expr; eauto. intros [EQ1 EQ2]. inv EQ1. inv EQ2. + simpl. EvalOp. simpl. rewrite Int.or_rolm. auto. + simpl. apply eval_Eop with (Vint x :: Vint y :: nil). + econstructor. EvalOp. simpl. congruence. + econstructor. EvalOp. simpl. congruence. constructor. auto. + EvalOp. +Qed. + +Theorem eval_shl: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + Int.ltu y (Int.repr 32) = true -> + eval_expr ge sp e m le (shl a b) (Vint (Int.shl x y)). +Proof. + intros until y; unfold shl; case (shift_match b); intros. + InvEval. apply eval_shlimm; auto. + EvalOp. simpl. rewrite H1. auto. +Qed. + +Theorem eval_shru: + forall le a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + Int.ltu y (Int.repr 32) = true -> + eval_expr ge sp e m le (shru a b) (Vint (Int.shru x y)). +Proof. + intros until y; unfold shru; case (shift_match b); intros. + InvEval. apply eval_shruimm; auto. + EvalOp. simpl. rewrite H1. auto. +Qed. + +Theorem eval_addf: + forall le a x b y, + eval_expr ge sp e m le a (Vfloat x) -> + eval_expr ge sp e m le b (Vfloat y) -> + eval_expr ge sp e m le (addf a b) (Vfloat (Float.add x y)). +Proof. + intros until y; unfold addf. + destruct (use_fused_mul tt). + case (addf_match a b); intros; InvEval. + EvalOp. simpl. congruence. + EvalOp. simpl. rewrite Float.addf_commut. congruence. + EvalOp. + intros. EvalOp. +Qed. + +Theorem eval_subf: + forall le a x b y, + eval_expr ge sp e m le a (Vfloat x) -> + eval_expr ge sp e m le b (Vfloat y) -> + eval_expr ge sp e m le (subf a b) (Vfloat (Float.sub x y)). +Proof. + intros until y; unfold subf. + destruct (use_fused_mul tt). + case (subf_match a b); intros. + InvEval. EvalOp. simpl. congruence. + EvalOp. + intros. EvalOp. +Qed. + +Theorem eval_cast8signed: + forall le a v, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m le (cast8signed a) (Val.sign_ext 8 v). +Proof. + intros until v; unfold cast8signed; case (cast8signed_match a); intros; InvEval. + EvalOp. simpl. subst v. destruct v1; simpl; auto. + rewrite Int.sign_ext_idem. reflexivity. compute; auto. + EvalOp. +Qed. + +Theorem eval_cast8unsigned: + forall le a v, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m le (cast8unsigned a) (Val.zero_ext 8 v). +Proof. + intros until v; unfold cast8unsigned; case (cast8unsigned_match a); intros; InvEval. + EvalOp. simpl. subst v. destruct v1; simpl; auto. + rewrite Int.zero_ext_idem. reflexivity. compute; auto. + EvalOp. +Qed. + +Theorem eval_cast16signed: + forall le a v, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m le (cast16signed a) (Val.sign_ext 16 v). +Proof. + intros until v; unfold cast16signed; case (cast16signed_match a); intros; InvEval. + EvalOp. simpl. subst v. destruct v1; simpl; auto. + rewrite Int.sign_ext_idem. reflexivity. compute; auto. + EvalOp. +Qed. + +Theorem eval_cast16unsigned: + forall le a v, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m le (cast16unsigned a) (Val.zero_ext 16 v). +Proof. + intros until v; unfold cast16unsigned; case (cast16unsigned_match a); intros; InvEval. + EvalOp. simpl. subst v. destruct v1; simpl; auto. + rewrite Int.zero_ext_idem. reflexivity. compute; auto. + EvalOp. +Qed. + +Theorem eval_singleoffloat: + forall le a v, + eval_expr ge sp e m le a v -> + eval_expr ge sp e m le (singleoffloat a) (Val.singleoffloat v). +Proof. + intros until v; unfold singleoffloat; case (singleoffloat_match a); intros; InvEval. + EvalOp. simpl. subst v. destruct v1; simpl; auto. rewrite Float.singleoffloat_idem. reflexivity. + EvalOp. +Qed. + +Theorem eval_comp_int: + forall le c a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x y)). +Proof. + intros until y. + unfold comp; case (comp_match a b); intros; InvEval. + EvalOp. simpl. rewrite Int.swap_cmp. destruct (Int.cmp c x y); reflexivity. + EvalOp. simpl. destruct (Int.cmp c x y); reflexivity. + EvalOp. simpl. destruct (Int.cmp c x y); reflexivity. +Qed. + +Theorem eval_comp_ptr_int: + forall le c a x1 x2 b y v, + eval_expr ge sp e m le a (Vptr x1 x2) -> + eval_expr ge sp e m le b (Vint y) -> + (if Int.eq y Int.zero then Cminor.eval_compare_mismatch c else None) = Some v -> + eval_expr ge sp e m le (comp c a b) v. +Proof. + intros until v. + unfold comp; case (comp_match a b); intros; InvEval. + EvalOp. simpl. destruct (Int.eq y Int.zero); try discriminate. + unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch. + destruct c; try discriminate; auto. + EvalOp. simpl. destruct (Int.eq y Int.zero); try discriminate. + unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch. + destruct c; try discriminate; auto. +Qed. + +Theorem eval_comp_int_ptr: + forall le c a x b y1 y2 v, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vptr y1 y2) -> + (if Int.eq x Int.zero then Cminor.eval_compare_mismatch c else None) = Some v -> + eval_expr ge sp e m le (comp c a b) v. +Proof. + intros until v. + unfold comp; case (comp_match a b); intros; InvEval. + EvalOp. simpl. destruct (Int.eq x Int.zero); try discriminate. + unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch. + destruct c; try discriminate; auto. + EvalOp. simpl. destruct (Int.eq x Int.zero); try discriminate. + unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch. + destruct c; try discriminate; auto. +Qed. + +Theorem eval_comp_ptr_ptr: + forall le c a x1 x2 b y1 y2, + eval_expr ge sp e m le a (Vptr x1 x2) -> + eval_expr ge sp e m le b (Vptr y1 y2) -> + valid_pointer m x1 (Int.signed x2) && + valid_pointer m y1 (Int.signed y2) = true -> + x1 = y1 -> + eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x2 y2)). +Proof. + intros until y2. + unfold comp; case (comp_match a b); intros; InvEval. + EvalOp. simpl. rewrite H1. subst y1. rewrite dec_eq_true. + destruct (Int.cmp c x2 y2); reflexivity. +Qed. + +Theorem eval_comp_ptr_ptr_2: + forall le c a x1 x2 b y1 y2 v, + eval_expr ge sp e m le a (Vptr x1 x2) -> + eval_expr ge sp e m le b (Vptr y1 y2) -> + valid_pointer m x1 (Int.signed x2) && + valid_pointer m y1 (Int.signed y2) = true -> + x1 <> y1 -> + Cminor.eval_compare_mismatch c = Some v -> + eval_expr ge sp e m le (comp c a b) v. +Proof. + intros until y2. + unfold comp; case (comp_match a b); intros; InvEval. + EvalOp. simpl. rewrite H1. rewrite dec_eq_false; auto. + destruct c; simpl in H3; inv H3; auto. +Qed. + +Theorem eval_compu: + forall le c a x b y, + eval_expr ge sp e m le a (Vint x) -> + eval_expr ge sp e m le b (Vint y) -> + eval_expr ge sp e m le (compu c a b) (Val.of_bool(Int.cmpu c x y)). +Proof. + intros until y. + unfold compu; case (comp_match a b); intros; InvEval. + EvalOp. simpl. rewrite Int.swap_cmpu. destruct (Int.cmpu c x y); reflexivity. + EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity. + EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity. +Qed. + +Theorem eval_compf: + forall le c a x b y, + eval_expr ge sp e m le a (Vfloat x) -> + eval_expr ge sp e m le b (Vfloat y) -> + eval_expr ge sp e m le (compf c a b) (Val.of_bool(Float.cmp c x y)). +Proof. + intros. unfold compf. EvalOp. simpl. + destruct (Float.cmp c x y); reflexivity. +Qed. + +Lemma negate_condexpr_correct: + forall le a b, + eval_condexpr ge sp e m le a b -> + eval_condexpr ge sp e m le (negate_condexpr a) (negb b). +Proof. + induction 1; simpl. + constructor. + constructor. + econstructor. eauto. apply eval_negate_condition. auto. + econstructor. eauto. destruct vb1; auto. +Qed. + +Scheme expr_ind2 := Induction for expr Sort Prop + with exprlist_ind2 := Induction for exprlist Sort Prop. + +Fixpoint forall_exprlist (P: expr -> Prop) (el: exprlist) {struct el}: Prop := + match el with + | Enil => True + | Econs e el' => P e /\ forall_exprlist P el' + end. + +Lemma expr_induction_principle: + forall (P: expr -> Prop), + (forall i : ident, P (Evar i)) -> + (forall (o : operation) (e : exprlist), + forall_exprlist P e -> P (Eop o e)) -> + (forall (m : memory_chunk) (a : Op.addressing) (e : exprlist), + forall_exprlist P e -> P (Eload m a e)) -> + (forall (c : condexpr) (e : expr), + P e -> forall e0 : expr, P e0 -> P (Econdition c e e0)) -> + (forall e : expr, P e -> forall e0 : expr, P e0 -> P (Elet e e0)) -> + (forall n : nat, P (Eletvar n)) -> + forall e : expr, P e. +Proof. + intros. apply expr_ind2 with (P := P) (P0 := forall_exprlist P); auto. + simpl. auto. + intros. simpl. auto. +Qed. + +Lemma eval_base_condition_of_expr: + forall le a v b, + eval_expr ge sp e m le a v -> + Val.bool_of_val v b -> + eval_condexpr ge sp e m le + (CEcond (Ccompimm Cne Int.zero) (a ::: Enil)) + b. +Proof. + intros. + eapply eval_CEcond. eauto with evalexpr. + inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto. +Qed. + +Lemma is_compare_neq_zero_correct: + forall c v b, + is_compare_neq_zero c = true -> + eval_condition c (v :: nil) m = Some b -> + Val.bool_of_val v b. +Proof. + intros. + destruct c; simpl in H; try discriminate; + destruct c; simpl in H; try discriminate; + generalize (Int.eq_spec i Int.zero); rewrite H; intro; subst i. + + simpl in H0. destruct v; inv H0. + generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl. + subst i; constructor. constructor; auto. constructor. + + simpl in H0. destruct v; inv H0. + generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl. + subst i; constructor. constructor; auto. +Qed. + +Lemma is_compare_eq_zero_correct: + forall c v b, + is_compare_eq_zero c = true -> + eval_condition c (v :: nil) m = Some b -> + Val.bool_of_val v (negb b). +Proof. + intros. apply is_compare_neq_zero_correct with (negate_condition c). + destruct c; simpl in H; simpl; try discriminate; + destruct c; simpl; try discriminate; auto. + apply eval_negate_condition; auto. +Qed. + +Lemma eval_condition_of_expr: + forall a le v b, + eval_expr ge sp e m le a v -> + Val.bool_of_val v b -> + eval_condexpr ge sp e m le (condexpr_of_expr a) b. +Proof. + intro a0; pattern a0. + apply expr_induction_principle; simpl; intros; + try (eapply eval_base_condition_of_expr; eauto; fail). + + destruct o; try (eapply eval_base_condition_of_expr; eauto; fail). + + destruct e0. InvEval. + inversion H1. + rewrite Int.eq_false; auto. constructor. + subst i; rewrite Int.eq_true. constructor. + eapply eval_base_condition_of_expr; eauto. + + inv H0. simpl in H7. + assert (eval_condition c vl m = Some b). + destruct (eval_condition c vl m); try discriminate. + destruct b0; inv H7; inversion H1; congruence. + assert (eval_condexpr ge sp e m le (CEcond c e0) b). + eapply eval_CEcond; eauto. + destruct e0; auto. destruct e1; auto. + simpl in H. destruct H. + inv H5. inv H11. + + case_eq (is_compare_neq_zero c); intros. + eapply H; eauto. + apply is_compare_neq_zero_correct with c; auto. + + case_eq (is_compare_eq_zero c); intros. + replace b with (negb (negb b)). apply negate_condexpr_correct. + eapply H; eauto. + apply is_compare_eq_zero_correct with c; auto. + apply negb_involutive. + + auto. + + inv H1. destruct v1; eauto with evalexpr. +Qed. + +Lemma eval_addressing: + forall le a v b ofs, + eval_expr ge sp e m le a v -> + v = Vptr b ofs -> + match addressing a with (mode, args) => + exists vl, + eval_exprlist ge sp e m le args vl /\ + eval_addressing ge sp mode vl = Some v + end. +Proof. + intros until v. unfold addressing; case (addressing_match a); intros; InvEval. + exists (@nil val). split. eauto with evalexpr. simpl. auto. + exists (@nil val). split. eauto with evalexpr. simpl. auto. + destruct (Genv.find_symbol ge s); congruence. + exists (Vint i0 :: nil). split. eauto with evalexpr. + simpl. destruct (Genv.find_symbol ge s). congruence. discriminate. + exists (Vptr b0 i :: nil). split. eauto with evalexpr. + simpl. congruence. + exists (Vint i :: Vptr b0 i0 :: nil). + split. eauto with evalexpr. simpl. + congruence. + exists (Vptr b0 i :: Vint i0 :: nil). + split. eauto with evalexpr. simpl. congruence. + exists (v :: nil). split. eauto with evalexpr. + subst v. simpl. rewrite Int.add_zero. auto. +Qed. + +Lemma eval_load: + forall le a v chunk v', + eval_expr ge sp e m le a v -> + Mem.loadv chunk m v = Some v' -> + eval_expr ge sp e m le (load chunk a) v'. +Proof. + intros. generalize H0; destruct v; simpl; intro; try discriminate. + unfold load. + generalize (eval_addressing _ _ _ _ _ H (refl_equal _)). + destruct (addressing a). intros [vl [EV EQ]]. + eapply eval_Eload; eauto. +Qed. + +Lemma eval_store: + forall chunk a1 a2 v1 v2 f k m', + eval_expr ge sp e m nil a1 v1 -> + eval_expr ge sp e m nil a2 v2 -> + Mem.storev chunk m v1 v2 = Some m' -> + step ge (State f (store chunk a1 a2) k sp e m) + E0 (State f Sskip k sp e m'). +Proof. + intros. generalize H1; destruct v1; simpl; intro; try discriminate. + unfold store. + generalize (eval_addressing _ _ _ _ _ H (refl_equal _)). + destruct (addressing a1). intros [vl [EV EQ]]. + eapply step_store; eauto. +Qed. + +(** * Correctness of instruction selection for operators *) + +(** We now prove a semantic preservation result for the [sel_unop] + and [sel_binop] selection functions. The proof exploits + the results of the previous section. *) + +Lemma eval_sel_unop: + forall le op a1 v1 v, + eval_expr ge sp e m le a1 v1 -> + eval_unop op v1 = Some v -> + eval_expr ge sp e m le (sel_unop op a1) v. +Proof. + destruct op; simpl; intros; FuncInv; try subst v. + apply eval_cast8unsigned; auto. + apply eval_cast8signed; auto. + apply eval_cast16unsigned; auto. + apply eval_cast16signed; auto. + EvalOp. + generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intro. + change true with (negb false). eapply eval_notbool; eauto. subst i; constructor. + change false with (negb true). eapply eval_notbool; eauto. constructor; auto. + change Vfalse with (Val.of_bool (negb true)). + eapply eval_notbool; eauto. constructor. + apply eval_notint; auto. + EvalOp. + EvalOp. + apply eval_singleoffloat; auto. + EvalOp. + EvalOp. + EvalOp. + EvalOp. +Qed. + +Lemma eval_sel_binop: + forall le op a1 a2 v1 v2 v, + eval_expr ge sp e m le a1 v1 -> + eval_expr ge sp e m le a2 v2 -> + eval_binop op v1 v2 m = Some v -> + eval_expr ge sp e m le (sel_binop op a1 a2) v. +Proof. + destruct op; simpl; intros; FuncInv; try subst v. + apply eval_add; auto. + apply eval_add_ptr_2; auto. + apply eval_add_ptr; auto. + apply eval_sub; auto. + apply eval_sub_ptr_int; auto. + destruct (eq_block b b0); inv H1. + eapply eval_sub_ptr_ptr; eauto. + apply eval_mul; eauto. + generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1. + apply eval_divs; eauto. + generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1. + apply eval_divu; eauto. + generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1. + apply eval_mods; eauto. + generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1. + apply eval_modu; eauto. + apply eval_and; auto. + apply eval_or; auto. + EvalOp. + caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1. + apply eval_shl; auto. + EvalOp. + caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1. + apply eval_shru; auto. + apply eval_addf; auto. + apply eval_subf; auto. + EvalOp. + EvalOp. + apply eval_comp_int; auto. + eapply eval_comp_int_ptr; eauto. + eapply eval_comp_ptr_int; eauto. + generalize H1; clear H1. + case_eq (valid_pointer m b (Int.signed i) && valid_pointer m b0 (Int.signed i0)); intros. + destruct (eq_block b b0); inv H2. + eapply eval_comp_ptr_ptr; eauto. + eapply eval_comp_ptr_ptr_2; eauto. + discriminate. + eapply eval_compu; eauto. + eapply eval_compf; eauto. +Qed. + +End CMCONSTR. + +(** * Semantic preservation for instruction selection. *) + +Section PRESERVATION. + +Variable prog: Cminor.program. +Let tprog := sel_program prog. +Let ge := Genv.globalenv prog. +Let tge := Genv.globalenv tprog. + +(** Relationship between the global environments for the original + CminorSel program and the generated RTL program. *) + +Lemma symbols_preserved: + forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s. +Proof. + intros; unfold ge, tge, tprog, sel_program. + apply Genv.find_symbol_transf. +Qed. + +Lemma functions_translated: + forall (v: val) (f: Cminor.fundef), + Genv.find_funct ge v = Some f -> + Genv.find_funct tge v = Some (sel_fundef f). +Proof. + intros. + exact (Genv.find_funct_transf sel_fundef H). +Qed. + +Lemma function_ptr_translated: + forall (b: block) (f: Cminor.fundef), + Genv.find_funct_ptr ge b = Some f -> + Genv.find_funct_ptr tge b = Some (sel_fundef f). +Proof. + intros. + exact (Genv.find_funct_ptr_transf sel_fundef H). +Qed. + +Lemma sig_function_translated: + forall f, + funsig (sel_fundef f) = Cminor.funsig f. +Proof. + intros. destruct f; reflexivity. +Qed. + +(** Semantic preservation for expressions. *) + +Lemma sel_expr_correct: + forall sp e m a v, + Cminor.eval_expr ge sp e m a v -> + forall le, + eval_expr tge sp e m le (sel_expr a) v. +Proof. + induction 1; intros; simpl. + (* Evar *) + constructor; auto. + (* Econst *) + destruct cst; simpl; simpl in H; (econstructor; [constructor|simpl;auto]). + rewrite symbols_preserved. auto. + (* Eunop *) + eapply eval_sel_unop; eauto. + (* Ebinop *) + eapply eval_sel_binop; eauto. + (* Eload *) + eapply eval_load; eauto. + (* Econdition *) + econstructor; eauto. eapply eval_condition_of_expr; eauto. + destruct b1; auto. +Qed. + +Hint Resolve sel_expr_correct: evalexpr. + +Lemma sel_exprlist_correct: + forall sp e m a v, + Cminor.eval_exprlist ge sp e m a v -> + forall le, + eval_exprlist tge sp e m le (sel_exprlist a) v. +Proof. + induction 1; intros; simpl; constructor; auto with evalexpr. +Qed. + +Hint Resolve sel_exprlist_correct: evalexpr. + +(** Semantic preservation for terminating function calls and statements. *) + +Fixpoint sel_cont (k: Cminor.cont) : CminorSel.cont := + match k with + | Cminor.Kstop => Kstop + | Cminor.Kseq s1 k1 => Kseq (sel_stmt s1) (sel_cont k1) + | Cminor.Kblock k1 => Kblock (sel_cont k1) + | Cminor.Kcall id f sp e k1 => + Kcall id (sel_function f) sp e (sel_cont k1) + end. + +Inductive match_states: Cminor.state -> CminorSel.state -> Prop := + | match_state: forall f s k s' k' sp e m, + s' = sel_stmt s -> + k' = sel_cont k -> + match_states + (Cminor.State f s k sp e m) + (State (sel_function f) s' k' sp e m) + | match_callstate: forall f args k k' m, + k' = sel_cont k -> + match_states + (Cminor.Callstate f args k m) + (Callstate (sel_fundef f) args k' m) + | match_returnstate: forall v k k' m, + k' = sel_cont k -> + match_states + (Cminor.Returnstate v k m) + (Returnstate v k' m). + +Remark call_cont_commut: + forall k, call_cont (sel_cont k) = sel_cont (Cminor.call_cont k). +Proof. + induction k; simpl; auto. +Qed. + +Remark find_label_commut: + forall lbl s k, + find_label lbl (sel_stmt s) (sel_cont k) = + option_map (fun sk => (sel_stmt (fst sk), sel_cont (snd sk))) + (Cminor.find_label lbl s k). +Proof. + induction s; intros; simpl; auto. + unfold store. destruct (addressing (sel_expr e)); auto. + change (Kseq (sel_stmt s2) (sel_cont k)) + with (sel_cont (Cminor.Kseq s2 k)). + rewrite IHs1. rewrite IHs2. + destruct (Cminor.find_label lbl s1 (Cminor.Kseq s2 k)); auto. + rewrite IHs1. rewrite IHs2. + destruct (Cminor.find_label lbl s1 k); auto. + change (Kseq (Sloop (sel_stmt s)) (sel_cont k)) + with (sel_cont (Cminor.Kseq (Cminor.Sloop s) k)). + auto. + change (Kblock (sel_cont k)) + with (sel_cont (Cminor.Kblock k)). + auto. + destruct o; auto. + destruct (ident_eq lbl l); auto. +Qed. + +Lemma sel_step_correct: + forall S1 t S2, Cminor.step ge S1 t S2 -> + forall T1, match_states S1 T1 -> + exists T2, step tge T1 t T2 /\ match_states S2 T2. +Proof. + induction 1; intros T1 ME; inv ME; simpl; + try (econstructor; split; [econstructor; eauto with evalexpr | econstructor; eauto]; fail). + + (* skip call *) + econstructor; split. + econstructor. destruct k; simpl in H; simpl; auto. + rewrite <- H0; reflexivity. + constructor; auto. + (* assign *) + exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id v e) m); split. + constructor. auto with evalexpr. + constructor; auto. + (* store *) + econstructor; split. + eapply eval_store; eauto with evalexpr. + constructor; auto. + (* Scall *) + econstructor; split. + econstructor; eauto with evalexpr. + apply functions_translated; eauto. + apply sig_function_translated. + constructor; auto. + (* Stailcall *) + econstructor; split. + econstructor; eauto with evalexpr. + apply functions_translated; eauto. + apply sig_function_translated. + constructor; auto. apply call_cont_commut. + (* Salloc *) + exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id (Vptr b Int.zero) e) m'); split. + econstructor; eauto with evalexpr. + constructor; auto. + (* Sifthenelse *) + exists (State (sel_function f) (if b then sel_stmt s1 else sel_stmt s2) (sel_cont k) sp e m); split. + constructor. eapply eval_condition_of_expr; eauto with evalexpr. + constructor; auto. destruct b; auto. + (* Sreturn None *) + econstructor; split. + econstructor. rewrite <- H; reflexivity. + constructor; auto. apply call_cont_commut. + (* Sreturn Some *) + econstructor; split. + econstructor. simpl. auto. eauto with evalexpr. + constructor; auto. apply call_cont_commut. + (* Sgoto *) + econstructor; split. + econstructor. simpl. rewrite call_cont_commut. rewrite find_label_commut. + rewrite H. simpl. reflexivity. + constructor; auto. +Qed. + +Lemma sel_initial_states: + forall S, Cminor.initial_state prog S -> + exists R, initial_state tprog R /\ match_states S R. +Proof. + induction 1. + econstructor; split. + econstructor. + simpl. fold tge. rewrite symbols_preserved. eexact H. + apply function_ptr_translated. eauto. + rewrite <- H1. apply sig_function_translated; auto. + unfold tprog, sel_program. rewrite Genv.init_mem_transf. + constructor; auto. +Qed. + +Lemma sel_final_states: + forall S R r, + match_states S R -> Cminor.final_state S r -> final_state R r. +Proof. + intros. inv H0. inv H. simpl. constructor. +Qed. + +Theorem transf_program_correct: + forall (beh: program_behavior), + Cminor.exec_program prog beh -> CminorSel.exec_program tprog beh. +Proof. + unfold CminorSel.exec_program, Cminor.exec_program; intros. + eapply simulation_step_preservation; eauto. + eexact sel_initial_states. + eexact sel_final_states. + exact sel_step_correct. +Qed. + +End PRESERVATION. -- cgit