From 81e3066c13050677c5bc44ddbd22bd7c98f0e3e3 Mon Sep 17 00:00:00 2001 From: Yann Herklotz Date: Mon, 28 Sep 2020 19:29:14 +0100 Subject: Add Verilog backend --- verilog/Op.v | 1521 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1521 insertions(+) create mode 100644 verilog/Op.v (limited to 'verilog/Op.v') diff --git a/verilog/Op.v b/verilog/Op.v new file mode 100644 index 00000000..16d75426 --- /dev/null +++ b/verilog/Op.v @@ -0,0 +1,1521 @@ +(* *********************************************************************) +(* *) +(* The Compcert verified compiler *) +(* *) +(* Xavier Leroy, INRIA Paris-Rocquencourt *) +(* *) +(* Copyright Institut National de Recherche en Informatique et en *) +(* Automatique. All rights reserved. This file is distributed *) +(* under the terms of the INRIA Non-Commercial License Agreement. *) +(* *) +(* *********************************************************************) + +(** Operators and addressing modes. The abstract syntax and dynamic + semantics for the CminorSel, RTL, LTL and Mach languages depend on the + following types, defined in this library: +- [condition]: boolean conditions for conditional branches; +- [operation]: arithmetic and logical operations; +- [addressing]: addressing modes for load and store operations. + + These types are X86-64-specific and correspond roughly to what the + processor can compute in one instruction. In other terms, these + types reflect the state of the program after instruction selection. + For a processor-independent set of operations, see the abstract + syntax and dynamic semantics of the Cminor language. +*) +Require Import BoolEqual. +Require Import Coqlib. +Require Import AST. +Require Import Integers. +Require Import Floats. +Require Import Values. +Require Import Memory. +Require Import Globalenvs. +Require Import Events. + +Set Implicit Arguments. + +(** Conditions (boolean-valued operators). *) + +Inductive condition : Type := + | Ccomp (c: comparison) (**r signed integer comparison *) + | Ccompu (c: comparison) (**r unsigned integer comparison *) + | Ccompimm (c: comparison) (n: int) (**r signed integer comparison with a constant *) + | Ccompuimm (c: comparison) (n: int) (**r unsigned integer comparison with a constant *) + | Ccompl (c: comparison) (**r signed 64-bit integer comparison *) + | Ccomplu (c: comparison) (**r unsigned 64-bit integer comparison *) + | Ccomplimm (c: comparison) (n: int64) (**r signed 64-bit integer comparison with a constant *) + | Ccompluimm (c: comparison) (n: int64) (**r unsigned 64-bit integer comparison with a constant *) + | Ccompf (c: comparison) (**r 64-bit floating-point comparison *) + | Cnotcompf (c: comparison) (**r negation of a floating-point comparison *) + | Ccompfs (c: comparison) (**r 32-bit floating-point comparison *) + | Cnotcompfs (c: comparison) (**r negation of a floating-point comparison *) + | Cmaskzero (n: int) (**r test [(arg & constant) == 0] *) + | Cmasknotzero (n: int). (**r test [(arg & constant) != 0] *) + +(** Addressing modes. [r1], [r2], etc, are the arguments to the + addressing. *) + +Inductive addressing: Type := + | Aindexed: Z -> addressing (**r Address is [r1 + offset] *) + | Aindexed2: Z -> addressing (**r Address is [r1 + r2 + offset] *) + | Ascaled: Z -> Z -> addressing (**r Address is [r1 * scale + offset] *) + | Aindexed2scaled: Z -> Z -> addressing + (**r Address is [r1 + r2 * scale + offset] *) + | Aglobal: ident -> ptrofs -> addressing (**r Address is [symbol + offset] *) + | Abased: ident -> ptrofs -> addressing (**r Address is [symbol + offset + r1] *) + | Abasedscaled: Z -> ident -> ptrofs -> addressing (**r Address is [symbol + offset + r1 * scale] *) + | Ainstack: ptrofs -> addressing. (**r Address is [stack_pointer + offset] *) + +(** Arithmetic and logical operations. In the descriptions, [rd] is the + result of the operation and [r1], [r2], etc, are the arguments. *) + +Inductive operation : Type := + | Omove (**r [rd = r1] *) + | Ointconst (n: int) (**r [rd] is set to the given integer constant *) + | Olongconst (n: int64) (**r [rd] is set to the given integer constant *) + | Ofloatconst (n: float) (**r [rd] is set to the given float constant *) + | Osingleconst (n: float32)(**r [rd] is set to the given float constant *) + | Oindirectsymbol (id: ident) (**r [rd] is set to the address of the symbol *) +(*c 32-bit integer arithmetic: *) + | Ocast8signed (**r [rd] is 8-bit sign extension of [r1] *) + | Ocast8unsigned (**r [rd] is 8-bit zero extension of [r1] *) + | Ocast16signed (**r [rd] is 16-bit sign extension of [r1] *) + | Ocast16unsigned (**r [rd] is 16-bit zero extension of [r1] *) + | Oneg (**r [rd = - r1] *) + | Osub (**r [rd = r1 - r2] *) + | Omul (**r [rd = r1 * r2] *) + | Omulimm (n: int) (**r [rd = r1 * n] *) + | Omulhs (**r [rd = high part of r1 * r2, signed] *) + | Omulhu (**r [rd = high part of r1 * r2, unsigned] *) + | Odiv (**r [rd = r1 / r2] (signed) *) + | Odivu (**r [rd = r1 / r2] (unsigned) *) + | Omod (**r [rd = r1 % r2] (signed) *) + | Omodu (**r [rd = r1 % r2] (unsigned) *) + | Oand (**r [rd = r1 & r2] *) + | Oandimm (n: int) (**r [rd = r1 & n] *) + | Oor (**r [rd = r1 | r2] *) + | Oorimm (n: int) (**r [rd = r1 | n] *) + | Oxor (**r [rd = r1 ^ r2] *) + | Oxorimm (n: int) (**r [rd = r1 ^ n] *) + | Onot (**r [rd = ~r1] *) + | Oshl (**r [rd = r1 << r2] *) + | Oshlimm (n: int) (**r [rd = r1 << n] *) + | Oshr (**r [rd = r1 >> r2] (signed) *) + | Oshrimm (n: int) (**r [rd = r1 >> n] (signed) *) + | Oshrximm (n: int) (**r [rd = r1 / 2^n] (signed) *) + | Oshru (**r [rd = r1 >> r2] (unsigned) *) + | Oshruimm (n: int) (**r [rd = r1 >> n] (unsigned) *) + | Ororimm (n: int) (**r rotate right immediate *) + | Oshldimm (n: int) (**r [rd = r1 << n | r2 >> (32-n)] *) + | Olea (a: addressing) (**r effective address *) +(*c 64-bit integer arithmetic: *) + | Omakelong (**r [rd = r1 << 32 | r2] *) + | Olowlong (**r [rd = low-word(r1)] *) + | Ohighlong (**r [rd = high-word(r1)] *) + | Ocast32signed (**r [rd] is 32-bit sign extension of [r1] *) + | Ocast32unsigned (**r [rd] is 32-bit zero extension of [r1] *) + | Onegl (**r [rd = - r1] *) + | Oaddlimm (n: int64) (**r [rd = r1 + n] *) + | Osubl (**r [rd = r1 - r2] *) + | Omull (**r [rd = r1 * r2] *) + | Omullimm (n: int64) (**r [rd = r1 * n] *) + | Omullhs (**r [rd = high part of r1 * r2, signed] *) + | Omullhu (**r [rd = high part of r1 * r2, unsigned] *) + | Odivl (**r [rd = r1 / r2] (signed) *) + | Odivlu (**r [rd = r1 / r2] (unsigned) *) + | Omodl (**r [rd = r1 % r2] (signed) *) + | Omodlu (**r [rd = r1 % r2] (unsigned) *) + | Oandl (**r [rd = r1 & r2] *) + | Oandlimm (n: int64) (**r [rd = r1 & n] *) + | Oorl (**r [rd = r1 | r2] *) + | Oorlimm (n: int64) (**r [rd = r1 | n] *) + | Oxorl (**r [rd = r1 ^ r2] *) + | Oxorlimm (n: int64) (**r [rd = r1 ^ n] *) + | Onotl (**r [rd = ~r1] *) + | Oshll (**r [rd = r1 << r2] *) + | Oshllimm (n: int) (**r [rd = r1 << n] *) + | Oshrl (**r [rd = r1 >> r2] (signed) *) + | Oshrlimm (n: int) (**r [rd = r1 >> n] (signed) *) + | Oshrxlimm (n: int) (**r [rd = r1 / 2^n] (signed) *) + | Oshrlu (**r [rd = r1 >> r2] (unsigned) *) + | Oshrluimm (n: int) (**r [rd = r1 >> n] (unsigned) *) + | Ororlimm (n: int) (**r rotate right immediate *) + | Oleal (a: addressing) (**r effective address *) +(*c Floating-point arithmetic: *) + | Onegf (**r [rd = - r1] *) + | Oabsf (**r [rd = abs(r1)] *) + | Oaddf (**r [rd = r1 + r2] *) + | Osubf (**r [rd = r1 - r2] *) + | Omulf (**r [rd = r1 * r2] *) + | Odivf (**r [rd = r1 / r2] *) + | Onegfs (**r [rd = - r1] *) + | Oabsfs (**r [rd = abs(r1)] *) + | Oaddfs (**r [rd = r1 + r2] *) + | Osubfs (**r [rd = r1 - r2] *) + | Omulfs (**r [rd = r1 * r2] *) + | Odivfs (**r [rd = r1 / r2] *) + | Osingleoffloat (**r [rd] is [r1] truncated to single-precision float *) + | Ofloatofsingle (**r [rd] is [r1] extended to double-precision float *) +(*c Conversions between int and float: *) + | Ointoffloat (**r [rd = signed_int_of_float64(r1)] *) + | Ofloatofint (**r [rd = float64_of_signed_int(r1)] *) + | Ointofsingle (**r [rd = signed_int_of_float32(r1)] *) + | Osingleofint (**r [rd = float32_of_signed_int(r1)] *) + | Olongoffloat (**r [rd = signed_long_of_float64(r1)] *) + | Ofloatoflong (**r [rd = float64_of_signed_long(r1)] *) + | Olongofsingle (**r [rd = signed_long_of_float32(r1)] *) + | Osingleoflong (**r [rd = float32_of_signed_long(r1)] *) +(*c Boolean tests: *) + | Ocmp (cond: condition) (**r [rd = 1] if condition holds, [rd = 0] otherwise. *) + | Osel: condition -> typ -> operation. + (**r [rd = rs1] if condition holds, [rd = rs2] otherwise. *) + +(** Comparison functions (used in modules [CSE] and [Allocation]). *) + +Definition eq_condition (x y: condition) : {x=y} + {x<>y}. +Proof. + generalize Int.eq_dec Int64.eq_dec; intro. + assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality. + decide equality. +Defined. + +Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}. +Proof. + generalize ident_eq Ptrofs.eq_dec zeq; intros. + decide equality. +Defined. + +Definition beq_operation: forall (x y: operation), bool. +Proof. + generalize Int.eq_dec Int64.eq_dec Float.eq_dec Float32.eq_dec ident_eq typ_eq eq_addressing eq_condition; boolean_equality. +Defined. + +Definition eq_operation: forall (x y: operation), {x=y} + {x<>y}. +Proof. + decidable_equality_from beq_operation. +Defined. + +Global Opaque eq_condition eq_addressing eq_operation. + +(** In addressing modes, offsets are 32-bit signed integers, even in + 64-bit mode. The following function checks that an addressing + mode is valid, i.e. that the offsets are in range. + The check always succeeds in 32-bit mode because offsets are + always 32-bit integers and are normalized as 32-bit signed integers + during code generation (see [Asmgen.normalize_addrmode_32]). + + Moreover, in 64-bit mode, we use RIP-relative addressing for + access to globals. (This is the "small code model" from the + x86_64 ELF ABI.) Thus, for addressing global variables, + the offset from the variable plus the RIP-relative offset + must fit in 32 bits. The "small code model" guarantees that + this will fit if the offset is between [-2^24] and [2^24-1], + under the assumption that no global variable is bigger than + [2^24] bytes. *) + +Definition offset_in_range (n: Z) : bool := + zle Int.min_signed n && zle n Int.max_signed. + +Definition ptroffset_min := -16777216. (**r [-2^24] *) +Definition ptroffset_max := 16777215. (**r [2^24 - 1] *) + +Definition ptroffset_in_range (n: ptrofs) : bool := + let n := Ptrofs.signed n in zle ptroffset_min n && zle n ptroffset_max. + +Definition addressing_valid (a: addressing) : bool := + if Archi.ptr64 then + match a with + | Aindexed n => offset_in_range n + | Aindexed2 n => offset_in_range n + | Ascaled sc ofs => offset_in_range ofs + | Aindexed2scaled sc ofs => offset_in_range ofs + | Aglobal s ofs => ptroffset_in_range ofs + | Abased s ofs => ptroffset_in_range ofs + | Abasedscaled sc s ofs => ptroffset_in_range ofs + | Ainstack ofs => offset_in_range (Ptrofs.signed ofs) + end + else true. + +(** * Evaluation functions *) + +(** Evaluation of conditions, operators and addressing modes applied + to lists of values. Return [None] when the computation can trigger an + error, e.g. integer division by zero. [eval_condition] returns a boolean, + [eval_operation] and [eval_addressing] return a value. *) + +Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool := + match cond, vl with + | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2 + | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 + | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n) + | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n) + | Ccompl c, v1 :: v2 :: nil => Val.cmpl_bool c v1 v2 + | Ccomplu c, v1 :: v2 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 v2 + | Ccomplimm c n, v1 :: nil => Val.cmpl_bool c v1 (Vlong n) + | Ccompluimm c n, v1 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong n) + | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2 + | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2) + | Ccompfs c, v1 :: v2 :: nil => Val.cmpfs_bool c v1 v2 + | Cnotcompfs c, v1 :: v2 :: nil => option_map negb (Val.cmpfs_bool c v1 v2) + | Cmaskzero n, v1 :: nil => Val.maskzero_bool v1 n + | Cmasknotzero n, v1 :: nil => option_map negb (Val.maskzero_bool v1 n) + | _, _ => None + end. + +Definition eval_addressing32 + (F V: Type) (genv: Genv.t F V) (sp: val) + (addr: addressing) (vl: list val) : option val := + match addr, vl with + | Aindexed n, v1::nil => + Some (Val.add v1 (Vint (Int.repr n))) + | Aindexed2 n, v1::v2::nil => + Some (Val.add (Val.add v1 v2) (Vint (Int.repr n))) + | Ascaled sc ofs, v1::nil => + Some (Val.add (Val.mul v1 (Vint (Int.repr sc))) (Vint (Int.repr ofs))) + | Aindexed2scaled sc ofs, v1::v2::nil => + Some(Val.add v1 (Val.add (Val.mul v2 (Vint (Int.repr sc))) (Vint (Int.repr ofs)))) + | Aglobal s ofs, nil => + if Archi.ptr64 then None else Some (Genv.symbol_address genv s ofs) + | Abased s ofs, v1::nil => + if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) v1) + | Abasedscaled sc s ofs, v1::nil => + if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) (Val.mul v1 (Vint (Int.repr sc)))) + | Ainstack ofs, nil => + if Archi.ptr64 then None else Some(Val.offset_ptr sp ofs) + | _, _ => None + end. + +Definition eval_addressing64 + (F V: Type) (genv: Genv.t F V) (sp: val) + (addr: addressing) (vl: list val) : option val := + match addr, vl with + | Aindexed n, v1::nil => + Some (Val.addl v1 (Vlong (Int64.repr n))) + | Aindexed2 n, v1::v2::nil => + Some (Val.addl (Val.addl v1 v2) (Vlong (Int64.repr n))) + | Ascaled sc ofs, v1::nil => + Some (Val.addl (Val.mull v1 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs))) + | Aindexed2scaled sc ofs, v1::v2::nil => + Some(Val.addl v1 (Val.addl (Val.mull v2 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs)))) + | Aglobal s ofs, nil => + if Archi.ptr64 then Some (Genv.symbol_address genv s ofs) else None + | Ainstack ofs, nil => + if Archi.ptr64 then Some(Val.offset_ptr sp ofs) else None + | _, _ => None + end. + +Definition eval_addressing + (F V: Type) (genv: Genv.t F V) (sp: val) + (addr: addressing) (vl: list val) : option val := + if Archi.ptr64 + then eval_addressing64 genv sp addr vl + else eval_addressing32 genv sp addr vl. + +Definition eval_operation + (F V: Type) (genv: Genv.t F V) (sp: val) + (op: operation) (vl: list val) (m: mem): option val := + match op, vl with + | Omove, v1::nil => Some v1 + | Ointconst n, nil => Some (Vint n) + | Olongconst n, nil => Some (Vlong n) + | Ofloatconst n, nil => Some (Vfloat n) + | Osingleconst n, nil => Some (Vsingle n) + | Oindirectsymbol id, nil => Some (Genv.symbol_address genv id Ptrofs.zero) + | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1) + | Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1) + | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1) + | Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1) + | Oneg, v1::nil => Some (Val.neg v1) + | Osub, v1::v2::nil => Some (Val.sub v1 v2) + | Omul, v1::v2::nil => Some (Val.mul v1 v2) + | Omulimm n, v1::nil => Some (Val.mul v1 (Vint n)) + | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2) + | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2) + | Odiv, v1::v2::nil => Val.divs v1 v2 + | Odivu, v1::v2::nil => Val.divu v1 v2 + | Omod, v1::v2::nil => Val.mods v1 v2 + | Omodu, v1::v2::nil => Val.modu v1 v2 + | Oand, v1::v2::nil => Some(Val.and v1 v2) + | Oandimm n, v1::nil => Some (Val.and v1 (Vint n)) + | Oor, v1::v2::nil => Some(Val.or v1 v2) + | Oorimm n, v1::nil => Some (Val.or v1 (Vint n)) + | Oxor, v1::v2::nil => Some(Val.xor v1 v2) + | Oxorimm n, v1::nil => Some (Val.xor v1 (Vint n)) + | Onot, v1::nil => Some(Val.notint v1) + | Oshl, v1::v2::nil => Some (Val.shl v1 v2) + | Oshlimm n, v1::nil => Some (Val.shl v1 (Vint n)) + | Oshr, v1::v2::nil => Some (Val.shr v1 v2) + | Oshrimm n, v1::nil => Some (Val.shr v1 (Vint n)) + | Oshrximm n, v1::nil => Val.shrx v1 (Vint n) + | Oshru, v1::v2::nil => Some (Val.shru v1 v2) + | Oshruimm n, v1::nil => Some (Val.shru v1 (Vint n)) + | Ororimm n, v1::nil => Some (Val.ror v1 (Vint n)) + | Oshldimm n, v1::v2::nil => Some (Val.or (Val.shl v1 (Vint n)) + (Val.shru v2 (Vint (Int.sub Int.iwordsize n)))) + | Olea addr, _ => eval_addressing32 genv sp addr vl + | Omakelong, v1::v2::nil => Some(Val.longofwords v1 v2) + | Olowlong, v1::nil => Some(Val.loword v1) + | Ohighlong, v1::nil => Some(Val.hiword v1) + | Ocast32signed, v1 :: nil => Some (Val.longofint v1) + | Ocast32unsigned, v1 :: nil => Some (Val.longofintu v1) + | Onegl, v1::nil => Some (Val.negl v1) + | Oaddlimm n, v1::nil => Some (Val.addl v1 (Vlong n)) + | Osubl, v1::v2::nil => Some (Val.subl v1 v2) + | Omull, v1::v2::nil => Some (Val.mull v1 v2) + | Omullimm n, v1::nil => Some (Val.mull v1 (Vlong n)) + | Omullhs, v1::v2::nil => Some (Val.mullhs v1 v2) + | Omullhu, v1::v2::nil => Some (Val.mullhu v1 v2) + | Odivl, v1::v2::nil => Val.divls v1 v2 + | Odivlu, v1::v2::nil => Val.divlu v1 v2 + | Omodl, v1::v2::nil => Val.modls v1 v2 + | Omodlu, v1::v2::nil => Val.modlu v1 v2 + | Oandl, v1::v2::nil => Some(Val.andl v1 v2) + | Oandlimm n, v1::nil => Some (Val.andl v1 (Vlong n)) + | Oorl, v1::v2::nil => Some(Val.orl v1 v2) + | Oorlimm n, v1::nil => Some (Val.orl v1 (Vlong n)) + | Oxorl, v1::v2::nil => Some(Val.xorl v1 v2) + | Oxorlimm n, v1::nil => Some (Val.xorl v1 (Vlong n)) + | Onotl, v1::nil => Some(Val.notl v1) + | Oshll, v1::v2::nil => Some (Val.shll v1 v2) + | Oshllimm n, v1::nil => Some (Val.shll v1 (Vint n)) + | Oshrl, v1::v2::nil => Some (Val.shrl v1 v2) + | Oshrlimm n, v1::nil => Some (Val.shrl v1 (Vint n)) + | Oshrxlimm n, v1::nil => Val.shrxl v1 (Vint n) + | Oshrlu, v1::v2::nil => Some (Val.shrlu v1 v2) + | Oshrluimm n, v1::nil => Some (Val.shrlu v1 (Vint n)) + | Ororlimm n, v1::nil => Some (Val.rorl v1 (Vint n)) + | Oleal addr, _ => eval_addressing64 genv sp addr vl + | Onegf, v1::nil => Some(Val.negf v1) + | Oabsf, v1::nil => Some(Val.absf v1) + | Oaddf, v1::v2::nil => Some(Val.addf v1 v2) + | Osubf, v1::v2::nil => Some(Val.subf v1 v2) + | Omulf, v1::v2::nil => Some(Val.mulf v1 v2) + | Odivf, v1::v2::nil => Some(Val.divf v1 v2) + | Onegfs, v1::nil => Some(Val.negfs v1) + | Oabsfs, v1::nil => Some(Val.absfs v1) + | Oaddfs, v1::v2::nil => Some(Val.addfs v1 v2) + | Osubfs, v1::v2::nil => Some(Val.subfs v1 v2) + | Omulfs, v1::v2::nil => Some(Val.mulfs v1 v2) + | Odivfs, v1::v2::nil => Some(Val.divfs v1 v2) + | Osingleoffloat, v1::nil => Some(Val.singleoffloat v1) + | Ofloatofsingle, v1::nil => Some(Val.floatofsingle v1) + | Ointoffloat, v1::nil => Val.intoffloat v1 + | Ofloatofint, v1::nil => Val.floatofint v1 + | Ointofsingle, v1::nil => Val.intofsingle v1 + | Osingleofint, v1::nil => Val.singleofint v1 + | Olongoffloat, v1::nil => Val.longoffloat v1 + | Ofloatoflong, v1::nil => Val.floatoflong v1 + | Olongofsingle, v1::nil => Val.longofsingle v1 + | Osingleoflong, v1::nil => Val.singleoflong v1 + | Ocmp c, _ => Some(Val.of_optbool (eval_condition c vl m)) + | Osel c ty, v1::v2::vl => Some(Val.select (eval_condition c vl m) v1 v2 ty) + | _, _ => None + end. + +Remark eval_addressing_Aglobal: + forall (F V: Type) (genv: Genv.t F V) sp id ofs, + eval_addressing genv sp (Aglobal id ofs) nil = Some (Genv.symbol_address genv id ofs). +Proof. + intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto. +Qed. + +Remark eval_addressing_Ainstack: + forall (F V: Type) (genv: Genv.t F V) sp ofs, + eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs). +Proof. + intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto. +Qed. + +Remark eval_addressing_Ainstack_inv: + forall (F V: Type) (genv: Genv.t F V) sp ofs vl v, + eval_addressing genv sp (Ainstack ofs) vl = Some v -> vl = nil /\ v = Val.offset_ptr sp ofs. +Proof. + unfold eval_addressing, eval_addressing32, eval_addressing64; + intros; destruct Archi.ptr64; destruct vl; inv H; auto. +Qed. + +Ltac FuncInv := + match goal with + | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ => + destruct x; simpl in H; FuncInv + | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ => + destruct v; simpl in H; FuncInv + | H: (if Archi.ptr64 then _ else _) = Some _ |- _ => + destruct Archi.ptr64 eqn:?; FuncInv + | H: (Some _ = Some _) |- _ => + injection H; intros; clear H; FuncInv + | H: (None = Some _) |- _ => + discriminate H + | _ => + idtac + end. + +(** * Static typing of conditions, operators and addressing modes. *) + +Definition type_of_condition (c: condition) : list typ := + match c with + | Ccomp _ => Tint :: Tint :: nil + | Ccompu _ => Tint :: Tint :: nil + | Ccompimm _ _ => Tint :: nil + | Ccompuimm _ _ => Tint :: nil + | Ccompl _ => Tlong :: Tlong :: nil + | Ccomplu _ => Tlong :: Tlong :: nil + | Ccomplimm _ _ => Tlong :: nil + | Ccompluimm _ _ => Tlong :: nil + | Ccompf _ => Tfloat :: Tfloat :: nil + | Cnotcompf _ => Tfloat :: Tfloat :: nil + | Ccompfs _ => Tsingle :: Tsingle :: nil + | Cnotcompfs _ => Tsingle :: Tsingle :: nil + | Cmaskzero _ => Tint :: nil + | Cmasknotzero _ => Tint :: nil + end. + +Definition type_of_addressing_gen (tyA: typ) (addr: addressing): list typ := + match addr with + | Aindexed _ => tyA :: nil + | Aindexed2 _ => tyA :: tyA :: nil + | Ascaled _ _ => tyA :: nil + | Aindexed2scaled _ _ => tyA :: tyA :: nil + | Aglobal _ _ => nil + | Abased _ _ => tyA :: nil + | Abasedscaled _ _ _ => tyA :: nil + | Ainstack _ => nil + end. + +Definition type_of_addressing := type_of_addressing_gen Tptr. +Definition type_of_addressing32 := type_of_addressing_gen Tint. +Definition type_of_addressing64 := type_of_addressing_gen Tlong. + +Definition type_of_operation (op: operation) : list typ * typ := + match op with + | Omove => (nil, Tint) (* treated specially *) + | Ointconst _ => (nil, Tint) + | Olongconst _ => (nil, Tlong) + | Ofloatconst f => (nil, Tfloat) + | Osingleconst f => (nil, Tsingle) + | Oindirectsymbol _ => (nil, Tptr) + | Ocast8signed => (Tint :: nil, Tint) + | Ocast8unsigned => (Tint :: nil, Tint) + | Ocast16signed => (Tint :: nil, Tint) + | Ocast16unsigned => (Tint :: nil, Tint) + | Oneg => (Tint :: nil, Tint) + | Osub => (Tint :: Tint :: nil, Tint) + | Omul => (Tint :: Tint :: nil, Tint) + | Omulimm _ => (Tint :: nil, Tint) + | Omulhs => (Tint :: Tint :: nil, Tint) + | Omulhu => (Tint :: Tint :: nil, Tint) + | Odiv => (Tint :: Tint :: nil, Tint) + | Odivu => (Tint :: Tint :: nil, Tint) + | Omod => (Tint :: Tint :: nil, Tint) + | Omodu => (Tint :: Tint :: nil, Tint) + | Oand => (Tint :: Tint :: nil, Tint) + | Oandimm _ => (Tint :: nil, Tint) + | Oor => (Tint :: Tint :: nil, Tint) + | Oorimm _ => (Tint :: nil, Tint) + | Oxor => (Tint :: Tint :: nil, Tint) + | Oxorimm _ => (Tint :: nil, Tint) + | Onot => (Tint :: nil, Tint) + | Oshl => (Tint :: Tint :: nil, Tint) + | Oshlimm _ => (Tint :: nil, Tint) + | Oshr => (Tint :: Tint :: nil, Tint) + | Oshrimm _ => (Tint :: nil, Tint) + | Oshrximm _ => (Tint :: nil, Tint) + | Oshru => (Tint :: Tint :: nil, Tint) + | Oshruimm _ => (Tint :: nil, Tint) + | Ororimm _ => (Tint :: nil, Tint) + | Oshldimm _ => (Tint :: Tint :: nil, Tint) + | Olea addr => (type_of_addressing32 addr, Tint) + | Omakelong => (Tint :: Tint :: nil, Tlong) + | Olowlong => (Tlong :: nil, Tint) + | Ohighlong => (Tlong :: nil, Tint) + | Ocast32signed => (Tint :: nil, Tlong) + | Ocast32unsigned => (Tint :: nil, Tlong) + | Onegl => (Tlong :: nil, Tlong) + | Oaddlimm _ => (Tlong :: nil, Tlong) + | Osubl => (Tlong :: Tlong :: nil, Tlong) + | Omull => (Tlong :: Tlong :: nil, Tlong) + | Omullimm _ => (Tlong :: nil, Tlong) + | Omullhs => (Tlong :: Tlong :: nil, Tlong) + | Omullhu => (Tlong :: Tlong :: nil, Tlong) + | Odivl => (Tlong :: Tlong :: nil, Tlong) + | Odivlu => (Tlong :: Tlong :: nil, Tlong) + | Omodl => (Tlong :: Tlong :: nil, Tlong) + | Omodlu => (Tlong :: Tlong :: nil, Tlong) + | Oandl => (Tlong :: Tlong :: nil, Tlong) + | Oandlimm _ => (Tlong :: nil, Tlong) + | Oorl => (Tlong :: Tlong :: nil, Tlong) + | Oorlimm _ => (Tlong :: nil, Tlong) + | Oxorl => (Tlong :: Tlong :: nil, Tlong) + | Oxorlimm _ => (Tlong :: nil, Tlong) + | Onotl => (Tlong :: nil, Tlong) + | Oshll => (Tlong :: Tint :: nil, Tlong) + | Oshllimm _ => (Tlong :: nil, Tlong) + | Oshrl => (Tlong :: Tint :: nil, Tlong) + | Oshrlimm _ => (Tlong :: nil, Tlong) + | Oshrxlimm _ => (Tlong :: nil, Tlong) + | Oshrlu => (Tlong :: Tint :: nil, Tlong) + | Oshrluimm _ => (Tlong :: nil, Tlong) + | Ororlimm _ => (Tlong :: nil, Tlong) + | Oleal addr => (type_of_addressing64 addr, Tlong) + | Onegf => (Tfloat :: nil, Tfloat) + | Oabsf => (Tfloat :: nil, Tfloat) + | Oaddf => (Tfloat :: Tfloat :: nil, Tfloat) + | Osubf => (Tfloat :: Tfloat :: nil, Tfloat) + | Omulf => (Tfloat :: Tfloat :: nil, Tfloat) + | Odivf => (Tfloat :: Tfloat :: nil, Tfloat) + | Onegfs => (Tsingle :: nil, Tsingle) + | Oabsfs => (Tsingle :: nil, Tsingle) + | Oaddfs => (Tsingle :: Tsingle :: nil, Tsingle) + | Osubfs => (Tsingle :: Tsingle :: nil, Tsingle) + | Omulfs => (Tsingle :: Tsingle :: nil, Tsingle) + | Odivfs => (Tsingle :: Tsingle :: nil, Tsingle) + | Osingleoffloat => (Tfloat :: nil, Tsingle) + | Ofloatofsingle => (Tsingle :: nil, Tfloat) + | Ointoffloat => (Tfloat :: nil, Tint) + | Ofloatofint => (Tint :: nil, Tfloat) + | Ointofsingle => (Tsingle :: nil, Tint) + | Osingleofint => (Tint :: nil, Tsingle) + | Olongoffloat => (Tfloat :: nil, Tlong) + | Ofloatoflong => (Tlong :: nil, Tfloat) + | Olongofsingle => (Tsingle :: nil, Tlong) + | Osingleoflong => (Tlong :: nil, Tsingle) + | Ocmp c => (type_of_condition c, Tint) + | Osel c ty => (ty :: ty :: type_of_condition c, ty) + end. + +(** Weak type soundness results for [eval_operation]: + the result values, when defined, are always of the type predicted + by [type_of_operation]. *) + +Section SOUNDNESS. + +Variable A V: Type. +Variable genv: Genv.t A V. + +Remark type_add: + forall v1 v2, Val.has_type (Val.add v1 v2) Tint. +Proof. + intros. unfold Val.has_type, Val.add. destruct Archi.ptr64, v1, v2; auto. +Qed. + +Remark type_addl: + forall v1 v2, Val.has_type (Val.addl v1 v2) Tlong. +Proof. + intros. unfold Val.has_type, Val.addl. destruct Archi.ptr64, v1, v2; auto. +Qed. + +Lemma type_of_addressing64_sound: + forall addr vl sp v, + eval_addressing64 genv sp addr vl = Some v -> + Val.has_type v Tlong. +Proof. + intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_addl. +- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto. +- destruct sp; simpl; auto. +Qed. + +Lemma type_of_addressing32_sound: + forall addr vl sp v, + eval_addressing32 genv sp addr vl = Some v -> + Val.has_type v Tint. +Proof. + intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_add. +- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto. +- destruct sp; simpl; auto. +Qed. + +Corollary type_of_addressing_sound: + forall addr vl sp v, + eval_addressing genv sp addr vl = Some v -> + Val.has_type v Tptr. +Proof. + unfold eval_addressing, Tptr; intros. + destruct Archi.ptr64; eauto using type_of_addressing64_sound, type_of_addressing32_sound. +Qed. + +Lemma type_of_operation_sound: + forall op vl sp v m, + op <> Omove -> + eval_operation genv sp op vl m = Some v -> + Val.has_type v (snd (type_of_operation op)). +Proof with (try exact I; try reflexivity). + intros. + destruct op; simpl in H0; FuncInv; subst; simpl. + congruence. + exact I. + exact I. + exact I. + exact I. + unfold Genv.symbol_address; destruct (Genv.find_symbol genv id)... + destruct v0... + destruct v0... + destruct v0... + destruct v0... + destruct v0... + unfold Val.sub, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1; simpl in *; inv H0. + destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. + destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0... + destruct v0... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)... + destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)... + destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)... + destruct v0; simpl in H0; try discriminate. destruct (Int.ltu n (Int.repr 31)); inv H0... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)... + destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)... + destruct v0... + destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)... + destruct v1; simpl... destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize)... + eapply type_of_addressing32_sound; eauto. + destruct v0; destruct v1... + destruct v0... + destruct v0... + destruct v0... + destruct v0... + destruct v0... + unfold Val.addl, Val.has_type; destruct Archi.ptr64, v0... + unfold Val.subl, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1; simpl in *; inv H0. + destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. + destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2... + destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0... + destruct v0; destruct v1... + destruct v0... + destruct v0... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')... + destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')... + destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')... + destruct v0; inv H0. destruct (Int.ltu n (Int.repr 63)); inv H2... + destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')... + destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')... + destruct v0... + eapply type_of_addressing64_sound; eauto. + destruct v0... + destruct v0... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0... + destruct v0... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0; destruct v1... + destruct v0... + destruct v0... + destruct v0; simpl in H0; inv H0. destruct (Float.to_int f); inv H2... + destruct v0; simpl in H0; inv H0... + destruct v0; simpl in H0; inv H0. destruct (Float32.to_int f); inv H2... + destruct v0; simpl in H0; inv H0... + destruct v0; simpl in H0; inv H0. destruct (Float.to_long f); inv H2... + destruct v0; simpl in H0; inv H0... + destruct v0; simpl in H0; inv H0. destruct (Float32.to_long f); inv H2... + destruct v0; simpl in H0; inv H0... + destruct (eval_condition cond vl m); simpl... destruct b... + unfold Val.select. destruct (eval_condition c vl m). apply Val.normalize_type. exact I. +Qed. + +End SOUNDNESS. + +(** * Manipulating and transforming operations *) + +(** Recognition of move operations. *) + +Definition is_move_operation + (A: Type) (op: operation) (args: list A) : option A := + match op, args with + | Omove, arg :: nil => Some arg + | _, _ => None + end. + +Lemma is_move_operation_correct: + forall (A: Type) (op: operation) (args: list A) (a: A), + is_move_operation op args = Some a -> + op = Omove /\ args = a :: nil. +Proof. + intros until a. unfold is_move_operation; destruct op; + try (intros; discriminate). + destruct args. intros; discriminate. + destruct args. intros. intuition congruence. + intros; discriminate. +Qed. + +(** [negate_condition cond] returns a condition that is logically + equivalent to the negation of [cond]. *) + +Definition negate_condition (cond: condition): condition := + match cond with + | Ccomp c => Ccomp(negate_comparison c) + | Ccompu c => Ccompu(negate_comparison c) + | Ccompimm c n => Ccompimm (negate_comparison c) n + | Ccompuimm c n => Ccompuimm (negate_comparison c) n + | Ccompl c => Ccompl(negate_comparison c) + | Ccomplu c => Ccomplu(negate_comparison c) + | Ccomplimm c n => Ccomplimm (negate_comparison c) n + | Ccompluimm c n => Ccompluimm (negate_comparison c) n + | Ccompf c => Cnotcompf c + | Cnotcompf c => Ccompf c + | Ccompfs c => Cnotcompfs c + | Cnotcompfs c => Ccompfs c + | Cmaskzero n => Cmasknotzero n + | Cmasknotzero n => Cmaskzero n + end. + +Lemma eval_negate_condition: + forall cond vl m, + eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m). +Proof. + intros. destruct cond; simpl. + repeat (destruct vl; auto). apply Val.negate_cmp_bool. + repeat (destruct vl; auto). apply Val.negate_cmpu_bool. + repeat (destruct vl; auto). apply Val.negate_cmp_bool. + repeat (destruct vl; auto). apply Val.negate_cmpu_bool. + repeat (destruct vl; auto). apply Val.negate_cmpl_bool. + repeat (destruct vl; auto). apply Val.negate_cmplu_bool. + repeat (destruct vl; auto). apply Val.negate_cmpl_bool. + repeat (destruct vl; auto). apply Val.negate_cmplu_bool. + repeat (destruct vl; auto). + repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0) as [[]|]; auto. + repeat (destruct vl; auto). + repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0) as [[]|]; auto. + destruct vl; auto. destruct vl; auto. + destruct vl; auto. destruct vl; auto. destruct (Val.maskzero_bool v n) as [[]|]; auto. +Qed. + +(** Shifting stack-relative references. This is used in [Stacking]. *) + +Definition shift_stack_addressing (delta: Z) (addr: addressing) := + match addr with + | Ainstack ofs => Ainstack (Ptrofs.add ofs (Ptrofs.repr delta)) + | _ => addr + end. + +Definition shift_stack_operation (delta: Z) (op: operation) := + match op with + | Olea addr => Olea (shift_stack_addressing delta addr) + | Oleal addr => Oleal (shift_stack_addressing delta addr) + | _ => op + end. + +Lemma type_shift_stack_addressing: + forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr. +Proof. + intros. destruct addr; auto. +Qed. + +Lemma type_shift_stack_operation: + forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op. +Proof. + intros. destruct op; auto; simpl; decEq; destruct a; auto. +Qed. + +Lemma eval_shift_stack_addressing32: + forall F V (ge: Genv.t F V) sp addr vl delta, + eval_addressing32 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl = + eval_addressing32 ge (Vptr sp (Ptrofs.repr delta)) addr vl. +Proof. + intros. + assert (A: forall i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i). + { intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. } + destruct addr; simpl; rewrite ?A; reflexivity. +Qed. + +Lemma eval_shift_stack_addressing64: + forall F V (ge: Genv.t F V) sp addr vl delta, + eval_addressing64 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl = + eval_addressing64 ge (Vptr sp (Ptrofs.repr delta)) addr vl. +Proof. + intros. + assert (A: forall i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i). + { intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. } + destruct addr; simpl; rewrite ?A; reflexivity. +Qed. + +Lemma eval_shift_stack_addressing: + forall F V (ge: Genv.t F V) sp addr vl delta, + eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl = + eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl. +Proof. + intros. unfold eval_addressing. + destruct Archi.ptr64; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64. +Qed. + +Lemma eval_shift_stack_operation: + forall F V (ge: Genv.t F V) sp op vl m delta, + eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m = + eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m. +Proof. + intros. destruct op; simpl; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64. +Qed. + +(** Offset an addressing mode [addr] by a quantity [delta], so that + it designates the pointer [delta] bytes past the pointer designated + by [addr]. This may be undefined if an offset overflows, in which case + [None] is returned. *) + +Definition offset_addressing_total (addr: addressing) (delta: Z) : addressing := + match addr with + | Aindexed n => Aindexed (n + delta) + | Aindexed2 n => Aindexed2 (n + delta) + | Ascaled sc n => Ascaled sc (n + delta) + | Aindexed2scaled sc n => Aindexed2scaled sc (n + delta) + | Aglobal s n => Aglobal s (Ptrofs.add n (Ptrofs.repr delta)) + | Abased s n => Abased s (Ptrofs.add n (Ptrofs.repr delta)) + | Abasedscaled sc s n => Abasedscaled sc s (Ptrofs.add n (Ptrofs.repr delta)) + | Ainstack n => Ainstack (Ptrofs.add n (Ptrofs.repr delta)) + end. + +Definition offset_addressing (addr: addressing) (delta: Z) : option addressing := + let addr' := offset_addressing_total addr delta in + if addressing_valid addr' then Some addr' else None. + +Lemma eval_offset_addressing_total_32: + forall (F V: Type) (ge: Genv.t F V) sp addr args delta v, + eval_addressing32 ge sp addr args = Some v -> + eval_addressing32 ge sp (offset_addressing_total addr delta) args = Some(Val.add v (Vint (Int.repr delta))). +Proof. + assert (A: forall x y, Int.add (Int.repr x) (Int.repr y) = Int.repr (x + y)). + { intros. apply Int.eqm_samerepr; auto with ints. } + assert (B: forall delta, Archi.ptr64 = false -> Ptrofs.repr delta = Ptrofs.of_int (Int.repr delta)). + { intros; symmetry; auto with ptrofs. } + intros. destruct addr; simpl in *; FuncInv; subst; simpl. +- rewrite <- A, ! Val.add_assoc; auto. +- rewrite <- A, ! Val.add_assoc; auto. +- rewrite <- A, ! Val.add_assoc; auto. +- rewrite <- A, ! Val.add_assoc; auto. +- rewrite B, Genv.shift_symbol_address_32 by auto. auto. +- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut. +- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut. +- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs. +Qed. + +Lemma eval_offset_addressing_total_64: + forall (F V: Type) (ge: Genv.t F V) sp addr args delta v, + eval_addressing64 ge sp addr args = Some v -> + eval_addressing64 ge sp (offset_addressing_total addr delta) args = Some(Val.addl v (Vlong (Int64.repr delta))). +Proof. + assert (A: forall x y, Int64.add (Int64.repr x) (Int64.repr y) = Int64.repr (x + y)). + { intros. apply Int64.eqm_samerepr; auto with ints. } + assert (B: forall delta, Archi.ptr64 = true -> Ptrofs.repr delta = Ptrofs.of_int64 (Int64.repr delta)). + { intros; symmetry; auto with ptrofs. } + intros. destruct addr; simpl in *; FuncInv; subst; simpl. +- rewrite <- A, ! Val.addl_assoc; auto. +- rewrite <- A, ! Val.addl_assoc; auto. +- rewrite <- A, ! Val.addl_assoc; auto. +- rewrite <- A, ! Val.addl_assoc; auto. +- rewrite B, Genv.shift_symbol_address_64 by auto. auto. +- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs. +Qed. + +(** The following lemma is used only in [Allocproof] in cases where [Archi.ptr64 = false]. *) + +Lemma eval_offset_addressing: + forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v, + offset_addressing addr delta = Some addr' -> + eval_addressing ge sp addr args = Some v -> + Archi.ptr64 = false -> + eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))). +Proof. + intros. unfold offset_addressing in H. destruct (addressing_valid (offset_addressing_total addr delta)); inv H. + unfold eval_addressing in *; rewrite H1 in *. apply eval_offset_addressing_total_32; auto. +Qed. + +(** Operations that are so cheap to recompute that CSE should not factor them out. *) + +Definition is_trivial_op (op: operation) : bool := + match op with + | Omove => true + | Ointconst _ => true + | Olongconst _ => true + | Olea (Aglobal _ _) => true + | Olea (Ainstack _) => true + | Oleal (Aglobal _ _) => true + | Oleal (Ainstack _) => true + | _ => false + end. + +(** Operations that depend on the memory state. *) + +Definition condition_depends_on_memory (c: condition) : bool := + match c with + | Ccompu _ => negb Archi.ptr64 + | Ccompuimm _ _ => negb Archi.ptr64 + | Ccomplu _ => Archi.ptr64 + | Ccompluimm _ _ => Archi.ptr64 + | _ => false + end. + +Definition op_depends_on_memory (op: operation) : bool := + match op with + | Ocmp c => condition_depends_on_memory c + | Osel c ty => condition_depends_on_memory c + | _ => false + end. + +Lemma condition_depends_on_memory_correct: + forall c args m1 m2, + condition_depends_on_memory c = false -> + eval_condition c args m1 = eval_condition c args m2. +Proof. + intros until m2. + destruct c; simpl; intros SF; auto; rewrite ? negb_false_iff in SF; + unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity. +Qed. + +Lemma op_depends_on_memory_correct: + forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, + op_depends_on_memory op = false -> + eval_operation ge sp op args m1 = eval_operation ge sp op args m2. +Proof. + intros until m2. destruct op; simpl; try congruence; intros C. +- f_equal; f_equal; apply condition_depends_on_memory_correct; auto. +- destruct args; auto. destruct args; auto. + rewrite (condition_depends_on_memory_correct c args m1 m2 C). + auto. +Qed. + +(** Global variables mentioned in an operation or addressing mode *) + +Definition globals_addressing (addr: addressing) : list ident := + match addr with + | Aglobal s n => s :: nil + | Abased s n => s :: nil + | Abasedscaled sc s n => s :: nil + | _ => nil + end. + +Definition globals_operation (op: operation) : list ident := + match op with + | Oindirectsymbol s => s :: nil + | Olea addr => globals_addressing addr + | Oleal addr => globals_addressing addr + | _ => nil + end. + +(** * Invariance and compatibility properties. *) + +(** [eval_operation] and [eval_addressing] depend on a global environment + for resolving references to global symbols. We show that they give + the same results if a global environment is replaced by another that + assigns the same addresses to the same symbols. *) + +Section GENV_TRANSF. + +Variable F1 F2 V1 V2: Type. +Variable ge1: Genv.t F1 V1. +Variable ge2: Genv.t F2 V2. +Hypothesis agree_on_symbols: + forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s. + +Lemma eval_addressing32_preserved: + forall sp addr vl, + eval_addressing32 ge2 sp addr vl = eval_addressing32 ge1 sp addr vl. +Proof. + intros. + unfold eval_addressing32, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols; + reflexivity. +Qed. + +Lemma eval_addressing64_preserved: + forall sp addr vl, + eval_addressing64 ge2 sp addr vl = eval_addressing64 ge1 sp addr vl. +Proof. + intros. + unfold eval_addressing64, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols; + reflexivity. +Qed. + +Lemma eval_addressing_preserved: + forall sp addr vl, + eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl. +Proof. + intros. + unfold eval_addressing; destruct Archi.ptr64; auto using eval_addressing32_preserved, eval_addressing64_preserved. +Qed. + +Lemma eval_operation_preserved: + forall sp op vl m, + eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m. +Proof. + intros. + unfold eval_operation; destruct op; auto using eval_addressing32_preserved, eval_addressing64_preserved. + unfold Genv.symbol_address. rewrite agree_on_symbols. auto. +Qed. + +End GENV_TRANSF. + +(** Compatibility of the evaluation functions with value injections. *) + +Section EVAL_COMPAT. + +Variable F1 F2 V1 V2: Type. +Variable ge1: Genv.t F1 V1. +Variable ge2: Genv.t F2 V2. +Variable f: meminj. + +Variable m1: mem. +Variable m2: mem. + +Hypothesis valid_pointer_inj: + forall b1 ofs b2 delta, + f b1 = Some(b2, delta) -> + Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. + +Hypothesis weak_valid_pointer_inj: + forall b1 ofs b2 delta, + f b1 = Some(b2, delta) -> + Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. + +Hypothesis weak_valid_pointer_no_overflow: + forall b1 ofs b2 delta, + f b1 = Some(b2, delta) -> + Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. + +Hypothesis valid_different_pointers_inj: + forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, + b1 <> b2 -> + Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> + Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> + f b1 = Some (b1', delta1) -> + f b2 = Some (b2', delta2) -> + b1' <> b2' \/ + Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)). + +Ltac InvInject := + match goal with + | [ H: Val.inject _ (Vint _) _ |- _ ] => + inv H; InvInject + | [ H: Val.inject _ (Vfloat _) _ |- _ ] => + inv H; InvInject + | [ H: Val.inject _ (Vptr _ _) _ |- _ ] => + inv H; InvInject + | [ H: Val.inject_list _ nil _ |- _ ] => + inv H; InvInject + | [ H: Val.inject_list _ (_ :: _) _ |- _ ] => + inv H; InvInject + | _ => idtac + end. + +Lemma eval_condition_inj: + forall cond vl1 vl2 b, + Val.inject_list f vl1 vl2 -> + eval_condition cond vl1 m1 = Some b -> + eval_condition cond vl2 m2 = Some b. +Proof. + intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl; auto. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. +- inv H3; simpl in H0; inv H0; auto. +- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies. +- inv H3; simpl in H0; inv H0; auto. +- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- inv H3; inv H2; simpl in H0; inv H0; auto. +- inv H3; try discriminate; auto. +- inv H3; try discriminate; auto. +Qed. + +Ltac TrivialExists := + match goal with + | [ |- exists v2, Some ?v1 = Some v2 /\ Val.inject _ _ v2 ] => + exists v1; split; auto + | _ => idtac + end. + +Lemma eval_addressing32_inj: + forall addr sp1 vl1 sp2 vl2 v1, + (forall id ofs, + In id (globals_addressing addr) -> + Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> + Val.inject f sp1 sp2 -> + Val.inject_list f vl1 vl2 -> + eval_addressing32 ge1 sp1 addr vl1 = Some v1 -> + exists v2, eval_addressing32 ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2. +Proof. + assert (A: forall v1 v2 v1' v2', Val.inject f v1 v1' -> Val.inject f v2 v2' -> Val.inject f (Val.mul v1 v2) (Val.mul v1' v2')). + { intros. inv H; simpl; auto. inv H0; auto. } + intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.add_inject, Val.offset_ptr_inject with coqlib. +Qed. + +Lemma eval_addressing64_inj: + forall addr sp1 vl1 sp2 vl2 v1, + (forall id ofs, + In id (globals_addressing addr) -> + Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> + Val.inject f sp1 sp2 -> + Val.inject_list f vl1 vl2 -> + eval_addressing64 ge1 sp1 addr vl1 = Some v1 -> + exists v2, eval_addressing64 ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2. +Proof. + assert (A: forall v1 v2 v1' v2', Val.inject f v1 v1' -> Val.inject f v2 v2' -> Val.inject f (Val.mull v1 v2) (Val.mull v1' v2')). + { intros. inv H; simpl; auto. inv H0; auto. } + intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.addl_inject, Val.offset_ptr_inject with coqlib. +Qed. + +Lemma eval_addressing_inj: + forall addr sp1 vl1 sp2 vl2 v1, + (forall id ofs, + In id (globals_addressing addr) -> + Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> + Val.inject f sp1 sp2 -> + Val.inject_list f vl1 vl2 -> + eval_addressing ge1 sp1 addr vl1 = Some v1 -> + exists v2, eval_addressing ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2. +Proof. + unfold eval_addressing; intros. destruct Archi.ptr64; eauto using eval_addressing32_inj, eval_addressing64_inj. +Qed. + +Lemma eval_operation_inj: + forall op sp1 vl1 sp2 vl2 v1, + (forall id ofs, + In id (globals_operation op) -> + Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> + Val.inject f sp1 sp2 -> + Val.inject_list f vl1 vl2 -> + eval_operation ge1 sp1 op vl1 m1 = Some v1 -> + exists v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 /\ Val.inject f v1 v2. +Proof. + intros until v1; intros GL; intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists. + apply GL; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + apply Val.sub_inject; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int.eq i0 Int.zero); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int.eq i0 Int.zero); inv H2. TrivialExists. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto. + inv H4; simpl in H1; try discriminate. simpl. + destruct (Int.ltu n (Int.repr 31)); inv H1. TrivialExists. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto. + inv H4; simpl; auto. + inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto. + inv H2; simpl; auto. destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize); auto. + eapply eval_addressing32_inj; eauto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + apply Val.addl_inject; auto. + apply Val.subl_inject; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists. + inv H4; inv H3; simpl in H1; inv H1. simpl. + destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto. + inv H4; simpl in H1; try discriminate. simpl. destruct (Int.ltu n (Int.repr 63)); inv H1. TrivialExists. + inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. + inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto. + inv H4; simpl; auto. + eapply eval_addressing64_inj; eauto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; inv H2; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl; auto. + inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_int f0); simpl in H2; inv H2. + exists (Vint i); auto. + inv H4; simpl in H1; inv H1. simpl. TrivialExists. + inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_int f0); simpl in H2; inv H2. + exists (Vint i); auto. + inv H4; simpl in H1; inv H1. simpl. TrivialExists. + inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_long f0); simpl in H2; inv H2. + exists (Vlong i); auto. + inv H4; simpl in H1; inv H1. simpl. TrivialExists. + inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_long f0); simpl in H2; inv H2. + exists (Vlong i); auto. + inv H4; simpl in H1; inv H1. simpl. TrivialExists. + subst v1. destruct (eval_condition cond vl1 m1) eqn:?. + exploit eval_condition_inj; eauto. intros EQ; rewrite EQ. + destruct b; simpl; constructor. + simpl; constructor. + apply Val.select_inject; auto. + destruct (eval_condition c vl1 m1) eqn:?; auto. + right; symmetry; eapply eval_condition_inj; eauto. +Qed. + +End EVAL_COMPAT. + +(** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *) + +Section EVAL_LESSDEF. + +Variable F V: Type. +Variable genv: Genv.t F V. + +Remark valid_pointer_extends: + forall m1 m2, Mem.extends m1 m2 -> + forall b1 ofs b2 delta, + Some(b1, 0) = Some(b2, delta) -> + Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. +Proof. + intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto. +Qed. + +Remark weak_valid_pointer_extends: + forall m1 m2, Mem.extends m1 m2 -> + forall b1 ofs b2 delta, + Some(b1, 0) = Some(b2, delta) -> + Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. +Proof. + intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto. +Qed. + +Remark weak_valid_pointer_no_overflow_extends: + forall m1 b1 ofs b2 delta, + Some(b1, 0) = Some(b2, delta) -> + Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> + 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. +Proof. + intros. inv H. rewrite Z.add_0_r. apply Ptrofs.unsigned_range_2. +Qed. + +Remark valid_different_pointers_extends: + forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, + b1 <> b2 -> + Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> + Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> + Some(b1, 0) = Some (b1', delta1) -> + Some(b2, 0) = Some (b2', delta2) -> + b1' <> b2' \/ + Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)). +Proof. + intros. inv H2; inv H3. auto. +Qed. + +Lemma eval_condition_lessdef: + forall cond vl1 vl2 b m1 m2, + Val.lessdef_list vl1 vl2 -> + Mem.extends m1 m2 -> + eval_condition cond vl1 m1 = Some b -> + eval_condition cond vl2 m2 = Some b. +Proof. + intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1). + apply valid_pointer_extends; auto. + apply weak_valid_pointer_extends; auto. + apply weak_valid_pointer_no_overflow_extends. + apply valid_different_pointers_extends; auto. + rewrite <- val_inject_list_lessdef. eauto. auto. +Qed. + +Lemma eval_operation_lessdef: + forall sp op vl1 vl2 v1 m1 m2, + Val.lessdef_list vl1 vl2 -> + Mem.extends m1 m2 -> + eval_operation genv sp op vl1 m1 = Some v1 -> + exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2. +Proof. + intros. rewrite val_inject_list_lessdef in H. + assert (exists v2 : val, + eval_operation genv sp op vl2 m2 = Some v2 + /\ Val.inject (fun b => Some(b, 0)) v1 v2). + eapply eval_operation_inj with (m1 := m1) (sp1 := sp). + apply valid_pointer_extends; auto. + apply weak_valid_pointer_extends; auto. + apply weak_valid_pointer_no_overflow_extends. + apply valid_different_pointers_extends; auto. + intros. apply val_inject_lessdef. auto. + apply val_inject_lessdef; auto. + eauto. + auto. + destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. +Qed. + +Lemma eval_addressing_lessdef: + forall sp addr vl1 vl2 v1, + Val.lessdef_list vl1 vl2 -> + eval_addressing genv sp addr vl1 = Some v1 -> + exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2. +Proof. + intros. rewrite val_inject_list_lessdef in H. + assert (exists v2 : val, + eval_addressing genv sp addr vl2 = Some v2 + /\ Val.inject (fun b => Some(b, 0)) v1 v2). + eapply eval_addressing_inj with (sp1 := sp). + intros. rewrite <- val_inject_lessdef; auto. + rewrite <- val_inject_lessdef; auto. + eauto. auto. + destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. +Qed. + +End EVAL_LESSDEF. + +(** Compatibility of the evaluation functions with memory injections. *) + +Section EVAL_INJECT. + +Variable F V: Type. +Variable genv: Genv.t F V. +Variable f: meminj. +Hypothesis globals: meminj_preserves_globals genv f. +Variable sp1: block. +Variable sp2: block. +Variable delta: Z. +Hypothesis sp_inj: f sp1 = Some(sp2, delta). + +Remark symbol_address_inject: + forall id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs). +Proof. + intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto. + exploit (proj1 globals); eauto. intros. + econstructor; eauto. rewrite Ptrofs.add_zero; auto. +Qed. + +Lemma eval_condition_inject: + forall cond vl1 vl2 b m1 m2, + Val.inject_list f vl1 vl2 -> + Mem.inject f m1 m2 -> + eval_condition cond vl1 m1 = Some b -> + eval_condition cond vl2 m2 = Some b. +Proof. + intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto. + intros; eapply Mem.valid_pointer_inject_val; eauto. + intros; eapply Mem.weak_valid_pointer_inject_val; eauto. + intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. + intros; eapply Mem.different_pointers_inject; eauto. +Qed. + +Lemma eval_addressing_inject: + forall addr vl1 vl2 v1, + Val.inject_list f vl1 vl2 -> + eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 -> + exists v2, + eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2 + /\ Val.inject f v1 v2. +Proof. + intros. + rewrite eval_shift_stack_addressing. + eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto. + intros. apply symbol_address_inject. + econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. +Qed. + +Lemma eval_operation_inject: + forall op vl1 vl2 v1 m1 m2, + Val.inject_list f vl1 vl2 -> + Mem.inject f m1 m2 -> + eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 -> + exists v2, + eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2 + /\ Val.inject f v1 v2. +Proof. + intros. + rewrite eval_shift_stack_operation. simpl. + eapply eval_operation_inj with (sp1 := Vptr sp1 Ptrofs.zero) (m1 := m1); eauto. + intros; eapply Mem.valid_pointer_inject_val; eauto. + intros; eapply Mem.weak_valid_pointer_inject_val; eauto. + intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. + intros; eapply Mem.different_pointers_inject; eauto. + intros. apply symbol_address_inject. + econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. +Qed. + +End EVAL_INJECT. + +(** * Handling of builtin arguments *) + +Definition builtin_arg_ok_1 + (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := + match c, ba with + | OK_all, _ => true + | OK_const, (BA_int _ | BA_long _ | BA_float _ | BA_single _) => true + | OK_addrstack, BA_addrstack _ => true + | OK_addressing, BA_addrstack _ => true + | OK_addressing, BA_addrglobal _ _ => true + | OK_addressing, BA_addptr (BA _) (BA_int _ | BA_long _) => true + | _, _ => false + end. + +Definition builtin_arg_ok + (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := + match ba with + | (BA _ | BA_splitlong (BA _) (BA _)) => true + | _ => builtin_arg_ok_1 ba c + end. -- cgit