(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Operators and addressing modes. The abstract syntax and dynamic semantics for the CminorSel, RTL, LTL and Mach languages depend on the following types, defined in this library: - [condition]: boolean conditions for conditional branches; - [operation]: arithmetic and logical operations; - [addressing]: addressing modes for load and store operations. These types are processor-specific and correspond roughly to what the processor can compute in one instruction. In other terms, these types reflect the state of the program after instruction selection. For a processor-independent set of operations, see the abstract syntax and dynamic semantics of the Cminor language. *) Require Import Axioms. Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Globalenvs. Require Import Events. Set Implicit Arguments. Record shift_amount : Type := mk_shift_amount { s_amount: int; s_amount_ltu: Int.ltu s_amount Int.iwordsize = true }. Inductive shift : Type := | Slsl: shift_amount -> shift | Slsr: shift_amount -> shift | Sasr: shift_amount -> shift | Sror: shift_amount -> shift. (** Conditions (boolean-valued operators). *) Inductive condition : Type := | Ccomp: comparison -> condition (**r signed integer comparison *) | Ccompu: comparison -> condition (**r unsigned integer comparison *) | Ccompshift: comparison -> shift -> condition (**r signed integer comparison *) | Ccompushift: comparison -> shift -> condition (**r unsigned integer comparison *) | Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *) | Ccompuimm: comparison -> int -> condition (**r unsigned integer comparison with a constant *) | Ccompf: comparison -> condition (**r floating-point comparison *) | Cnotcompf: comparison -> condition. (**r negation of a floating-point comparison *) (** Arithmetic and logical operations. In the descriptions, [rd] is the result of the operation and [r1], [r2], etc, are the arguments. *) Inductive operation : Type := | Omove: operation (**r [rd = r1] *) | Ointconst: int -> operation (**r [rd] is set to the given integer constant *) | Ofloatconst: float -> operation (**r [rd] is set to the given float constant *) | Oaddrsymbol: ident -> int -> operation (**r [rd] is set to the the address of the symbol plus the offset *) | Oaddrstack: int -> operation (**r [rd] is set to the stack pointer plus the given offset *) (*c Integer arithmetic: *) | Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *) | Ocast8unsigned: operation (**r [rd] is 8-bit zero extension of [r1] *) | Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *) | Ocast16unsigned: operation (**r [rd] is 16-bit zero extension of [r1] *) | Oadd: operation (**r [rd = r1 + r2] *) | Oaddshift: shift -> operation (**r [rd = r1 + shifted r2] *) | Oaddimm: int -> operation (**r [rd = r1 + n] *) | Osub: operation (**r [rd = r1 - r2] *) | Osubshift: shift -> operation (**r [rd = r1 - shifted r2] *) | Orsubshift: shift -> operation (**r [rd = shifted r2 - r1] *) | Orsubimm: int -> operation (**r [rd = n - r1] *) | Omul: operation (**r [rd = r1 * r2] *) | Odiv: operation (**r [rd = r1 / r2] (signed) *) | Odivu: operation (**r [rd = r1 / r2] (unsigned) *) | Oand: operation (**r [rd = r1 & r2] *) | Oandshift: shift -> operation (**r [rd = r1 & shifted r2] *) | Oandimm: int -> operation (**r [rd = r1 & n] *) | Oor: operation (**r [rd = r1 | r2] *) | Oorshift: shift -> operation (**r [rd = r1 | shifted r2] *) | Oorimm: int -> operation (**r [rd = r1 | n] *) | Oxor: operation (**r [rd = r1 ^ r2] *) | Oxorshift: shift -> operation (**r [rd = r1 ^ shifted r2] *) | Oxorimm: int -> operation (**r [rd = r1 ^ n] *) | Obic: operation (**r [rd = r1 & ~r2] *) | Obicshift: shift -> operation (**r [rd = r1 & ~(shifted r2)] *) | Onot: operation (**r [rd = ~r1] *) | Onotshift: shift -> operation (**r [rd = ~(shifted r1)] *) | Oshl: operation (**r [rd = r1 << r2] *) | Oshr: operation (**r [rd = r1 >> r2] (signed) *) | Oshru: operation (**r [rd = r1 >> r2] (unsigned) *) | Oshift: shift -> operation (**r [rd = shifted r1] *) | Oshrximm: int -> operation (**r [rd = r1 / 2^n] (signed) *) (*c Floating-point arithmetic: *) | Onegf: operation (**r [rd = - r1] *) | Oabsf: operation (**r [rd = abs(r1)] *) | Oaddf: operation (**r [rd = r1 + r2] *) | Osubf: operation (**r [rd = r1 - r2] *) | Omulf: operation (**r [rd = r1 * r2] *) | Odivf: operation (**r [rd = r1 / r2] *) | Osingleoffloat: operation (**r [rd] is [r1] truncated to single-precision float *) (*c Conversions between int and float: *) | Ointoffloat: operation (**r [rd = signed_int_of_float(r1)] *) | Ofloatofint: operation (**r [rd = float_of_signed_int(r1)] *) (*c Boolean tests: *) | Ocmp: condition -> operation. (**r [rd = 1] if condition holds, [rd = 0] otherwise. *) (** Addressing modes. [r1], [r2], etc, are the arguments to the addressing. *) Inductive addressing: Type := | Aindexed: int -> addressing (**r Address is [r1 + offset] *) | Aindexed2: addressing (**r Address is [r1 + r2] *) | Aindexed2shift: shift -> addressing (**r Address is [r1 + shifted r2] *) | Ainstack: int -> addressing. (**r Address is [stack_pointer + offset] *) (** Comparison functions (used in module [CSE]). *) Definition eq_shift (x y: shift): {x=y} + {x<>y}. Proof. revert x y. generalize Int.eq_dec; intro. assert (forall (x y: shift_amount), {x=y}+{x<>y}). destruct x as [x Px]. destruct y as [y Py]. destruct (H x y). subst x. rewrite (proof_irr Px Py). left; auto. right. red; intro. elim n. inversion H0. auto. decide equality. Qed. Definition eq_operation (x y: operation): {x=y} + {x<>y}. Proof. generalize Int.eq_dec; intro. generalize Float.eq_dec; intro. assert (forall (x y: ident), {x=y}+{x<>y}). exact peq. generalize eq_shift; intro. assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality. assert (forall (x y: condition), {x=y}+{x<>y}). decide equality. decide equality. Qed. Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}. Proof. generalize Int.eq_dec; intro. generalize eq_shift; intro. decide equality. Qed. (** Evaluation of conditions, operators and addressing modes applied to lists of values. Return [None] when the computation is undefined: wrong number of arguments, arguments of the wrong types, undefined operations such as division by zero. [eval_condition] returns a boolean, [eval_operation] and [eval_addressing] return a value. *) Definition eval_compare_mismatch (c: comparison) : option bool := match c with Ceq => Some false | Cne => Some true | _ => None end. Definition eval_compare_null (c: comparison) (n: int) : option bool := if Int.eq n Int.zero then eval_compare_mismatch c else None. Definition eval_shift (s: shift) (n: int) : int := match s with | Slsl x => Int.shl n (s_amount x) | Slsr x => Int.shru n (s_amount x) | Sasr x => Int.shr n (s_amount x) | Sror x => Int.ror n (s_amount x) end. Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool := match cond, vl with | Ccomp c, Vint n1 :: Vint n2 :: nil => Some (Int.cmp c n1 n2) | Ccompu c, Vint n1 :: Vint n2 :: nil => Some (Int.cmpu c n1 n2) | Ccompu c, Vptr b1 n1 :: Vptr b2 n2 :: nil => if Mem.valid_pointer m b1 (Int.unsigned n1) && Mem.valid_pointer m b2 (Int.unsigned n2) then if eq_block b1 b2 then Some (Int.cmpu c n1 n2) else eval_compare_mismatch c else None | Ccompu c, Vptr b1 n1 :: Vint n2 :: nil => eval_compare_null c n2 | Ccompu c, Vint n1 :: Vptr b2 n2 :: nil => eval_compare_null c n1 | Ccompshift c s, Vint n1 :: Vint n2 :: nil => Some (Int.cmp c n1 (eval_shift s n2)) | Ccompushift c s, Vint n1 :: Vint n2 :: nil => Some (Int.cmpu c n1 (eval_shift s n2)) | Ccompushift c s, Vptr b1 n1 :: Vint n2 :: nil => eval_compare_null c (eval_shift s n2) | Ccompimm c n, Vint n1 :: nil => Some (Int.cmp c n1 n) | Ccompuimm c n, Vint n1 :: nil => Some (Int.cmpu c n1 n) | Ccompuimm c n, Vptr b1 n1 :: nil => eval_compare_null c n | Ccompf c, Vfloat f1 :: Vfloat f2 :: nil => Some (Float.cmp c f1 f2) | Cnotcompf c, Vfloat f1 :: Vfloat f2 :: nil => Some (negb (Float.cmp c f1 f2)) | _, _ => None end. Definition offset_sp (sp: val) (delta: int) : option val := match sp with | Vptr b n => Some (Vptr b (Int.add n delta)) | _ => None end. Definition eval_operation (F V: Type) (genv: Genv.t F V) (sp: val) (op: operation) (vl: list val) (m: mem): option val := match op, vl with | Omove, v1::nil => Some v1 | Ointconst n, nil => Some (Vint n) | Ofloatconst n, nil => Some (Vfloat n) | Oaddrsymbol s ofs, nil => match Genv.find_symbol genv s with | None => None | Some b => Some (Vptr b ofs) end | Oaddrstack ofs, nil => offset_sp sp ofs | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1) | Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1) | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1) | Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1) | Oadd, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 n2)) | Oadd, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n2 n1)) | Oadd, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2)) | Oaddshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 (eval_shift s n2))) | Oaddshift s, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 (eval_shift s n2))) | Oaddimm n, Vint n1 :: nil => Some (Vint (Int.add n1 n)) | Oaddimm n, Vptr b1 n1 :: nil => Some (Vptr b1 (Int.add n1 n)) | Osub, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 n2)) | Osub, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 n2)) | Osub, Vptr b1 n1 :: Vptr b2 n2 :: nil => if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None | Osubshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 (eval_shift s n2))) | Osubshift s, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 (eval_shift s n2))) | Orsubshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub (eval_shift s n2) n1)) | Orsubimm n, Vint n1 :: nil => Some (Vint (Int.sub n n1)) | Omul, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.mul n1 n2)) | Odiv, Vint n1 :: Vint n2 :: nil => if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2)) | Odivu, Vint n1 :: Vint n2 :: nil => if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2)) | Oand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 n2)) | Oandshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (eval_shift s n2))) | Oandimm n, Vint n1 :: nil => Some (Vint (Int.and n1 n)) | Oor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 n2)) | Oorshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 (eval_shift s n2))) | Oorimm n, Vint n1 :: nil => Some (Vint (Int.or n1 n)) | Oxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 n2)) | Oxorshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 (eval_shift s n2))) | Oxorimm n, Vint n1 :: nil => Some (Vint (Int.xor n1 n)) | Obic, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (Int.not n2))) | Obicshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (Int.not (eval_shift s n2)))) | Onot, Vint n1 :: nil => Some (Vint (Int.not n1)) | Onotshift s, Vint n1 :: nil => Some (Vint (Int.not (eval_shift s n1))) | Oshl, Vint n1 :: Vint n2 :: nil => if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shl n1 n2)) else None | Oshr, Vint n1 :: Vint n2 :: nil => if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shr n1 n2)) else None | Oshru, Vint n1 :: Vint n2 :: nil => if Int.ltu n2 Int.iwordsize then Some (Vint (Int.shru n1 n2)) else None | Oshift s, Vint n :: nil => Some (Vint (eval_shift s n)) | Oshrximm n, Vint n1 :: nil => if Int.ltu n (Int.repr 31) then Some (Vint (Int.shrx n1 n)) else None | Onegf, Vfloat f1 :: nil => Some (Vfloat (Float.neg f1)) | Oabsf, Vfloat f1 :: nil => Some (Vfloat (Float.abs f1)) | Oaddf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.add f1 f2)) | Osubf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.sub f1 f2)) | Omulf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.mul f1 f2)) | Odivf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.div f1 f2)) | Osingleoffloat, v1 :: nil => Some (Val.singleoffloat v1) | Ointoffloat, Vfloat f1 :: nil => option_map Vint (Float.intoffloat f1) | Ofloatofint, Vint n1 :: nil => Some (Vfloat (Float.floatofint n1)) | Ocmp c, _ => match eval_condition c vl m with | None => None | Some false => Some Vfalse | Some true => Some Vtrue end | _, _ => None end. Definition eval_addressing (F V: Type) (genv: Genv.t F V) (sp: val) (addr: addressing) (vl: list val) : option val := match addr, vl with | Aindexed n, Vptr b1 n1 :: nil => Some (Vptr b1 (Int.add n1 n)) | Aindexed2, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2)) | Aindexed2, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n1 n2)) | Aindexed2shift s, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 (eval_shift s n2))) | Ainstack ofs, nil => offset_sp sp ofs | _, _ => None end. Definition negate_condition (cond: condition): condition := match cond with | Ccomp c => Ccomp(negate_comparison c) | Ccompu c => Ccompu(negate_comparison c) | Ccompshift c s => Ccompshift (negate_comparison c) s | Ccompushift c s => Ccompushift (negate_comparison c) s | Ccompimm c n => Ccompimm (negate_comparison c) n | Ccompuimm c n => Ccompuimm (negate_comparison c) n | Ccompf c => Cnotcompf c | Cnotcompf c => Ccompf c end. Ltac FuncInv := match goal with | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ => destruct x; simpl in H; try discriminate; FuncInv | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ => destruct v; simpl in H; try discriminate; FuncInv | H: (Some _ = Some _) |- _ => injection H; intros; clear H; FuncInv | _ => idtac end. Remark eval_negate_compare_null: forall c n b, eval_compare_null c n = Some b -> eval_compare_null (negate_comparison c) n = Some (negb b). Proof. intros until b. unfold eval_compare_null. case (Int.eq n Int.zero). destruct c; intro EQ; simplify_eq EQ; intros; subst b; reflexivity. intro; discriminate. Qed. Lemma eval_negate_condition: forall (cond: condition) (vl: list val) (b: bool) (m: mem), eval_condition cond vl m = Some b -> eval_condition (negate_condition cond) vl m = Some (negb b). Proof. intros. destruct cond; simpl in H; FuncInv; try subst b; simpl. rewrite Int.negate_cmp. auto. rewrite Int.negate_cmpu. auto. apply eval_negate_compare_null; auto. apply eval_negate_compare_null; auto. destruct (Mem.valid_pointer m b0 (Int.unsigned i) && Mem.valid_pointer m b1 (Int.unsigned i0)); try discriminate. destruct (eq_block b0 b1). rewrite Int.negate_cmpu. congruence. destruct c; simpl in H; inv H; auto. rewrite Int.negate_cmp. auto. rewrite Int.negate_cmpu. auto. apply eval_negate_compare_null; auto. rewrite Int.negate_cmp. auto. rewrite Int.negate_cmpu. auto. apply eval_negate_compare_null; auto. auto. rewrite negb_elim. auto. Qed. (** [eval_operation] and [eval_addressing] depend on a global environment for resolving references to global symbols. We show that they give the same results if a global environment is replaced by another that assigns the same addresses to the same symbols. *) Section GENV_TRANSF. Variable F1 F2 V1 V2: Type. Variable ge1: Genv.t F1 V1. Variable ge2: Genv.t F2 V2. Hypothesis agree_on_symbols: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s. Lemma eval_operation_preserved: forall sp op vl m, eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m. Proof. intros. unfold eval_operation; destruct op; try rewrite agree_on_symbols; reflexivity. Qed. Lemma eval_addressing_preserved: forall sp addr vl, eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl. Proof. intros. assert (UNUSED: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s). exact agree_on_symbols. unfold eval_addressing; destruct addr; try rewrite agree_on_symbols; reflexivity. Qed. End GENV_TRANSF. (** Recognition of move operations. *) Definition is_move_operation (A: Type) (op: operation) (args: list A) : option A := match op, args with | Omove, arg :: nil => Some arg | _, _ => None end. Lemma is_move_operation_correct: forall (A: Type) (op: operation) (args: list A) (a: A), is_move_operation op args = Some a -> op = Omove /\ args = a :: nil. Proof. intros until a. unfold is_move_operation; destruct op; try (intros; discriminate). destruct args. intros; discriminate. destruct args. intros. intuition congruence. intros; discriminate. Qed. (** Static typing of conditions, operators and addressing modes. *) Definition type_of_condition (c: condition) : list typ := match c with | Ccomp _ => Tint :: Tint :: nil | Ccompu _ => Tint :: Tint :: nil | Ccompshift _ _ => Tint :: Tint :: nil | Ccompushift _ _ => Tint :: Tint :: nil | Ccompimm _ _ => Tint :: nil | Ccompuimm _ _ => Tint :: nil | Ccompf _ => Tfloat :: Tfloat :: nil | Cnotcompf _ => Tfloat :: Tfloat :: nil end. Definition type_of_operation (op: operation) : list typ * typ := match op with | Omove => (nil, Tint) (* treated specially *) | Ointconst _ => (nil, Tint) | Ofloatconst _ => (nil, Tfloat) | Oaddrsymbol _ _ => (nil, Tint) | Oaddrstack _ => (nil, Tint) | Ocast8signed => (Tint :: nil, Tint) | Ocast8unsigned => (Tint :: nil, Tint) | Ocast16signed => (Tint :: nil, Tint) | Ocast16unsigned => (Tint :: nil, Tint) | Oadd => (Tint :: Tint :: nil, Tint) | Oaddshift _ => (Tint :: Tint :: nil, Tint) | Oaddimm _ => (Tint :: nil, Tint) | Osub => (Tint :: Tint :: nil, Tint) | Osubshift _ => (Tint :: Tint :: nil, Tint) | Orsubshift _ => (Tint :: Tint :: nil, Tint) | Orsubimm _ => (Tint :: nil, Tint) | Omul => (Tint :: Tint :: nil, Tint) | Odiv => (Tint :: Tint :: nil, Tint) | Odivu => (Tint :: Tint :: nil, Tint) | Oand => (Tint :: Tint :: nil, Tint) | Oandshift _ => (Tint :: Tint :: nil, Tint) | Oandimm _ => (Tint :: nil, Tint) | Oor => (Tint :: Tint :: nil, Tint) | Oorshift _ => (Tint :: Tint :: nil, Tint) | Oorimm _ => (Tint :: nil, Tint) | Oxor => (Tint :: Tint :: nil, Tint) | Oxorshift _ => (Tint :: Tint :: nil, Tint) | Oxorimm _ => (Tint :: nil, Tint) | Obic => (Tint :: Tint :: nil, Tint) | Obicshift _ => (Tint :: Tint :: nil, Tint) | Onot => (Tint :: nil, Tint) | Onotshift _ => (Tint :: nil, Tint) | Oshl => (Tint :: Tint :: nil, Tint) | Oshr => (Tint :: Tint :: nil, Tint) | Oshru => (Tint :: Tint :: nil, Tint) | Oshift _ => (Tint :: nil, Tint) | Oshrximm _ => (Tint :: nil, Tint) | Onegf => (Tfloat :: nil, Tfloat) | Oabsf => (Tfloat :: nil, Tfloat) | Oaddf => (Tfloat :: Tfloat :: nil, Tfloat) | Osubf => (Tfloat :: Tfloat :: nil, Tfloat) | Omulf => (Tfloat :: Tfloat :: nil, Tfloat) | Odivf => (Tfloat :: Tfloat :: nil, Tfloat) | Osingleoffloat => (Tfloat :: nil, Tfloat) | Ointoffloat => (Tfloat :: nil, Tint) | Ofloatofint => (Tint :: nil, Tfloat) | Ocmp c => (type_of_condition c, Tint) end. Definition type_of_addressing (addr: addressing) : list typ := match addr with | Aindexed _ => Tint :: nil | Aindexed2 => Tint :: Tint :: nil | Aindexed2shift _ => Tint :: Tint :: nil | Ainstack _ => nil end. Definition type_of_chunk (c: memory_chunk) : typ := match c with | Mint8signed => Tint | Mint8unsigned => Tint | Mint16signed => Tint | Mint16unsigned => Tint | Mint32 => Tint | Mfloat32 => Tfloat | Mfloat64 => Tfloat end. (** Weak type soundness results for [eval_operation]: the result values, when defined, are always of the type predicted by [type_of_operation]. *) Section SOUNDNESS. Variable A V: Type. Variable genv: Genv.t A V. Lemma type_of_operation_sound: forall op vl sp v m, op <> Omove -> eval_operation genv sp op vl m = Some v -> Val.has_type v (snd (type_of_operation op)). Proof. intros. destruct op; simpl in H0; FuncInv; try subst v; try exact I. congruence. destruct (Genv.find_symbol genv i); simplify_eq H0; intro; subst v; exact I. simpl. unfold offset_sp in H0. destruct sp; try discriminate. inversion H0. exact I. destruct v0; exact I. destruct v0; exact I. destruct v0; exact I. destruct v0; exact I. destruct (eq_block b b0). injection H0; intro; subst v; exact I. discriminate. destruct (Int.eq i0 Int.zero). discriminate. injection H0; intro; subst v; exact I. destruct (Int.eq i0 Int.zero). discriminate. injection H0; intro; subst v; exact I. destruct (Int.ltu i0 Int.iwordsize). injection H0; intro; subst v; exact I. discriminate. destruct (Int.ltu i0 Int.iwordsize). injection H0; intro; subst v; exact I. discriminate. destruct (Int.ltu i0 Int.iwordsize). injection H0; intro; subst v; exact I. discriminate. destruct (Int.ltu i (Int.repr 31)). injection H0; intro; subst v; exact I. discriminate. destruct v0; exact I. destruct (Float.intoffloat f); simpl in H0; inv H0. exact I. destruct (eval_condition c vl). destruct b; injection H0; intro; subst v; exact I. discriminate. Qed. Lemma type_of_chunk_correct: forall chunk m addr v, Mem.loadv chunk m addr = Some v -> Val.has_type v (type_of_chunk chunk). Proof. intro chunk. assert (forall v, Val.has_type (Val.load_result chunk v) (type_of_chunk chunk)). destruct v; destruct chunk; exact I. intros until v. unfold Mem.loadv. destruct addr; intros; try discriminate. eapply Mem.load_type; eauto. Qed. End SOUNDNESS. (** Alternate definition of [eval_condition], [eval_op], [eval_addressing] as total functions that return [Vundef] when not applicable (instead of [None]). Used in the proof of [PPCgen]. *) Section EVAL_OP_TOTAL. Variable F V: Type. Variable genv: Genv.t F V. Definition find_symbol_offset (id: ident) (ofs: int) : val := match Genv.find_symbol genv id with | Some b => Vptr b ofs | None => Vundef end. Definition eval_shift_total (s: shift) (v: val) : val := match v with | Vint n => Vint(eval_shift s n) | _ => Vundef end. Definition eval_condition_total (cond: condition) (vl: list val) : val := match cond, vl with | Ccomp c, v1::v2::nil => Val.cmp c v1 v2 | Ccompu c, v1::v2::nil => Val.cmpu c v1 v2 | Ccompshift c s, v1::v2::nil => Val.cmp c v1 (eval_shift_total s v2) | Ccompushift c s, v1::v2::nil => Val.cmpu c v1 (eval_shift_total s v2) | Ccompimm c n, v1::nil => Val.cmp c v1 (Vint n) | Ccompuimm c n, v1::nil => Val.cmpu c v1 (Vint n) | Ccompf c, v1::v2::nil => Val.cmpf c v1 v2 | Cnotcompf c, v1::v2::nil => Val.notbool(Val.cmpf c v1 v2) | _, _ => Vundef end. Definition eval_operation_total (sp: val) (op: operation) (vl: list val) : val := match op, vl with | Omove, v1::nil => v1 | Ointconst n, nil => Vint n | Ofloatconst n, nil => Vfloat n | Oaddrsymbol s ofs, nil => find_symbol_offset s ofs | Oaddrstack ofs, nil => Val.add sp (Vint ofs) | Ocast8signed, v1::nil => Val.sign_ext 8 v1 | Ocast8unsigned, v1::nil => Val.zero_ext 8 v1 | Ocast16signed, v1::nil => Val.sign_ext 16 v1 | Ocast16unsigned, v1::nil => Val.zero_ext 16 v1 | Oadd, v1::v2::nil => Val.add v1 v2 | Oaddshift s, v1::v2::nil => Val.add v1 (eval_shift_total s v2) | Oaddimm n, v1::nil => Val.add v1 (Vint n) | Osub, v1::v2::nil => Val.sub v1 v2 | Osubshift s, v1::v2::nil => Val.sub v1 (eval_shift_total s v2) | Orsubshift s, v1::v2::nil => Val.sub (eval_shift_total s v2) v1 | Orsubimm n, v1::nil => Val.sub (Vint n) v1 | Omul, v1::v2::nil => Val.mul v1 v2 | Odiv, v1::v2::nil => Val.divs v1 v2 | Odivu, v1::v2::nil => Val.divu v1 v2 | Oand, v1::v2::nil => Val.and v1 v2 | Oandshift s, v1::v2::nil => Val.and v1 (eval_shift_total s v2) | Oandimm n, v1::nil => Val.and v1 (Vint n) | Oor, v1::v2::nil => Val.or v1 v2 | Oorshift s, v1::v2::nil => Val.or v1 (eval_shift_total s v2) | Oorimm n, v1::nil => Val.or v1 (Vint n) | Oxor, v1::v2::nil => Val.xor v1 v2 | Oxorshift s, v1::v2::nil => Val.xor v1 (eval_shift_total s v2) | Oxorimm n, v1::nil => Val.xor v1 (Vint n) | Obic, v1::v2::nil => Val.and v1 (Val.notint v2) | Obicshift s, v1::v2::nil => Val.and v1 (Val.notint (eval_shift_total s v2)) | Onot, v1::nil => Val.notint v1 | Onotshift s, v1::nil => Val.notint (eval_shift_total s v1) | Oshl, v1::v2::nil => Val.shl v1 v2 | Oshr, v1::v2::nil => Val.shr v1 v2 | Oshru, v1::v2::nil => Val.shru v1 v2 | Oshrximm n, v1::nil => Val.shrx v1 (Vint n) | Oshift s, v1::nil => eval_shift_total s v1 | Onegf, v1::nil => Val.negf v1 | Oabsf, v1::nil => Val.absf v1 | Oaddf, v1::v2::nil => Val.addf v1 v2 | Osubf, v1::v2::nil => Val.subf v1 v2 | Omulf, v1::v2::nil => Val.mulf v1 v2 | Odivf, v1::v2::nil => Val.divf v1 v2 | Osingleoffloat, v1::nil => Val.singleoffloat v1 | Ointoffloat, v1::nil => Val.intoffloat v1 | Ofloatofint, v1::nil => Val.floatofint v1 | Ocmp c, _ => eval_condition_total c vl | _, _ => Vundef end. Definition eval_addressing_total (sp: val) (addr: addressing) (vl: list val) : val := match addr, vl with | Aindexed n, v1::nil => Val.add v1 (Vint n) | Aindexed2, v1::v2::nil => Val.add v1 v2 | Aindexed2shift s, v1::v2::nil => Val.add v1 (eval_shift_total s v2) | Ainstack ofs, nil => Val.add sp (Vint ofs) | _, _ => Vundef end. Lemma eval_compare_mismatch_weaken: forall c b, eval_compare_mismatch c = Some b -> Val.cmp_mismatch c = Val.of_bool b. Proof. unfold eval_compare_mismatch. intros. destruct c; inv H; auto. Qed. Lemma eval_compare_null_weaken: forall c i b, eval_compare_null c i = Some b -> (if Int.eq i Int.zero then Val.cmp_mismatch c else Vundef) = Val.of_bool b. Proof. unfold eval_compare_null. intros. destruct (Int.eq i Int.zero); try discriminate. apply eval_compare_mismatch_weaken; auto. Qed. Lemma eval_condition_weaken: forall c vl b m, eval_condition c vl m = Some b -> eval_condition_total c vl = Val.of_bool b. Proof. intros. unfold eval_condition in H; destruct c; FuncInv; try subst b; try reflexivity; simpl; try (apply eval_compare_null_weaken; auto). destruct (Mem.valid_pointer m b0 (Int.unsigned i) && Mem.valid_pointer m b1 (Int.unsigned i0)); try discriminate. unfold eq_block in H. destruct (zeq b0 b1); try congruence. apply eval_compare_mismatch_weaken; auto. symmetry. apply Val.notbool_negb_1. Qed. Lemma eval_operation_weaken: forall sp op vl v m, eval_operation genv sp op vl m = Some v -> eval_operation_total sp op vl = v. Proof. intros. unfold eval_operation in H; destruct op; FuncInv; try subst v; try reflexivity; simpl. unfold find_symbol_offset. destruct (Genv.find_symbol genv i); try discriminate. congruence. unfold offset_sp in H. destruct sp; try discriminate. simpl. congruence. unfold eq_block in H. destruct (zeq b b0); congruence. destruct (Int.eq i0 Int.zero); congruence. destruct (Int.eq i0 Int.zero); congruence. destruct (Int.ltu i0 Int.iwordsize); congruence. destruct (Int.ltu i0 Int.iwordsize); congruence. destruct (Int.ltu i0 Int.iwordsize); congruence. unfold Int.ltu in H. destruct (zlt (Int.unsigned i) (Int.unsigned (Int.repr 31))). unfold Int.ltu. rewrite zlt_true. congruence. assert (Int.unsigned (Int.repr 31) < Int.unsigned Int.iwordsize). vm_compute; auto. omega. discriminate. destruct (Float.intoffloat f); simpl in H; inv H. auto. caseEq (eval_condition c vl m); intros; rewrite H0 in H. replace v with (Val.of_bool b). eapply eval_condition_weaken; eauto. destruct b; simpl; congruence. discriminate. Qed. Lemma eval_addressing_weaken: forall sp addr vl v, eval_addressing genv sp addr vl = Some v -> eval_addressing_total sp addr vl = v. Proof. intros. unfold eval_addressing in H; destruct addr; FuncInv; try subst v; simpl; try reflexivity. decEq. apply Int.add_commut. unfold offset_sp in H. destruct sp; simpl; congruence. Qed. Lemma eval_condition_total_is_bool: forall cond vl, Val.is_bool (eval_condition_total cond vl). Proof. intros; destruct cond; destruct vl; try apply Val.undef_is_bool; destruct vl; try apply Val.undef_is_bool; try (destruct vl; try apply Val.undef_is_bool); simpl. apply Val.cmp_is_bool. apply Val.cmpu_is_bool. apply Val.cmp_is_bool. apply Val.cmpu_is_bool. apply Val.cmp_is_bool. apply Val.cmpu_is_bool. apply Val.cmpf_is_bool. apply Val.notbool_is_bool. Qed. End EVAL_OP_TOTAL. (** Compatibility of the evaluation functions with the ``is less defined'' relation over values and memory states. *) Section EVAL_LESSDEF. Variable F V: Type. Variable genv: Genv.t F V. Ltac InvLessdef := match goal with | [ H: Val.lessdef (Vint _) _ |- _ ] => inv H; InvLessdef | [ H: Val.lessdef (Vfloat _) _ |- _ ] => inv H; InvLessdef | [ H: Val.lessdef (Vptr _ _) _ |- _ ] => inv H; InvLessdef | [ H: Val.lessdef_list nil _ |- _ ] => inv H; InvLessdef | [ H: Val.lessdef_list (_ :: _) _ |- _ ] => inv H; InvLessdef | _ => idtac end. Lemma eval_condition_lessdef: forall cond vl1 vl2 b m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. destruct cond; simpl in *; FuncInv; InvLessdef; auto. destruct (Mem.valid_pointer m1 b0 (Int.unsigned i) && Mem.valid_pointer m1 b1 (Int.unsigned i0)) as [] _eqn; try discriminate. destruct (andb_prop _ _ Heqb2) as [A B]. assert (forall b ofs, Mem.valid_pointer m1 b ofs = true -> Mem.valid_pointer m2 b ofs = true). intros until ofs. repeat rewrite Mem.valid_pointer_nonempty_perm. apply Mem.perm_extends; auto. rewrite (H _ _ A). rewrite (H _ _ B). auto. Qed. Ltac TrivialExists := match goal with | [ |- exists v2, Some ?v1 = Some v2 /\ Val.lessdef ?v1 v2 ] => exists v1; split; [auto | constructor] | _ => idtac end. Lemma eval_operation_lessdef: forall sp op vl1 vl2 v1 m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_operation genv sp op vl1 m1 = Some v1 -> exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. destruct op; simpl in *; FuncInv; InvLessdef; TrivialExists. exists v2; auto. destruct (Genv.find_symbol genv i); inv H1. TrivialExists. exists v1; auto. exists (Val.sign_ext 8 v2); split. auto. apply Val.sign_ext_lessdef; auto. exists (Val.zero_ext 8 v2); split. auto. apply Val.zero_ext_lessdef; auto. exists (Val.sign_ext 16 v2); split. auto. apply Val.sign_ext_lessdef; auto. exists (Val.zero_ext 16 v2); split. auto. apply Val.zero_ext_lessdef; auto. destruct (eq_block b b0); inv H1. TrivialExists. destruct (Int.eq i0 Int.zero); inv H1; TrivialExists. destruct (Int.eq i0 Int.zero); inv H1; TrivialExists. destruct (Int.ltu i0 Int.iwordsize); inv H1; TrivialExists. destruct (Int.ltu i0 Int.iwordsize); inv H1; TrivialExists. destruct (Int.ltu i Int.iwordsize); inv H1; TrivialExists. destruct (Int.ltu i0 Int.iwordsize); inv H2; TrivialExists. destruct (Int.ltu i0 Int.iwordsize); inv H2; TrivialExists. destruct (Int.ltu i (Int.repr 31)); inv H1; TrivialExists. exists (Val.singleoffloat v2); split. auto. apply Val.singleoffloat_lessdef; auto. destruct (Float.intoffloat f); simpl in *; inv H1. TrivialExists. exists v1; split; auto. destruct (eval_condition c vl1 m1) as [] _eqn. rewrite (eval_condition_lessdef c H H0 Heqo). auto. discriminate. Qed. Lemma eval_addressing_lessdef: forall sp addr vl1 vl2 v1, Val.lessdef_list vl1 vl2 -> eval_addressing genv sp addr vl1 = Some v1 -> exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. destruct addr; simpl in *; FuncInv; InvLessdef; TrivialExists. exists v1; auto. Qed. End EVAL_LESSDEF. (** Shifting stack-relative references. This is used in [Stacking]. *) Definition shift_stack_addressing (delta: int) (addr: addressing) := match addr with | Ainstack ofs => Ainstack (Int.add delta ofs) | _ => addr end. Definition shift_stack_operation (delta: int) (op: operation) := match op with | Oaddrstack ofs => Oaddrstack (Int.add delta ofs) | _ => op end. Lemma type_shift_stack_addressing: forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr. Proof. intros. destruct addr; auto. Qed. Lemma type_shift_stack_operation: forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op. Proof. intros. destruct op; auto. Qed. (** Compatibility of the evaluation functions with memory injections. *) Section EVAL_INJECT. Variable F V: Type. Variable genv: Genv.t F V. Variable f: meminj. Hypothesis globals: meminj_preserves_globals genv f. Variable sp1: block. Variable sp2: block. Variable delta: Z. Hypothesis sp_inj: f sp1 = Some(sp2, delta). Ltac InvInject := match goal with | [ H: val_inject _ (Vint _) _ |- _ ] => inv H; InvInject | [ H: val_inject _ (Vfloat _) _ |- _ ] => inv H; InvInject | [ H: val_inject _ (Vptr _ _) _ |- _ ] => inv H; InvInject | [ H: val_list_inject _ nil _ |- _ ] => inv H; InvInject | [ H: val_list_inject _ (_ :: _) _ |- _ ] => inv H; InvInject | _ => idtac end. Lemma eval_condition_inject: forall cond vl1 vl2 b m1 m2, val_list_inject f vl1 vl2 -> Mem.inject f m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. destruct cond; simpl in *; FuncInv; InvInject; auto. destruct (Mem.valid_pointer m1 b0 (Int.unsigned i)) as [] _eqn; try discriminate. destruct (Mem.valid_pointer m1 b1 (Int.unsigned i0)) as [] _eqn; try discriminate. simpl in H1. exploit Mem.valid_pointer_inject_val. eauto. eexact Heqb0. econstructor; eauto. intros V1. rewrite V1. exploit Mem.valid_pointer_inject_val. eauto. eexact Heqb2. econstructor; eauto. intros V2. rewrite V2. simpl. destruct (eq_block b0 b1); inv H1. rewrite H3 in H5; inv H5. rewrite dec_eq_true. decEq. apply Int.translate_cmpu. eapply Mem.valid_pointer_inject_no_overflow; eauto. eapply Mem.valid_pointer_inject_no_overflow; eauto. exploit Mem.different_pointers_inject; eauto. intros P. destruct (eq_block b3 b4); auto. destruct P. contradiction. destruct c; unfold eval_compare_mismatch in *; inv H2. unfold Int.cmpu. rewrite Int.eq_false; auto. congruence. unfold Int.cmpu. rewrite Int.eq_false; auto. congruence. Qed. Ltac TrivialExists2 := match goal with | [ |- exists v2, Some ?v1 = Some v2 /\ val_inject _ _ v2 ] => exists v1; split; [auto | econstructor; eauto] | _ => idtac end. Lemma eval_addressing_inject: forall addr vl1 vl2 v1, val_list_inject f vl1 vl2 -> eval_addressing genv (Vptr sp1 Int.zero) addr vl1 = Some v1 -> exists v2, eval_addressing genv (Vptr sp2 Int.zero) (shift_stack_addressing (Int.repr delta) addr) vl2 = Some v2 /\ val_inject f v1 v2. Proof. assert (UNUSED: meminj_preserves_globals genv f). exact globals. intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists2. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. auto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. Qed. Lemma eval_operation_inject: forall op vl1 vl2 v1 m1 m2, val_list_inject f vl1 vl2 -> Mem.inject f m1 m2 -> eval_operation genv (Vptr sp1 Int.zero) op vl1 m1 = Some v1 -> exists v2, eval_operation genv (Vptr sp2 Int.zero) (shift_stack_operation (Int.repr delta) op) vl2 m2 = Some v2 /\ val_inject f v1 v2. Proof. intros. destruct op; simpl in *; FuncInv; InvInject; TrivialExists2. exists v'; auto. destruct (Genv.find_symbol genv i) as [] _eqn; inv H1. TrivialExists2. eapply (proj1 globals); eauto. rewrite Int.add_zero; auto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. exists (Val.sign_ext 8 v'); split; auto. inv H4; simpl; auto. exists (Val.zero_ext 8 v'); split; auto. inv H4; simpl; auto. exists (Val.sign_ext 16 v'); split; auto. inv H4; simpl; auto. exists (Val.zero_ext 16 v'); split; auto. inv H4; simpl; auto. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. rewrite Int.sub_add_l. auto. destruct (eq_block b b0); inv H1. rewrite H3 in H5; inv H5. rewrite dec_eq_true. rewrite Int.sub_shifted. TrivialExists2. rewrite Int.sub_add_l. auto. destruct (Int.eq i0 Int.zero); inv H1. TrivialExists2. destruct (Int.eq i0 Int.zero); inv H1. TrivialExists2. destruct (Int.ltu i0 Int.iwordsize); inv H1. TrivialExists2. destruct (Int.ltu i0 Int.iwordsize); inv H1. TrivialExists2. destruct (Int.ltu i0 Int.iwordsize); inv H1. TrivialExists2. destruct (Int.ltu i (Int.repr 31)); inv H1. TrivialExists2. exists (Val.singleoffloat v'); split; auto. inv H4; simpl; auto. destruct (Float.intoffloat f0); simpl in *; inv H1. TrivialExists2. destruct (eval_condition c vl1 m1) as [] _eqn; try discriminate. exploit eval_condition_inject; eauto. intros EQ; rewrite EQ. destruct b; inv H1; TrivialExists2. Qed. End EVAL_INJECT. (** Recognition of integers that are valid shift amounts. *) Definition is_shift_amount_aux (n: int) : { Int.ltu n Int.iwordsize = true } + { Int.ltu n Int.iwordsize = false }. Proof. case (Int.ltu n Int.iwordsize). left; auto. right; auto. Defined. Definition is_shift_amount (n: int) : option shift_amount := match is_shift_amount_aux n with | left H => Some(mk_shift_amount n H) | right _ => None end. Lemma is_shift_amount_Some: forall n s, is_shift_amount n = Some s -> s_amount s = n. Proof. intros until s. unfold is_shift_amount. destruct (is_shift_amount_aux n). simpl. intros. inv H. reflexivity. congruence. Qed. Lemma is_shift_amount_None: forall n, is_shift_amount n = None -> Int.ltu n Int.iwordsize = true -> False. Proof. intro n. unfold is_shift_amount. destruct (is_shift_amount_aux n). congruence. congruence. Qed. (** Transformation of addressing modes with two operands or more into an equivalent arithmetic operation. This is used in the [Reload] pass when a store instruction cannot be reloaded directly because it runs out of temporary registers. *) (** For the ARM, there are only two binary addressing mode: [Aindexed2] and [Aindexed2shift]. The corresponding operations are [Oadd] and [Oaddshift]. *) Definition op_for_binary_addressing (addr: addressing) : operation := match addr with | Aindexed2 => Oadd | Aindexed2shift s => Oaddshift s | _ => Ointconst Int.zero (* never happens *) end. Lemma eval_op_for_binary_addressing: forall (F V: Type) (ge: Genv.t F V) sp addr args v m, (length args >= 2)%nat -> eval_addressing ge sp addr args = Some v -> eval_operation ge sp (op_for_binary_addressing addr) args m = Some v. Proof. intros. unfold eval_addressing in H0; destruct addr; FuncInv; simpl in H; try omegaContradiction; simpl. rewrite Int.add_commut. congruence. congruence. congruence. Qed. Lemma type_op_for_binary_addressing: forall addr, (length (type_of_addressing addr) >= 2)%nat -> type_of_operation (op_for_binary_addressing addr) = (type_of_addressing addr, Tint). Proof. intros. destruct addr; simpl in H; reflexivity || omegaContradiction. Qed. (** Two-address operations. There are none in the ARM architecture. *) Definition two_address_op (op: operation) : bool := false. (** Operations that are so cheap to recompute that CSE should not factor them out. *) Definition is_trivial_op (op: operation) : bool := match op with | Omove => true | Ointconst _ => true | Oaddrsymbol _ _ => true | Oaddrstack _ => true | _ => false end. (** Operations that depend on the memory state. *) Definition op_depends_on_memory (op: operation) : bool := match op with | Ocmp (Ccompu _) => true | _ => false end. Lemma op_depends_on_memory_correct: forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, op_depends_on_memory op = false -> eval_operation ge sp op args m1 = eval_operation ge sp op args m2. Proof. intros until m2. destruct op; simpl; try congruence. destruct c; simpl; congruence. Qed.