(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness proof for the [Reload] pass. *) Require Import Coqlib. Require Import Maps. Require Import AST. Require Import Integers. Require Import Values. Require Import Mem. Require Import Events. Require Import Globalenvs. Require Import Smallstep. Require Import Op. Require Import Locations. Require Import Conventions. Require Import Allocproof. Require Import LTLin. Require Import LTLintyping. Require Import Linear. Require Import Parallelmove. Require Import Reload. (** * Exploitation of the typing hypothesis *) (** Reloading is applied to LTLin code that is well-typed in the sense of [LTLintyping]. We exploit this hypothesis to obtain information on the number of arguments to operations, addressing modes and conditions. *) Remark length_type_of_condition: forall (c: condition), (List.length (type_of_condition c) <= 3)%nat. Proof. destruct c; unfold type_of_condition; simpl; omega. Qed. Remark length_type_of_operation: forall (op: operation), (List.length (fst (type_of_operation op)) <= 3)%nat. Proof. destruct op; unfold type_of_operation; simpl; try omega. apply length_type_of_condition. Qed. Remark length_type_of_addressing: forall (addr: addressing), (List.length (type_of_addressing addr) <= 2)%nat. Proof. destruct addr; unfold type_of_addressing; simpl; omega. Qed. Lemma length_op_args: forall (op: operation) (args: list loc) (res: loc), (List.map Loc.type args, Loc.type res) = type_of_operation op -> (List.length args <= 3)%nat. Proof. intros. rewrite <- (list_length_map Loc.type). generalize (length_type_of_operation op). rewrite <- H. simpl. auto. Qed. Lemma length_addr_args: forall (addr: addressing) (args: list loc), List.map Loc.type args = type_of_addressing addr -> (List.length args <= 2)%nat. Proof. intros. rewrite <- (list_length_map Loc.type). rewrite H. apply length_type_of_addressing. Qed. Lemma length_cond_args: forall (cond: condition) (args: list loc), List.map Loc.type args = type_of_condition cond -> (List.length args <= 3)%nat. Proof. intros. rewrite <- (list_length_map Loc.type). rewrite H. apply length_type_of_condition. Qed. (** * Correctness of the Linear constructors *) (** This section proves theorems that establish the correctness of the Linear constructor functions such as [add_move]. The theorems are of the general form ``the generated Linear instructions execute and modify the location set in the expected way: the result location(s) contain the expected values; other, non-temporary locations keep their values''. *) Section LINEAR_CONSTRUCTORS. Variable ge: genv. Variable stk: list stackframe. Variable f: function. Variable sp: val. Lemma reg_for_spec: forall l, R(reg_for l) = l \/ In (R (reg_for l)) temporaries. Proof. intros. unfold reg_for. destruct l. tauto. case (slot_type s); simpl; tauto. Qed. Lemma reg_for_diff: forall l l', Loc.diff l l' -> Loc.notin l' temporaries -> Loc.diff (R (reg_for l)) l'. Proof. intros. destruct (reg_for_spec l). rewrite H1; auto. apply Loc.diff_sym. eapply Loc.in_notin_diff; eauto. Qed. Lemma add_reload_correct: forall src dst k rs m, exists rs', star step ge (State stk f sp (add_reload src dst k) rs m) E0 (State stk f sp k rs' m) /\ rs' (R dst) = rs src /\ forall l, Loc.diff (R dst) l -> rs' l = rs l. Proof. intros. unfold add_reload. destruct src. case (mreg_eq m0 dst); intro. subst dst. exists rs. split. apply star_refl. tauto. exists (Locmap.set (R dst) (rs (R m0)) rs). split. apply star_one; apply exec_Lop. reflexivity. split. apply Locmap.gss. intros; apply Locmap.gso; auto. exists (Locmap.set (R dst) (rs (S s)) rs). split. apply star_one; apply exec_Lgetstack. split. apply Locmap.gss. intros; apply Locmap.gso; auto. Qed. Lemma add_spill_correct: forall src dst k rs m, exists rs', star step ge (State stk f sp (add_spill src dst k) rs m) E0 (State stk f sp k rs' m) /\ rs' dst = rs (R src) /\ forall l, Loc.diff dst l -> rs' l = rs l. Proof. intros. unfold add_spill. destruct dst. case (mreg_eq src m0); intro. subst src. exists rs. split. apply star_refl. tauto. exists (Locmap.set (R m0) (rs (R src)) rs). split. apply star_one. apply exec_Lop. reflexivity. split. apply Locmap.gss. intros; apply Locmap.gso; auto. exists (Locmap.set (S s) (rs (R src)) rs). split. apply star_one. apply exec_Lsetstack. split. apply Locmap.gss. intros; apply Locmap.gso; auto. Qed. Lemma add_reloads_correct_rec: forall srcs itmps ftmps k rs m, (List.length srcs <= List.length itmps)%nat -> (List.length srcs <= List.length ftmps)%nat -> (forall r, In (R r) srcs -> In r itmps -> False) -> (forall r, In (R r) srcs -> In r ftmps -> False) -> list_disjoint itmps ftmps -> list_norepet itmps -> list_norepet ftmps -> exists rs', star step ge (State stk f sp (add_reloads srcs (regs_for_rec srcs itmps ftmps) k) rs m) E0 (State stk f sp k rs' m) /\ reglist rs' (regs_for_rec srcs itmps ftmps) = map rs srcs /\ (forall r, ~(In r itmps) -> ~(In r ftmps) -> rs' (R r) = rs (R r)) /\ (forall s, rs' (S s) = rs (S s)). Proof. induction srcs; simpl; intros. (* base case *) exists rs. split. apply star_refl. tauto. (* inductive case *) destruct itmps; simpl in H. omegaContradiction. destruct ftmps; simpl in H0. omegaContradiction. assert (R1: (length srcs <= length itmps)%nat). omega. assert (R2: (length srcs <= length ftmps)%nat). omega. assert (R3: forall r, In (R r) srcs -> In r itmps -> False). intros. apply H1 with r. tauto. auto with coqlib. assert (R4: forall r, In (R r) srcs -> In r ftmps -> False). intros. apply H2 with r. tauto. auto with coqlib. assert (R5: list_disjoint itmps ftmps). eapply list_disjoint_cons_left. eapply list_disjoint_cons_right. eauto. assert (R6: list_norepet itmps). inversion H4; auto. assert (R7: list_norepet ftmps). inversion H5; auto. destruct a. (* a is a register *) generalize (IHsrcs itmps ftmps k rs m R1 R2 R3 R4 R5 R6 R7). intros [rs' [EX [RES [OTH1 OTH2]]]]. exists rs'. split. unfold add_reload. case (mreg_eq m2 m2); intro; tauto. split. simpl. apply (f_equal2 (@cons val)). apply OTH1. red; intro; apply H1 with m2. tauto. auto with coqlib. red; intro; apply H2 with m2. tauto. auto with coqlib. assumption. split. intros. apply OTH1. simpl in H6; tauto. simpl in H7; tauto. auto. (* a is a stack location *) set (tmp := match slot_type s with Tint => m0 | Tfloat => m1 end). assert (NI: ~(In tmp itmps)). unfold tmp; case (slot_type s). inversion H4; auto. apply list_disjoint_notin with (m1 :: ftmps). apply list_disjoint_sym. apply list_disjoint_cons_left with m0. auto. auto with coqlib. assert (NF: ~(In tmp ftmps)). unfold tmp; case (slot_type s). apply list_disjoint_notin with (m0 :: itmps). apply list_disjoint_cons_right with m1. auto. auto with coqlib. inversion H5; auto. generalize (add_reload_correct (S s) tmp (add_reloads srcs (regs_for_rec srcs itmps ftmps) k) rs m). intros [rs1 [EX1 [RES1 OTH]]]. generalize (IHsrcs itmps ftmps k rs1 m R1 R2 R3 R4 R5 R6 R7). intros [rs' [EX [RES [OTH1 OTH2]]]]. exists rs'. split. eapply star_trans; eauto. traceEq. split. simpl. apply (f_equal2 (@cons val)). rewrite OTH1; auto. rewrite RES. apply list_map_exten. intros. symmetry. apply OTH. destruct x; try exact I. simpl. red; intro; subst m2. generalize H6; unfold tmp. case (slot_type s). intro. apply H1 with m0. tauto. auto with coqlib. intro. apply H2 with m1. tauto. auto with coqlib. split. intros. simpl in H6; simpl in H7. rewrite OTH1. apply OTH. simpl. unfold tmp. case (slot_type s); tauto. tauto. tauto. intros. rewrite OTH2. apply OTH. exact I. Qed. Lemma add_reloads_correct: forall srcs k rs m, (List.length srcs <= 3)%nat -> Loc.disjoint srcs temporaries -> exists rs', star step ge (State stk f sp (add_reloads srcs (regs_for srcs) k) rs m) E0 (State stk f sp k rs' m) /\ reglist rs' (regs_for srcs) = List.map rs srcs /\ forall l, Loc.notin l temporaries -> rs' l = rs l. Proof. intros. pose (itmps := IT1 :: IT2 :: IT3 :: nil). pose (ftmps := FT1 :: FT2 :: FT3 :: nil). assert (R1: (List.length srcs <= List.length itmps)%nat). unfold itmps; simpl; assumption. assert (R2: (List.length srcs <= List.length ftmps)%nat). unfold ftmps; simpl; assumption. assert (R3: forall r, In (R r) srcs -> In r itmps -> False). intros. assert (In (R r) temporaries). simpl in H2; simpl; intuition congruence. generalize (H0 _ _ H1 H3). simpl. tauto. assert (R4: forall r, In (R r) srcs -> In r ftmps -> False). intros. assert (In (R r) temporaries). simpl in H2; simpl; intuition congruence. generalize (H0 _ _ H1 H3). simpl. tauto. assert (R5: list_disjoint itmps ftmps). red; intros r1 r2; simpl; intuition congruence. assert (R6: list_norepet itmps). unfold itmps. NoRepet. assert (R7: list_norepet ftmps). unfold ftmps. NoRepet. generalize (add_reloads_correct_rec srcs itmps ftmps k rs m R1 R2 R3 R4 R5 R6 R7). intros [rs' [EX [RES [OTH1 OTH2]]]]. exists rs'. split. exact EX. split. exact RES. intros. destruct l. apply OTH1. generalize (Loc.notin_not_in _ _ H1). simpl. intuition congruence. generalize (Loc.notin_not_in _ _ H1). simpl. intuition congruence. apply OTH2. Qed. Lemma add_move_correct: forall src dst k rs m, exists rs', star step ge (State stk f sp (add_move src dst k) rs m) E0 (State stk f sp k rs' m) /\ rs' dst = rs src /\ forall l, Loc.diff l dst -> Loc.diff l (R IT1) -> Loc.diff l (R FT1) -> rs' l = rs l. Proof. intros; unfold add_move. case (Loc.eq src dst); intro. subst dst. exists rs. split. apply star_refl. tauto. destruct src. (* src is a register *) generalize (add_spill_correct m0 dst k rs m); intros [rs' [EX [RES OTH]]]. exists rs'; intuition. apply OTH; apply Loc.diff_sym; auto. destruct dst. (* src is a stack slot, dst a register *) generalize (add_reload_correct (S s) m0 k rs m); intros [rs' [EX [RES OTH]]]. exists rs'; intuition. apply OTH; apply Loc.diff_sym; auto. (* src and dst are stack slots *) set (tmp := match slot_type s with Tint => IT1 | Tfloat => FT1 end). generalize (add_reload_correct (S s) tmp (add_spill tmp (S s0) k) rs m); intros [rs1 [EX1 [RES1 OTH1]]]. generalize (add_spill_correct tmp (S s0) k rs1 m); intros [rs2 [EX2 [RES2 OTH2]]]. exists rs2. split. eapply star_trans; eauto. traceEq. split. congruence. intros. rewrite OTH2. apply OTH1. apply Loc.diff_sym. unfold tmp; case (slot_type s); auto. apply Loc.diff_sym; auto. Qed. Lemma effect_move_sequence: forall k moves rs m, let k' := List.fold_right (fun p k => add_move (fst p) (snd p) k) k moves in exists rs', star step ge (State stk f sp k' rs m) E0 (State stk f sp k rs' m) /\ effect_seqmove moves rs rs'. Proof. induction moves; intros until m; simpl. exists rs; split. constructor. constructor. destruct a as [src dst]; simpl. set (k1 := fold_right (fun (p : loc * loc) (k : code) => add_move (fst p) (snd p) k) k moves) in *. destruct (add_move_correct src dst k1 rs m) as [rs1 [A [B C]]]. destruct (IHmoves rs1 m) as [rs' [D E]]. exists rs'; split. eapply star_trans; eauto. traceEq. econstructor; eauto. red. tauto. Qed. Lemma parallel_move_correct: forall srcs dsts k rs m, List.length srcs = List.length dsts -> Loc.no_overlap srcs dsts -> Loc.norepet dsts -> Loc.disjoint srcs temporaries -> Loc.disjoint dsts temporaries -> exists rs', star step ge (State stk f sp (parallel_move srcs dsts k) rs m) E0 (State stk f sp k rs' m) /\ List.map rs' dsts = List.map rs srcs /\ rs' (R IT3) = rs (R IT3) /\ forall l, Loc.notin l dsts -> Loc.notin l temporaries -> rs' l = rs l. Proof. intros. generalize (effect_move_sequence k (parmove srcs dsts) rs m). intros [rs' [EXEC EFFECT]]. exists rs'. split. exact EXEC. apply effect_parmove; auto. Qed. Lemma parallel_move_arguments_correct: forall args sg k rs m, List.map Loc.type args = sg.(sig_args) -> locs_acceptable args -> exists rs', star step ge (State stk f sp (parallel_move args (loc_arguments sg) k) rs m) E0 (State stk f sp k rs' m) /\ List.map rs' (loc_arguments sg) = List.map rs args /\ rs' (R IT3) = rs (R IT3) /\ forall l, Loc.notin l (loc_arguments sg) -> Loc.notin l temporaries -> rs' l = rs l. Proof. intros. apply parallel_move_correct. transitivity (length sg.(sig_args)). rewrite <- H. symmetry; apply list_length_map. symmetry. apply loc_arguments_length. apply no_overlap_arguments; auto. apply loc_arguments_norepet. apply locs_acceptable_disj_temporaries; auto. apply loc_arguments_not_temporaries. Qed. Lemma parallel_move_parameters_correct: forall params sg k rs m, List.map Loc.type params = sg.(sig_args) -> locs_acceptable params -> Loc.norepet params -> exists rs', star step ge (State stk f sp (parallel_move (loc_parameters sg) params k) rs m) E0 (State stk f sp k rs' m) /\ List.map rs' params = List.map rs (loc_parameters sg) /\ rs' (R IT3) = rs (R IT3) /\ forall l, Loc.notin l params -> Loc.notin l temporaries -> rs' l = rs l. Proof. intros. apply parallel_move_correct. transitivity (length sg.(sig_args)). apply loc_parameters_length. rewrite <- H. apply list_length_map. apply no_overlap_parameters; auto. auto. apply loc_parameters_not_temporaries. apply locs_acceptable_disj_temporaries; auto. Qed. End LINEAR_CONSTRUCTORS. (** * Agreement between values of locations *) (** The predicate [agree] states that two location maps give compatible values to all acceptable locations, that is, non-temporary registers and [Local] stack slots. The notion of compatibility used is the [Val.lessdef] ordering, which enables a [Vundef] value in the original program to be refined into any value in the transformed program. A typical situation where this refinement of values occurs is at function entry point. In LTLin, all registers except those belonging to the function parameters are set to [Vundef]. In Linear, these registers have whatever value they had in the caller function. This difference is harmless: if the original LTLin code does not get stuck, we know that it does not use any of these [Vundef] values. *) Definition agree (rs1 rs2: locset) : Prop := forall l, loc_acceptable l -> Val.lessdef (rs1 l) (rs2 l). Lemma agree_loc: forall rs1 rs2 l, agree rs1 rs2 -> loc_acceptable l -> Val.lessdef (rs1 l) (rs2 l). Proof. auto. Qed. Lemma agree_locs: forall rs1 rs2 ll, agree rs1 rs2 -> locs_acceptable ll -> Val.lessdef_list (map rs1 ll) (map rs2 ll). Proof. induction ll; simpl; intros. constructor. constructor. apply H. apply H0; auto with coqlib. apply IHll; auto. red; intros. apply H0; auto with coqlib. Qed. Lemma agree_exten: forall rs ls1 ls2, agree rs ls1 -> (forall l, Loc.notin l temporaries -> ls2 l = ls1 l) -> agree rs ls2. Proof. intros; red; intros. rewrite H0. auto. apply temporaries_not_acceptable; auto. Qed. Lemma agree_set: forall rs1 rs2 rs2' l v, loc_acceptable l -> Val.lessdef v (rs2' l) -> (forall l', Loc.diff l l' -> Loc.notin l' temporaries -> rs2' l' = rs2 l') -> agree rs1 rs2 -> agree (Locmap.set l v rs1) rs2'. Proof. intros; red; intros. destruct (Loc.eq l l0). subst l0. rewrite Locmap.gss. auto. assert (Loc.diff l l0). eapply loc_acceptable_noteq_diff; eauto. rewrite Locmap.gso; auto. rewrite H1. auto. auto. apply temporaries_not_acceptable; auto. Qed. Lemma agree_find_funct: forall (ge: Linear.genv) rs ls r f, Genv.find_funct ge (rs r) = Some f -> agree rs ls -> loc_acceptable r -> Genv.find_funct ge (ls r) = Some f. Proof. intros. assert (Val.lessdef (rs r) (ls r)). eapply agree_loc; eauto. exploit Genv.find_funct_inv; eauto. intros [b EQ]. rewrite EQ in H2. inv H2. rewrite <- EQ. auto. Qed. Lemma agree_postcall_1: forall rs ls, agree rs ls -> agree (LTL.postcall_locs rs) ls. Proof. intros; red; intros. unfold LTL.postcall_locs. destruct l; auto. destruct (In_dec Loc.eq (R m) temporaries). constructor. destruct (In_dec Loc.eq (R m) destroyed_at_call). constructor. auto. Qed. Lemma agree_postcall_2: forall rs ls ls', agree (LTL.postcall_locs rs) ls -> (forall l, loc_acceptable l -> ~In l destroyed_at_call -> ~In l temporaries -> ls' l = ls l) -> agree (LTL.postcall_locs rs) ls'. Proof. intros; red; intros. generalize (H l H1). unfold LTL.postcall_locs. destruct l. destruct (In_dec Loc.eq (R m) temporaries). intro; constructor. destruct (In_dec Loc.eq (R m) destroyed_at_call). intro; constructor. intro. rewrite H0; auto. intro. rewrite H0; auto. simpl. intuition congruence. simpl. intuition congruence. Qed. Lemma agree_postcall_call: forall rs ls ls' sig, agree rs ls -> (forall l, Loc.notin l (loc_arguments sig) -> Loc.notin l temporaries -> ls' l = ls l) -> agree (LTL.postcall_locs rs) ls'. Proof. intros. apply agree_postcall_2 with ls. apply agree_postcall_1; auto. intros. apply H0. apply arguments_not_preserved; auto. destruct l; simpl. simpl in H2. intuition congruence. destruct s; tauto. apply temporaries_not_acceptable; auto. Qed. Lemma agree_postcall_alloc: forall rs ls ls2 v, agree rs ls -> (forall l, Loc.diff (R loc_alloc_argument) l -> ls2 l = ls l) -> agree (LTL.postcall_locs rs) (Locmap.set (R loc_alloc_result) v ls2). Proof. intros. apply agree_postcall_2 with ls. apply agree_postcall_1; auto. intros. destruct (Loc.eq l (R loc_alloc_result)). subst l. elim H2. simpl. tauto. rewrite Locmap.gso. apply H0. red. destruct l; auto. red; intro. subst m. elim H2. simpl. tauto. apply Loc.diff_sym. apply loc_acceptable_noteq_diff; auto. Qed. Lemma agree_init_locs: forall ls dsts vl, locs_acceptable dsts -> Loc.norepet dsts -> Val.lessdef_list vl (map ls dsts) -> agree (LTL.init_locs vl dsts) ls. Proof. induction dsts; intros; simpl. red; intros. unfold Locmap.init. constructor. simpl in H1. inv H1. inv H0. apply agree_set with ls. apply H; auto with coqlib. auto. auto. apply IHdsts; auto. red; intros; apply H; auto with coqlib. Qed. Lemma call_regs_parameters: forall ls sig, map (call_regs ls) (loc_parameters sig) = map ls (loc_arguments sig). Proof. intros. unfold loc_parameters. rewrite list_map_compose. apply list_map_exten; intros. unfold call_regs, parameter_of_argument. generalize (loc_arguments_acceptable _ _ H). unfold loc_argument_acceptable. destruct x. auto. destruct s; intros; try contradiction. auto. Qed. Lemma return_regs_preserve: forall ls1 ls2 l, ~ In l temporaries -> ~ In l destroyed_at_call -> return_regs ls1 ls2 l = ls1 l. Proof. intros. unfold return_regs. destruct l; auto. destruct (In_dec Loc.eq (R m) temporaries). contradiction. destruct (In_dec Loc.eq (R m) destroyed_at_call). contradiction. auto. Qed. Lemma return_regs_arguments: forall ls1 ls2 sig, tailcall_possible sig -> map (return_regs ls1 ls2) (loc_arguments sig) = map ls2 (loc_arguments sig). Proof. intros. apply list_map_exten; intros. unfold return_regs. generalize (H x H0). destruct x; intros. destruct (In_dec Loc.eq (R m) temporaries). auto. destruct (In_dec Loc.eq (R m) destroyed_at_call). auto. elim n0. eapply arguments_caller_save; eauto. contradiction. Qed. Lemma return_regs_result: forall ls1 ls2 sig, return_regs ls1 ls2 (R (loc_result sig)) = ls2 (R (loc_result sig)). Proof. intros. unfold return_regs. destruct (In_dec Loc.eq (R (loc_result sig)) temporaries). auto. destruct (In_dec Loc.eq (R (loc_result sig)) destroyed_at_call). auto. elim n0. apply loc_result_caller_save. Qed. (** * Preservation of labels and gotos *) Lemma find_label_add_spill: forall lbl src dst k, find_label lbl (add_spill src dst k) = find_label lbl k. Proof. intros. destruct dst; simpl; auto. destruct (mreg_eq src m); auto. Qed. Lemma find_label_add_reload: forall lbl src dst k, find_label lbl (add_reload src dst k) = find_label lbl k. Proof. intros. destruct src; simpl; auto. destruct (mreg_eq m dst); auto. Qed. Lemma find_label_add_reloads: forall lbl srcs dsts k, find_label lbl (add_reloads srcs dsts k) = find_label lbl k. Proof. induction srcs; intros; simpl. auto. destruct dsts; auto. rewrite find_label_add_reload. auto. Qed. Lemma find_label_add_move: forall lbl src dst k, find_label lbl (add_move src dst k) = find_label lbl k. Proof. intros; unfold add_move. destruct (Loc.eq src dst); auto. destruct src. apply find_label_add_spill. destruct dst. apply find_label_add_reload. rewrite find_label_add_reload. apply find_label_add_spill. Qed. Lemma find_label_parallel_move: forall lbl srcs dsts k, find_label lbl (parallel_move srcs dsts k) = find_label lbl k. Proof. intros. unfold parallel_move. generalize (parmove srcs dsts). induction m; simpl. auto. rewrite find_label_add_move. auto. Qed. Hint Rewrite find_label_add_spill find_label_add_reload find_label_add_reloads find_label_add_move find_label_parallel_move: labels. Opaque reg_for. Ltac FL := simpl; autorewrite with labels; auto. Lemma find_label_transf_instr: forall lbl sg instr k, find_label lbl (transf_instr sg instr k) = if LTLin.is_label lbl instr then Some k else find_label lbl k. Proof. intros. destruct instr; FL. destruct (is_move_operation o l); FL; FL. FL. destruct s0; FL; FL; FL. destruct s0; FL; FL; FL. FL. destruct o; FL. Qed. Lemma find_label_transf_code: forall sg lbl c, find_label lbl (transf_code sg c) = option_map (transf_code sg) (LTLin.find_label lbl c). Proof. induction c; simpl. auto. rewrite find_label_transf_instr. destruct (LTLin.is_label lbl a); auto. Qed. Lemma find_label_transf_function: forall lbl f c, LTLin.find_label lbl (LTLin.fn_code f) = Some c -> find_label lbl (Linear.fn_code (transf_function f)) = Some (transf_code f c). Proof. intros. destruct f; simpl in *. FL. rewrite find_label_transf_code. rewrite H; auto. Qed. (** * Semantic preservation *) Section PRESERVATION. Variable prog: LTLin.program. Let tprog := transf_program prog. Hypothesis WT_PROG: LTLintyping.wt_program prog. Let ge := Genv.globalenv prog. Let tge := Genv.globalenv tprog. Lemma functions_translated: forall v f, Genv.find_funct ge v = Some f -> Genv.find_funct tge v = Some (transf_fundef f). Proof (@Genv.find_funct_transf _ _ _ transf_fundef prog). Lemma function_ptr_translated: forall v f, Genv.find_funct_ptr ge v = Some f -> Genv.find_funct_ptr tge v = Some (transf_fundef f). Proof (@Genv.find_funct_ptr_transf _ _ _ transf_fundef prog). Lemma symbols_preserved: forall id, Genv.find_symbol tge id = Genv.find_symbol ge id. Proof (@Genv.find_symbol_transf _ _ _ transf_fundef prog). Lemma sig_preserved: forall f, funsig (transf_fundef f) = LTLin.funsig f. Proof. destruct f; reflexivity. Qed. Lemma find_function_wt: forall ros rs f, LTLin.find_function ge ros rs = Some f -> wt_fundef f. Proof. intros until f. destruct ros; simpl. intro. eapply Genv.find_funct_prop with (p := prog); eauto. caseEq (Genv.find_symbol ge i); intros. eapply Genv.find_funct_ptr_prop with (p := prog); eauto. congruence. Qed. (** The [match_state] predicate relates states in the original LTLin program and the transformed Linear program. The main property it enforces are: - Agreement between the values of locations in the two programs, according to the [agree] or [agree_arguments] predicates. - Agreement between the memory states of the two programs, according to the [Mem.lessdef] predicate. - Lists of LTLin instructions appearing in the source state are always suffixes of the code for the corresponding functions. - Well-typedness of the source code, which ensures that only acceptable locations are accessed by this code. - Agreement over return types during calls: the return type of a function is always equal to the return type of the signature of the corresponding call. This invariant is necessary since the conventional location used for passing return values depend on the return type. This invariant is enforced through the third parameter of the [match_stackframes] predicate, which is the signature of the called function. *) Inductive match_stackframes: list LTLin.stackframe -> list Linear.stackframe -> signature -> Prop := | match_stackframes_nil: forall sig, sig.(sig_res) = Some Tint -> match_stackframes nil nil sig | match_stackframes_cons: forall res f sp c rs s s' c' ls sig, match_stackframes s s' (LTLin.fn_sig f) -> c' = add_spill (loc_result sig) res (transf_code f c) -> agree (LTL.postcall_locs rs) ls -> loc_acceptable res -> wt_function f -> is_tail c (LTLin.fn_code f) -> match_stackframes (LTLin.Stackframe res f sp (LTL.postcall_locs rs) c :: s) (Linear.Stackframe (transf_function f) sp ls c' :: s') sig. Inductive match_states: LTLin.state -> Linear.state -> Prop := | match_states_intro: forall s f sp c rs m s' ls tm (STACKS: match_stackframes s s' (LTLin.fn_sig f)) (AG: agree rs ls) (WT: wt_function f) (TL: is_tail c (LTLin.fn_code f)) (MMD: Mem.lessdef m tm), match_states (LTLin.State s f sp c rs m) (Linear.State s' (transf_function f) sp (transf_code f c) ls tm) | match_states_call: forall s f args m s' ls tm (STACKS: match_stackframes s s' (LTLin.funsig f)) (AG: Val.lessdef_list args (map ls (Conventions.loc_arguments (LTLin.funsig f)))) (PRES: forall l, ~In l temporaries -> ~In l destroyed_at_call -> ls l = parent_locset s' l) (WT: wt_fundef f) (MMD: Mem.lessdef m tm), match_states (LTLin.Callstate s f args m) (Linear.Callstate s' (transf_fundef f) ls tm) | match_states_return: forall s res m s' ls tm sig (STACKS: match_stackframes s s' sig) (AG: Val.lessdef res (ls (R (Conventions.loc_result sig)))) (PRES: forall l, ~In l temporaries -> ~In l destroyed_at_call -> ls l = parent_locset s' l) (MMD: Mem.lessdef m tm), match_states (LTLin.Returnstate s res m) (Linear.Returnstate s' ls tm). Lemma match_stackframes_change_sig: forall s s' sig1 sig2, match_stackframes s s' sig1 -> sig2.(sig_res) = sig1.(sig_res) -> match_stackframes s s' sig2. Proof. intros. inv H. constructor. congruence. econstructor; eauto. unfold loc_result. rewrite H0. auto. Qed. Ltac ExploitWT := match goal with | [ WT: wt_function _, TL: is_tail _ _ |- _ ] => generalize (wt_instrs _ WT _ (is_tail_in TL)); intro WTI end. (** The proof of semantic preservation is a simulation argument based on diagrams of the following form: << st1 --------------- st2 | | t| *|t | | v v st1'--------------- st2' >> It is possible for the transformed code to take no transition, remaining in the same state; for instance, if the source transition corresponds to a move instruction that was eliminated. To ensure that this cannot occur infinitely often in a row, we use the following [measure] function that just counts the remaining number of instructions in the source code sequence. *) Definition measure (st: LTLin.state) : nat := match st with | LTLin.State s f sp c ls m => List.length c | LTLin.Callstate s f ls m => 0%nat | LTLin.Returnstate s ls m => 0%nat end. Theorem transf_step_correct: forall s1 t s2, LTLin.step ge s1 t s2 -> forall s1' (MS: match_states s1 s1'), (exists s2', plus Linear.step tge s1' t s2' /\ match_states s2 s2') \/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat. Proof. Opaque regs_for. Opaque add_reloads. induction 1; intros; try inv MS; simpl. (* Lop *) ExploitWT. inv WTI. (* move *) simpl. destruct (add_move_correct tge s' (transf_function f) sp r1 res (transf_code f b) ls tm) as [ls2 [A [B C]]]. inv A. right. split. omega. split. auto. rewrite H1. rewrite H1. econstructor; eauto with coqlib. apply agree_set with ls2; auto. rewrite B. simpl in H; inversion H. auto. left; econstructor; split. eapply plus_left; eauto. econstructor; eauto with coqlib. apply agree_set with ls; auto. rewrite B. simpl in H; inversion H. auto. intros. apply C. apply Loc.diff_sym; auto. simpl in H7; tauto. simpl in H7; tauto. (* other ops *) assert (is_move_operation op args = None). caseEq (is_move_operation op args); intros. destruct (is_move_operation_correct _ _ H0). congruence. auto. rewrite H0. exploit add_reloads_correct. eapply length_op_args; eauto. apply locs_acceptable_disj_temporaries; auto. intros [ls2 [A [B C]]]. instantiate (1 := ls) in B. assert (exists tv, eval_operation tge sp op (reglist ls2 (regs_for args)) tm = Some tv /\ Val.lessdef v tv). apply eval_operation_lessdef with m (map rs args); auto. rewrite B. eapply agree_locs; eauto. rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. destruct H1 as [tv [P Q]]. exploit add_spill_correct. intros [ls3 [D [E F]]]. left; econstructor; split. eapply star_plus_trans. eexact A. eapply plus_left. eapply exec_Lop with (v := tv); eauto. eexact D. eauto. traceEq. econstructor; eauto with coqlib. apply agree_set with ls; auto. rewrite E. rewrite Locmap.gss. auto. intros. rewrite F; auto. rewrite Locmap.gso. auto. apply reg_for_diff; auto. (* Lload *) ExploitWT; inv WTI. exploit add_reloads_correct. apply le_S. eapply length_addr_args; eauto. apply locs_acceptable_disj_temporaries; auto. intros [ls2 [A [B C]]]. assert (exists ta, eval_addressing tge sp addr (reglist ls2 (regs_for args)) = Some ta /\ Val.lessdef a ta). apply eval_addressing_lessdef with (map rs args); auto. rewrite B. eapply agree_locs; eauto. rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. destruct H1 as [ta [P Q]]. exploit Mem.loadv_lessdef; eauto. intros [tv [R S]]. exploit add_spill_correct. intros [ls3 [D [E F]]]. left; econstructor; split. eapply star_plus_trans. eauto. eapply plus_left. eapply exec_Lload; eauto. eauto. auto. traceEq. econstructor; eauto with coqlib. apply agree_set with ls; auto. rewrite E. rewrite Locmap.gss. auto. intros. rewrite F; auto. rewrite Locmap.gso. auto. apply reg_for_diff; auto. (* Lstore *) ExploitWT; inv WTI. assert (exists rsrc, exists rargs, regs_for (src :: args) = rsrc :: rargs). Transparent regs_for. unfold regs_for. simpl. destruct src. econstructor; econstructor; eauto. destruct (slot_type s0); econstructor; econstructor; eauto. destruct H1 as [rsrc [rargs EQ]]. rewrite EQ. assert (length (src :: args) <= 3)%nat. simpl. apply le_n_S. eapply length_addr_args; eauto. exploit add_reloads_correct. eauto. apply locs_acceptable_disj_temporaries; auto. red; intros. elim H2; intro; auto. subst l; auto. intros [ls2 [A [B C]]]. rewrite EQ in A. rewrite EQ in B. injection B. intros D E. simpl in B. assert (exists ta, eval_addressing tge sp addr (reglist ls2 rargs) = Some ta /\ Val.lessdef a ta). apply eval_addressing_lessdef with (map rs args); auto. rewrite D. eapply agree_locs; eauto. rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. destruct H2 as [ta [P Q]]. assert (X: Val.lessdef (rs src) (ls2 (R rsrc))). rewrite E. eapply agree_loc; eauto. exploit Mem.storev_lessdef. eexact MMD. eexact Q. eexact X. eauto. intros [tm2 [Y Z]]. left; econstructor; split. eapply plus_right. eauto. eapply exec_Lstore with (a := ta); eauto. traceEq. econstructor; eauto with coqlib. apply agree_exten with ls; auto. (* Lcall *) ExploitWT. inversion WTI. subst ros0 args0 res0. rewrite <- H0. assert (WTF': wt_fundef f'). eapply find_function_wt; eauto. destruct ros as [fn | id]. (* indirect call *) destruct (add_reload_correct tge s' (transf_function f) sp fn IT3 (parallel_move args (loc_arguments sig) (Lcall sig (inl ident IT3) :: add_spill (loc_result sig) res (transf_code f b))) ls tm) as [ls2 [A [B C]]]. rewrite <- H0 in H5. destruct (parallel_move_arguments_correct tge s' (transf_function f) sp args sig (Lcall sig (inl ident IT3) :: add_spill (loc_result sig) res (transf_code f b)) ls2 tm H5 H8) as [ls3 [D [E [F G]]]]. assert (ARGS: Val.lessdef_list (map rs args) (map ls3 (loc_arguments sig))). rewrite E. apply agree_locs. apply agree_exten with ls; auto. intros. apply C. simpl in H1. apply Loc.diff_sym. tauto. auto. left; econstructor; split. eapply star_plus_trans. eexact A. eapply plus_right. eexact D. eapply exec_Lcall; eauto. simpl. rewrite F. rewrite B. eapply agree_find_funct; eauto. apply functions_translated. eauto. rewrite H0; symmetry; apply sig_preserved. eauto. traceEq. econstructor; eauto. econstructor; eauto with coqlib. rewrite H0; auto. apply agree_postcall_call with ls sig; auto. intros. rewrite G; auto. apply C. simpl in H2. apply Loc.diff_sym. tauto. congruence. (* direct call *) rewrite <- H0 in H5. destruct (parallel_move_arguments_correct tge s' (transf_function f) sp args sig (Lcall sig (inr mreg id) :: add_spill (loc_result sig) res (transf_code f b)) ls tm H5 H8) as [ls3 [D [E [F G]]]]. assert (ARGS: Val.lessdef_list (map rs args) (map ls3 (loc_arguments sig))). rewrite E. apply agree_locs; auto. left; econstructor; split. eapply plus_right. eauto. eapply exec_Lcall; eauto. simpl. rewrite symbols_preserved. generalize H; simpl. destruct (Genv.find_symbol ge id). apply function_ptr_translated; auto. congruence. rewrite H0. symmetry; apply sig_preserved. traceEq. econstructor; eauto. econstructor; eauto with coqlib. rewrite H0; auto. apply agree_postcall_call with ls sig; auto. congruence. (* Ltailcall *) ExploitWT. inversion WTI. subst ros0 args0. assert (WTF': wt_fundef f'). eapply find_function_wt; eauto. rewrite <- H0. destruct ros as [fn | id]. (* indirect call *) destruct (add_reload_correct tge s' (transf_function f) (Vptr stk Int.zero) fn IT3 (parallel_move args (loc_arguments sig) (Ltailcall sig (inl ident IT3) :: transf_code f b)) ls tm) as [ls2 [A [B C]]]. rewrite <- H0 in H4. destruct (parallel_move_arguments_correct tge s' (transf_function f) (Vptr stk Int.zero) args sig (Ltailcall sig (inl ident IT3) :: transf_code f b) ls2 tm H4 H6) as [ls3 [D [E [F G]]]]. assert (ARGS: Val.lessdef_list (map rs args) (map ls3 (loc_arguments sig))). rewrite E. apply agree_locs. apply agree_exten with ls; auto. intros. apply C. simpl in H1. apply Loc.diff_sym. tauto. auto. left; econstructor; split. eapply star_plus_trans. eauto. eapply plus_right. eauto. eapply exec_Ltailcall; eauto. simpl. rewrite F. rewrite B. eapply agree_find_funct; eauto. apply functions_translated. eauto. rewrite H0; symmetry; apply sig_preserved. eauto. traceEq. econstructor; eauto. eapply match_stackframes_change_sig; eauto. rewrite return_regs_arguments; auto. congruence. exact (return_regs_preserve (parent_locset s') ls3). apply Mem.free_lessdef; auto. (* direct call *) rewrite <- H0 in H4. destruct (parallel_move_arguments_correct tge s' (transf_function f) (Vptr stk Int.zero) args sig (Ltailcall sig (inr mreg id) :: transf_code f b) ls tm H4 H6) as [ls3 [D [E [F G]]]]. assert (ARGS: Val.lessdef_list (map rs args) (map ls3 (loc_arguments sig))). rewrite E. apply agree_locs. apply agree_exten with ls; auto. auto. left; econstructor; split. eapply plus_right. eauto. eapply exec_Ltailcall; eauto. simpl. rewrite symbols_preserved. generalize H; simpl. destruct (Genv.find_symbol ge id). apply function_ptr_translated; auto. congruence. rewrite H0. symmetry; apply sig_preserved. traceEq. econstructor; eauto. eapply match_stackframes_change_sig; eauto. rewrite return_regs_arguments; auto. congruence. exact (return_regs_preserve (parent_locset s') ls3). apply Mem.free_lessdef; auto. (* Lalloc *) ExploitWT; inv WTI. caseEq (alloc tm 0 (Int.signed sz)). intros tm' blk' TALLOC. assert (blk = blk' /\ Mem.lessdef m' tm'). eapply Mem.alloc_lessdef; eauto. exploit add_reload_correct. intros [ls2 [A [B C]]]. exploit add_spill_correct. intros [ls3 [D [E F]]]. destruct H1 as [P Q]. subst blk'. assert (ls arg = Vint sz). assert (Val.lessdef (rs arg) (ls arg)). eapply agree_loc; eauto. rewrite H in H1; inversion H1; auto. left; econstructor; split. eapply star_plus_trans. eauto. eapply plus_left. eapply exec_Lalloc; eauto. rewrite B. eauto. eauto. eauto. traceEq. econstructor; eauto with coqlib. apply agree_set with (Locmap.set (R loc_alloc_result) (Vptr blk Int.zero) ls2). auto. rewrite E. rewrite Locmap.gss. constructor. auto. apply agree_postcall_alloc with ls; auto. (* Llabel *) left; econstructor; split. apply plus_one. apply exec_Llabel. econstructor; eauto with coqlib. (* Lgoto *) left; econstructor; split. apply plus_one. apply exec_Lgoto. apply find_label_transf_function; eauto. econstructor; eauto. eapply LTLin.find_label_is_tail; eauto. (* Lcond true *) ExploitWT; inv WTI. exploit add_reloads_correct. eapply length_cond_args; eauto. apply locs_acceptable_disj_temporaries; auto. intros [ls2 [A [B C]]]. left; econstructor; split. eapply plus_right. eauto. eapply exec_Lcond_true; eauto. rewrite B. apply eval_condition_lessdef with m (map rs args); auto. eapply agree_locs; eauto. apply find_label_transf_function; eauto. traceEq. econstructor; eauto. apply agree_exten with ls; auto. eapply LTLin.find_label_is_tail; eauto. (* Lcond false *) ExploitWT; inv WTI. exploit add_reloads_correct. eapply length_cond_args; eauto. apply locs_acceptable_disj_temporaries; auto. intros [ls2 [A [B C]]]. left; econstructor; split. eapply plus_right. eauto. eapply exec_Lcond_false; eauto. rewrite B. apply eval_condition_lessdef with m (map rs args); auto. eapply agree_locs; eauto. traceEq. econstructor; eauto with coqlib. apply agree_exten with ls; auto. (* Lreturn *) ExploitWT; inv WTI. destruct or; simpl. (* with an argument *) exploit add_reload_correct. intros [ls2 [A [B C]]]. left; econstructor; split. eapply plus_right. eauto. eapply exec_Lreturn; eauto. traceEq. econstructor; eauto. rewrite return_regs_result. rewrite B. apply agree_loc; auto. apply return_regs_preserve. apply Mem.free_lessdef; auto. (* without an argument *) left; econstructor; split. apply plus_one. eapply exec_Lreturn; eauto. econstructor; eauto. apply return_regs_preserve. apply Mem.free_lessdef; auto. (* internal function *) simpl in WT. inversion_clear WT. inversion H0. simpl in AG. caseEq (alloc tm 0 (LTLin.fn_stacksize f)). intros tm' tstk TALLOC. exploit Mem.alloc_lessdef; eauto. intros [P Q]. subst tstk. destruct (parallel_move_parameters_correct tge s' (transf_function f) (Vptr stk Int.zero) (LTLin.fn_params f) (LTLin.fn_sig f) (transf_code f (LTLin.fn_code f)) (call_regs ls) tm' wt_params wt_acceptable wt_norepet) as [ls2 [A [B [C D]]]]. assert (AG2: agree (LTL.init_locs args (fn_params f)) ls2). apply agree_init_locs; auto. rewrite B. rewrite call_regs_parameters. auto. left; econstructor; split. eapply plus_left. eapply exec_function_internal; eauto. simpl. eauto. traceEq. econstructor; eauto with coqlib. (* external function *) exploit event_match_lessdef; eauto. intros [res' [A B]]. left; econstructor; split. apply plus_one. eapply exec_function_external; eauto. econstructor; eauto. simpl. rewrite Locmap.gss. auto. intros. rewrite Locmap.gso. auto. simpl. destruct l; auto. red; intro. elim H1. subst m0. apply loc_result_caller_save. (* return *) inv STACKS. exploit add_spill_correct. intros [ls2 [A [B C]]]. left; econstructor; split. eapply plus_left. eapply exec_return; eauto. eauto. traceEq. econstructor; eauto. apply agree_set with ls; auto. rewrite B. auto. unfold parent_locset in PRES. apply agree_postcall_2 with ls0; auto. Qed. Lemma transf_initial_states: forall st1, LTLin.initial_state prog st1 -> exists st2, Linear.initial_state tprog st2 /\ match_states st1 st2. Proof. intros. inversion H. econstructor; split. econstructor. change (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto. apply function_ptr_translated; eauto. rewrite sig_preserved. auto. replace (Genv.init_mem tprog) with (Genv.init_mem prog). econstructor; eauto. constructor. rewrite H2; auto. rewrite H2. simpl. constructor. eapply Genv.find_funct_ptr_prop; eauto. apply Mem.lessdef_refl. symmetry. unfold tprog, transf_program. apply Genv.init_mem_transf; auto. Qed. Lemma transf_final_states: forall st1 st2 r, match_states st1 st2 -> LTLin.final_state st1 r -> Linear.final_state st2 r. Proof. intros. inv H0. inv H. inv STACKS. econstructor. unfold loc_result in AG. rewrite H in AG. inv AG. auto. Qed. Theorem transf_program_correct: forall (beh: program_behavior), LTLin.exec_program prog beh -> Linear.exec_program tprog beh. Proof. unfold LTLin.exec_program, Linear.exec_program; intros. eapply simulation_star_preservation; eauto. eexact transf_initial_states. eexact transf_final_states. eexact transf_step_correct. Qed. End PRESERVATION.