(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* Sandrine Blazy, ENSIIE and INRIA Paris-Rocquencourt *) (* with contributions from Andrew Appel, Rob Dockins, *) (* and Gordon Stewart (Princeton University) *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** This file develops the memory model that is used in the dynamic semantics of all the languages used in the compiler. It defines a type [mem] of memory states, the following 4 basic operations over memory states, and their properties: - [load]: read a memory chunk at a given address; - [store]: store a memory chunk at a given address; - [alloc]: allocate a fresh memory block; - [free]: invalidate a memory block. *) Require Import Axioms. Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Export Memdata. Require Export Memtype. Definition update (A: Type) (x: Z) (v: A) (f: Z -> A) : Z -> A := fun y => if zeq y x then v else f y. Implicit Arguments update [A]. Lemma update_s: forall (A: Type) (x: Z) (v: A) (f: Z -> A), update x v f x = v. Proof. intros; unfold update. apply zeq_true. Qed. Lemma update_o: forall (A: Type) (x: Z) (v: A) (f: Z -> A) (y: Z), x <> y -> update x v f y = f y. Proof. intros; unfold update. apply zeq_false; auto. Qed. Module Mem <: MEM. Definition perm_order' (po: option permission) (p: permission) := match po with | Some p' => perm_order p' p | None => False end. Record mem_ : Type := mkmem { mem_contents: block -> Z -> memval; mem_access: block -> Z -> option permission; bounds: block -> Z * Z; nextblock: block; nextblock_pos: nextblock > 0; nextblock_noaccess: forall b, 0 < b < nextblock \/ bounds b = (0,0) ; bounds_noaccess: forall b ofs, ofs < fst(bounds b) \/ ofs >= snd(bounds b) -> mem_access b ofs = None; noread_undef: forall b ofs, perm_order' (mem_access b ofs) Readable \/ mem_contents b ofs = Undef }. Definition mem := mem_. Lemma mkmem_ext: forall cont1 cont2 acc1 acc2 bound1 bound2 next1 next2 a1 a2 b1 b2 c1 c2 d1 d2, cont1=cont2 -> acc1=acc2 -> bound1=bound2 -> next1=next2 -> mkmem cont1 acc1 bound1 next1 a1 b1 c1 d1 = mkmem cont2 acc2 bound2 next2 a2 b2 c2 d2. Proof. intros. subst. f_equal; apply proof_irr. Qed. (** * Validity of blocks and accesses *) (** A block address is valid if it was previously allocated. It remains valid even after being freed. *) Definition valid_block (m: mem) (b: block) := b < nextblock m. Theorem valid_not_valid_diff: forall m b b', valid_block m b -> ~(valid_block m b') -> b <> b'. Proof. intros; red; intros. subst b'. contradiction. Qed. Hint Local Resolve valid_not_valid_diff: mem. (** Permissions *) Definition perm (m: mem) (b: block) (ofs: Z) (p: permission) : Prop := perm_order' (mem_access m b ofs) p. Theorem perm_implies: forall m b ofs p1 p2, perm m b ofs p1 -> perm_order p1 p2 -> perm m b ofs p2. Proof. unfold perm, perm_order'; intros. destruct (mem_access m b ofs); auto. eapply perm_order_trans; eauto. Qed. Hint Local Resolve perm_implies: mem. Theorem perm_valid_block: forall m b ofs p, perm m b ofs p -> valid_block m b. Proof. unfold perm; intros. destruct (zlt b m.(nextblock)). auto. assert (mem_access m b ofs = None). destruct (nextblock_noaccess m b). elimtype False; omega. apply bounds_noaccess. rewrite H0; simpl; omega. rewrite H0 in H. contradiction. Qed. Hint Local Resolve perm_valid_block: mem. Remark perm_order_dec: forall p1 p2, {perm_order p1 p2} + {~perm_order p1 p2}. Proof. intros. destruct p1; destruct p2; (left; constructor) || (right; intro PO; inversion PO). Qed. Remark perm_order'_dec: forall op p, {perm_order' op p} + {~perm_order' op p}. Proof. intros. destruct op; unfold perm_order'. apply perm_order_dec. right; tauto. Qed. Theorem perm_dec: forall m b ofs p, {perm m b ofs p} + {~ perm m b ofs p}. Proof. unfold perm; intros. apply perm_order'_dec. Qed. Definition range_perm (m: mem) (b: block) (lo hi: Z) (p: permission) : Prop := forall ofs, lo <= ofs < hi -> perm m b ofs p. Theorem range_perm_implies: forall m b lo hi p1 p2, range_perm m b lo hi p1 -> perm_order p1 p2 -> range_perm m b lo hi p2. Proof. unfold range_perm; intros; eauto with mem. Qed. Hint Local Resolve range_perm_implies: mem. Lemma range_perm_dec: forall m b lo hi p, {range_perm m b lo hi p} + {~ range_perm m b lo hi p}. Proof. intros. assert (forall n, 0 <= n -> {range_perm m b lo (lo + n) p} + {~ range_perm m b lo (lo + n) p}). apply natlike_rec2. left. red; intros. omegaContradiction. intros. destruct H0. destruct (perm_dec m b (lo + z) p). left. red; intros. destruct (zeq ofs (lo + z)). congruence. apply r. omega. right; red; intro. elim n. apply H0. omega. right; red; intro. elim n. red; intros. apply H0. omega. destruct (zlt lo hi). replace hi with (lo + (hi - lo)) by omega. apply H. omega. left; red; intros. omegaContradiction. Qed. (** [valid_access m chunk b ofs p] holds if a memory access of the given chunk is possible in [m] at address [b, ofs] with permissions [p]. This means: - The range of bytes accessed all have permission [p]. - The offset [ofs] is aligned. *) Definition valid_access (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) (p: permission): Prop := range_perm m b ofs (ofs + size_chunk chunk) p /\ (align_chunk chunk | ofs). Theorem valid_access_implies: forall m chunk b ofs p1 p2, valid_access m chunk b ofs p1 -> perm_order p1 p2 -> valid_access m chunk b ofs p2. Proof. intros. inv H. constructor; eauto with mem. Qed. Theorem valid_access_freeable_any: forall m chunk b ofs p, valid_access m chunk b ofs Freeable -> valid_access m chunk b ofs p. Proof. intros. eapply valid_access_implies; eauto. constructor. Qed. Hint Local Resolve valid_access_implies: mem. Theorem valid_access_valid_block: forall m chunk b ofs, valid_access m chunk b ofs Nonempty -> valid_block m b. Proof. intros. destruct H. assert (perm m b ofs Nonempty). apply H. generalize (size_chunk_pos chunk). omega. eauto with mem. Qed. Hint Local Resolve valid_access_valid_block: mem. Lemma valid_access_perm: forall m chunk b ofs p, valid_access m chunk b ofs p -> perm m b ofs p. Proof. intros. destruct H. apply H. generalize (size_chunk_pos chunk). omega. Qed. Lemma valid_access_compat: forall m chunk1 chunk2 b ofs p, size_chunk chunk1 = size_chunk chunk2 -> valid_access m chunk1 b ofs p-> valid_access m chunk2 b ofs p. Proof. intros. inv H0. rewrite H in H1. constructor; auto. rewrite <- (align_chunk_compat _ _ H). auto. Qed. Lemma valid_access_dec: forall m chunk b ofs p, {valid_access m chunk b ofs p} + {~ valid_access m chunk b ofs p}. Proof. intros. destruct (range_perm_dec m b ofs (ofs + size_chunk chunk) p). destruct (Zdivide_dec (align_chunk chunk) ofs (align_chunk_pos chunk)). left; constructor; auto. right; red; intro V; inv V; contradiction. right; red; intro V; inv V; contradiction. Qed. (** [valid_pointer] is a boolean-valued function that says whether the byte at the given location is nonempty. *) Definition valid_pointer (m: mem) (b: block) (ofs: Z): bool := perm_dec m b ofs Nonempty. Theorem valid_pointer_nonempty_perm: forall m b ofs, valid_pointer m b ofs = true <-> perm m b ofs Nonempty. Proof. intros. unfold valid_pointer. destruct (perm_dec m b ofs Nonempty); simpl; intuition congruence. Qed. Theorem valid_pointer_valid_access: forall m b ofs, valid_pointer m b ofs = true <-> valid_access m Mint8unsigned b ofs Nonempty. Proof. intros. rewrite valid_pointer_nonempty_perm. split; intros. split. simpl; red; intros. replace ofs0 with ofs by omega. auto. simpl. apply Zone_divide. destruct H. apply H. simpl. omega. Qed. (** Bounds *) (** Each block has a low bound and a high bound, determined at allocation time and invariant afterward. The crucial properties of bounds is that any offset below the low bound or above the high bound is empty. *) Notation low_bound m b := (fst(bounds m b)). Notation high_bound m b := (snd(bounds m b)). Theorem perm_in_bounds: forall m b ofs p, perm m b ofs p -> low_bound m b <= ofs < high_bound m b. Proof. unfold perm. intros. destruct (zlt ofs (fst (bounds m b))). exploit bounds_noaccess. left; eauto. intros. rewrite H0 in H. contradiction. destruct (zlt ofs (snd (bounds m b))). omega. exploit bounds_noaccess. right; eauto. intro; rewrite H0 in H. contradiction. Qed. Theorem range_perm_in_bounds: forall m b lo hi p, range_perm m b lo hi p -> lo < hi -> low_bound m b <= lo /\ hi <= high_bound m b. Proof. intros. split. exploit (perm_in_bounds m b lo p). apply H. omega. omega. exploit (perm_in_bounds m b (hi-1) p). apply H. omega. omega. Qed. Theorem valid_access_in_bounds: forall m chunk b ofs p, valid_access m chunk b ofs p -> low_bound m b <= ofs /\ ofs + size_chunk chunk <= high_bound m b. Proof. intros. inv H. apply range_perm_in_bounds with p; auto. generalize (size_chunk_pos chunk). omega. Qed. Hint Local Resolve perm_in_bounds range_perm_in_bounds valid_access_in_bounds. (** * Store operations *) (** The initial store *) Program Definition empty: mem := mkmem (fun b ofs => Undef) (fun b ofs => None) (fun b => (0,0)) 1 _ _ _ _. Next Obligation. omega. Qed. Definition nullptr: block := 0. (** Allocation of a fresh block with the given bounds. Return an updated memory state and the address of the fresh block, which initially contains undefined cells. Note that allocation never fails: we model an infinite memory. *) Program Definition alloc (m: mem) (lo hi: Z) := (mkmem (update m.(nextblock) (fun ofs => Undef) m.(mem_contents)) (update m.(nextblock) (fun ofs => if zle lo ofs && zlt ofs hi then Some Freeable else None) m.(mem_access)) (update m.(nextblock) (lo, hi) m.(bounds)) (Zsucc m.(nextblock)) _ _ _ _, m.(nextblock)). Next Obligation. generalize (nextblock_pos m). omega. Qed. Next Obligation. assert (0 < b < Zsucc (nextblock m) \/ b <= 0 \/ b > nextblock m) by omega. destruct H as [?|[?|?]]. left; omega. right. rewrite update_o. destruct (nextblock_noaccess m b); auto. elimtype False; omega. generalize (nextblock_pos m); omega. (* generalize (bounds_noaccess m b 0).*) destruct (nextblock_noaccess m b); auto. left; omega. rewrite update_o. right; auto. omega. Qed. Next Obligation. unfold update in *. destruct (zeq b (nextblock m)). simpl in H. destruct H. unfold proj_sumbool. rewrite zle_false. auto. omega. unfold proj_sumbool. rewrite zlt_false; auto. rewrite andb_false_r. auto. apply bounds_noaccess. auto. Qed. Next Obligation. unfold update. destruct (zeq b (nextblock m)); auto. apply noread_undef. Qed. (** Freeing a block between the given bounds. Return the updated memory state where the given range of the given block has been invalidated: future reads and writes to this range will fail. Requires write permission on the given range. *) Definition clearN (m: block -> Z -> memval) (b: block) (lo hi: Z) : block -> Z -> memval := fun b' ofs => if zeq b' b then if zle lo ofs && zlt ofs hi then Undef else m b' ofs else m b' ofs. Lemma clearN_in: forall m b lo hi ofs, lo <= ofs < hi -> clearN m b lo hi b ofs = Undef. Proof. intros. unfold clearN. rewrite zeq_true. destruct H; unfold andb, proj_sumbool. rewrite zle_true; auto. rewrite zlt_true; auto. Qed. Lemma clearN_out: forall m b lo hi b' ofs, (b<>b' \/ ofs < lo \/ hi <= ofs) -> clearN m b lo hi b' ofs = m b' ofs. Proof. intros. unfold clearN. destruct (zeq b' b); auto. subst b'. destruct H. contradiction H; auto. destruct (zle lo ofs); auto. destruct (zlt ofs hi); auto. elimtype False; omega. Qed. Program Definition unchecked_free (m: mem) (b: block) (lo hi: Z): mem := mkmem (clearN m.(mem_contents) b lo hi) (update b (fun ofs => if zle lo ofs && zlt ofs hi then None else m.(mem_access) b ofs) m.(mem_access)) m.(bounds) m.(nextblock) _ _ _ _. Next Obligation. apply nextblock_pos. Qed. Next Obligation. apply (nextblock_noaccess m b0). Qed. Next Obligation. unfold update. destruct (zeq b0 b). subst b0. destruct (zle lo ofs); simpl; auto. destruct (zlt ofs hi); simpl; auto. apply bounds_noaccess; auto. apply bounds_noaccess; auto. apply bounds_noaccess; auto. Qed. Next Obligation. unfold clearN, update. destruct (zeq b0 b). subst b0. destruct (zle lo ofs); simpl; auto. destruct (zlt ofs hi); simpl; auto. apply noread_undef. apply noread_undef. apply noread_undef. Qed. Definition free (m: mem) (b: block) (lo hi: Z): option mem := if range_perm_dec m b lo hi Freeable then Some(unchecked_free m b lo hi) else None. Fixpoint free_list (m: mem) (l: list (block * Z * Z)) {struct l}: option mem := match l with | nil => Some m | (b, lo, hi) :: l' => match free m b lo hi with | None => None | Some m' => free_list m' l' end end. (** Memory reads. *) (** Reading N adjacent bytes in a block content. *) Fixpoint getN (n: nat) (p: Z) (c: Z -> memval) {struct n}: list memval := match n with | O => nil | S n' => c p :: getN n' (p + 1) c end. (** [load chunk m b ofs] perform a read in memory state [m], at address [b] and offset [ofs]. It returns the value of the memory chunk at that address. [None] is returned if the accessed bytes are not readable. *) Definition load (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z): option val := if valid_access_dec m chunk b ofs Readable then Some(decode_val chunk (getN (size_chunk_nat chunk) ofs (m.(mem_contents) b))) else None. (** [loadv chunk m addr] is similar, but the address and offset are given as a single value [addr], which must be a pointer value. *) Definition loadv (chunk: memory_chunk) (m: mem) (addr: val) : option val := match addr with | Vptr b ofs => load chunk m b (Int.signed ofs) | _ => None end. (** [loadbytes m b ofs n] reads [n] consecutive bytes starting at location [(b, ofs)]. Returns [None] if the accessed locations are not readable. *) Definition loadbytes (m: mem) (b: block) (ofs n: Z): option (list memval) := if range_perm_dec m b ofs (ofs + n) Readable then Some (getN (nat_of_Z n) ofs (m.(mem_contents) b)) else None. (** Memory stores. *) (** Writing N adjacent bytes in a block content. *) Fixpoint setN (vl: list memval) (p: Z) (c: Z -> memval) {struct vl}: Z -> memval := match vl with | nil => c | v :: vl' => setN vl' (p + 1) (update p v c) end. Remark setN_other: forall vl c p q, (forall r, p <= r < p + Z_of_nat (length vl) -> r <> q) -> setN vl p c q = c q. Proof. induction vl; intros; simpl. auto. simpl length in H. rewrite inj_S in H. transitivity (update p a c q). apply IHvl. intros. apply H. omega. apply update_o. apply H. omega. Qed. Remark setN_outside: forall vl c p q, q < p \/ q >= p + Z_of_nat (length vl) -> setN vl p c q = c q. Proof. intros. apply setN_other. intros. omega. Qed. Remark getN_setN_same: forall vl p c, getN (length vl) p (setN vl p c) = vl. Proof. induction vl; intros; simpl. auto. decEq. rewrite setN_outside. apply update_s. omega. apply IHvl. Qed. Remark getN_exten: forall c1 c2 n p, (forall i, p <= i < p + Z_of_nat n -> c1 i = c2 i) -> getN n p c1 = getN n p c2. Proof. induction n; intros. auto. rewrite inj_S in H. simpl. decEq. apply H. omega. apply IHn. intros. apply H. omega. Qed. Remark getN_setN_outside: forall vl q c n p, p + Z_of_nat n <= q \/ q + Z_of_nat (length vl) <= p -> getN n p (setN vl q c) = getN n p c. Proof. intros. apply getN_exten. intros. apply setN_outside. omega. Qed. Lemma store_noread_undef: forall m ch b ofs (VA: valid_access m ch b ofs Writable) v, forall b' ofs', perm m b' ofs' Readable \/ update b (setN (encode_val ch v) ofs (mem_contents m b)) (mem_contents m) b' ofs' = Undef. Proof. intros. destruct VA as [? _]. unfold update. destruct (zeq b' b). subst b'. assert (ofs <= ofs' < ofs + size_chunk ch \/ (ofs' < ofs \/ ofs' >= ofs + size_chunk ch)) by omega. destruct H0. exploit (H ofs'); auto; intro. eauto with mem. rewrite setN_outside. destruct (noread_undef m b ofs'); auto. rewrite encode_val_length. rewrite <- size_chunk_conv; auto. destruct (noread_undef m b' ofs'); auto. Qed. (** [store chunk m b ofs v] perform a write in memory state [m]. Value [v] is stored at address [b] and offset [ofs]. Return the updated memory store, or [None] if the accessed bytes are not writable. *) Definition store (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z) (v: val): option mem := match valid_access_dec m chunk b ofs Writable with | left VA => Some (mkmem (update b (setN (encode_val chunk v) ofs (m.(mem_contents) b)) m.(mem_contents)) m.(mem_access) m.(bounds) m.(nextblock) m.(nextblock_pos) m.(nextblock_noaccess) m.(bounds_noaccess) (store_noread_undef m chunk b ofs VA v)) | right _ => None end. (** [storev chunk m addr v] is similar, but the address and offset are given as a single value [addr], which must be a pointer value. *) Definition storev (chunk: memory_chunk) (m: mem) (addr v: val) : option mem := match addr with | Vptr b ofs => store chunk m b (Int.signed ofs) v | _ => None end. (** [drop_perm m b lo hi p] sets the permissions of the byte range [(b, lo) ... (b, hi - 1)] to [p]. These bytes must have permissions at least [p] in the initial memory state [m]. Returns updated memory state, or [None] if insufficient permissions. *) Program Definition drop_perm (m: mem) (b: block) (lo hi: Z) (p: permission): option mem := if range_perm_dec m b lo hi p then Some (mkmem (update b (fun ofs => if zle lo ofs && zlt ofs hi && negb (perm_order_dec p Readable) then Undef else m.(mem_contents) b ofs) m.(mem_contents)) (update b (fun ofs => if zle lo ofs && zlt ofs hi then Some p else m.(mem_access) b ofs) m.(mem_access)) m.(bounds) m.(nextblock) _ _ _ _) else None. Next Obligation. destruct m; auto. Qed. Next Obligation. destruct m; auto. Qed. Next Obligation. unfold update. destruct (zeq b0 b). subst b0. destruct (zle lo ofs). destruct (zlt ofs hi). exploit range_perm_in_bounds; eauto. omega. intros. omegaContradiction. simpl. eapply bounds_noaccess; eauto. simpl. eapply bounds_noaccess; eauto. eapply bounds_noaccess; eauto. Qed. Next Obligation. unfold update. destruct (zeq b0 b). subst b0. destruct (zle lo ofs && zlt ofs hi). destruct (perm_order_dec p Readable); simpl; auto. eapply noread_undef; eauto. eapply noread_undef; eauto. Qed. (** * Properties of the memory operations *) (** Properties of the empty store. *) Theorem nextblock_empty: nextblock empty = 1. Proof. reflexivity. Qed. Theorem perm_empty: forall b ofs p, ~perm empty b ofs p. Proof. intros. unfold perm, empty; simpl. congruence. Qed. Theorem valid_access_empty: forall chunk b ofs p, ~valid_access empty chunk b ofs p. Proof. intros. red; intros. elim (perm_empty b ofs p). apply H. generalize (size_chunk_pos chunk); omega. Qed. (** ** Properties related to [load] *) Theorem valid_access_load: forall m chunk b ofs, valid_access m chunk b ofs Readable -> exists v, load chunk m b ofs = Some v. Proof. intros. econstructor. unfold load. rewrite pred_dec_true; eauto. Qed. Theorem load_valid_access: forall m chunk b ofs v, load chunk m b ofs = Some v -> valid_access m chunk b ofs Readable. Proof. intros until v. unfold load. destruct (valid_access_dec m chunk b ofs Readable); intros. auto. congruence. Qed. Lemma load_result: forall chunk m b ofs v, load chunk m b ofs = Some v -> v = decode_val chunk (getN (size_chunk_nat chunk) ofs (m.(mem_contents) b)). Proof. intros until v. unfold load. destruct (valid_access_dec m chunk b ofs Readable); intros. congruence. congruence. Qed. Hint Local Resolve load_valid_access valid_access_load: mem. Theorem load_type: forall m chunk b ofs v, load chunk m b ofs = Some v -> Val.has_type v (type_of_chunk chunk). Proof. intros. exploit load_result; eauto; intros. rewrite H0. apply decode_val_type. Qed. Theorem load_cast: forall m chunk b ofs v, load chunk m b ofs = Some v -> match chunk with | Mint8signed => v = Val.sign_ext 8 v | Mint8unsigned => v = Val.zero_ext 8 v | Mint16signed => v = Val.sign_ext 16 v | Mint16unsigned => v = Val.zero_ext 16 v | Mfloat32 => v = Val.singleoffloat v | _ => True end. Proof. intros. exploit load_result; eauto. set (l := getN (size_chunk_nat chunk) ofs (mem_contents m b)). intros. subst v. apply decode_val_cast. Qed. Theorem load_int8_signed_unsigned: forall m b ofs, load Mint8signed m b ofs = option_map (Val.sign_ext 8) (load Mint8unsigned m b ofs). Proof. intros. unfold load. change (size_chunk_nat Mint8signed) with (size_chunk_nat Mint8unsigned). set (cl := getN (size_chunk_nat Mint8unsigned) ofs (mem_contents m b)). destruct (valid_access_dec m Mint8signed b ofs Readable). rewrite pred_dec_true; auto. unfold decode_val. destruct (proj_bytes cl); auto. rewrite decode_int8_signed_unsigned. auto. rewrite pred_dec_false; auto. Qed. Theorem load_int16_signed_unsigned: forall m b ofs, load Mint16signed m b ofs = option_map (Val.sign_ext 16) (load Mint16unsigned m b ofs). Proof. intros. unfold load. change (size_chunk_nat Mint16signed) with (size_chunk_nat Mint16unsigned). set (cl := getN (size_chunk_nat Mint16unsigned) ofs (mem_contents m b)). destruct (valid_access_dec m Mint16signed b ofs Readable). rewrite pred_dec_true; auto. unfold decode_val. destruct (proj_bytes cl); auto. rewrite decode_int16_signed_unsigned. auto. rewrite pred_dec_false; auto. Qed. Theorem loadbytes_load: forall chunk m b ofs bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes -> (align_chunk chunk | ofs) -> load chunk m b ofs = Some(decode_val chunk bytes). Proof. unfold loadbytes, load; intros. destruct (range_perm_dec m b ofs (ofs + size_chunk chunk) Readable); try congruence. inv H. rewrite pred_dec_true. auto. split; auto. Qed. Theorem load_loadbytes: forall chunk m b ofs v, load chunk m b ofs = Some v -> exists bytes, loadbytes m b ofs (size_chunk chunk) = Some bytes /\ v = decode_val chunk bytes. Proof. intros. exploit load_valid_access; eauto. intros [A B]. exploit load_result; eauto. intros. exists (getN (size_chunk_nat chunk) ofs (mem_contents m b)); split. unfold loadbytes. rewrite pred_dec_true; auto. auto. Qed. Lemma getN_length: forall c n p, length (getN n p c) = n. Proof. induction n; simpl; intros. auto. decEq; auto. Qed. Theorem loadbytes_length: forall m b ofs n bytes, loadbytes m b ofs n = Some bytes -> length bytes = nat_of_Z n. Proof. unfold loadbytes; intros. destruct (range_perm_dec m b ofs (ofs + n) Readable); try congruence. inv H. apply getN_length. Qed. Lemma getN_concat: forall c n1 n2 p, getN (n1 + n2)%nat p c = getN n1 p c ++ getN n2 (p + Z_of_nat n1) c. Proof. induction n1; intros. simpl. decEq. omega. rewrite inj_S. simpl. decEq. replace (p + Zsucc (Z_of_nat n1)) with ((p + 1) + Z_of_nat n1) by omega. auto. Qed. Theorem loadbytes_concat: forall m b ofs n1 n2 bytes1 bytes2, loadbytes m b ofs n1 = Some bytes1 -> loadbytes m b (ofs + n1) n2 = Some bytes2 -> n1 >= 0 -> n2 >= 0 -> loadbytes m b ofs (n1 + n2) = Some(bytes1 ++ bytes2). Proof. unfold loadbytes; intros. destruct (range_perm_dec m b ofs (ofs + n1) Readable); try congruence. destruct (range_perm_dec m b (ofs + n1) (ofs + n1 + n2) Readable); try congruence. rewrite pred_dec_true. rewrite nat_of_Z_plus; auto. rewrite getN_concat. rewrite nat_of_Z_eq; auto. congruence. red; intros. assert (ofs0 < ofs + n1 \/ ofs0 >= ofs + n1) by omega. destruct H4. apply r; omega. apply r0; omega. Qed. Theorem loadbytes_split: forall m b ofs n1 n2 bytes, loadbytes m b ofs (n1 + n2) = Some bytes -> n1 >= 0 -> n2 >= 0 -> exists bytes1, exists bytes2, loadbytes m b ofs n1 = Some bytes1 /\ loadbytes m b (ofs + n1) n2 = Some bytes2 /\ bytes = bytes1 ++ bytes2. Proof. unfold loadbytes; intros. destruct (range_perm_dec m b ofs (ofs + (n1 + n2)) Readable); try congruence. rewrite nat_of_Z_plus in H; auto. rewrite getN_concat in H. rewrite nat_of_Z_eq in H; auto. repeat rewrite pred_dec_true. econstructor; econstructor. split. reflexivity. split. reflexivity. congruence. red; intros; apply r; omega. red; intros; apply r; omega. Qed. Theorem load_rep: forall ch m1 m2 b ofs v1 v2, (forall z, 0 <= z < size_chunk ch -> mem_contents m1 b (ofs+z) = mem_contents m2 b (ofs+z)) -> load ch m1 b ofs = Some v1 -> load ch m2 b ofs = Some v2 -> v1 = v2. Proof. intros. apply load_result in H0. apply load_result in H1. subst. f_equal. rewrite size_chunk_conv in H. remember (size_chunk_nat ch) as n; clear Heqn. revert ofs H; induction n; intros; simpl; auto. f_equal. rewrite inj_S in H. replace ofs with (ofs+0) by omega. apply H; omega. apply IHn. intros. rewrite <- Zplus_assoc. apply H. rewrite inj_S. omega. Qed. (** ** Properties related to [store] *) Theorem valid_access_store: forall m1 chunk b ofs v, valid_access m1 chunk b ofs Writable -> { m2: mem | store chunk m1 b ofs v = Some m2 }. Proof. intros. unfold store. destruct (valid_access_dec m1 chunk b ofs Writable). eauto. contradiction. Qed. Hint Local Resolve valid_access_store: mem. Section STORE. Variable chunk: memory_chunk. Variable m1: mem. Variable b: block. Variable ofs: Z. Variable v: val. Variable m2: mem. Hypothesis STORE: store chunk m1 b ofs v = Some m2. (* Lemma store_result: m2 = unchecked_store chunk m1 b ofs v. Proof. unfold store in STORE. destruct (valid_access_dec m1 chunk b ofs Writable). congruence. congruence. Qed. *) Lemma store_access: mem_access m2 = mem_access m1. Proof. unfold store in STORE. destruct ( valid_access_dec m1 chunk b ofs Writable); inv STORE. auto. Qed. Lemma store_mem_contents: mem_contents m2 = update b (setN (encode_val chunk v) ofs (m1.(mem_contents) b)) m1.(mem_contents). Proof. unfold store in STORE. destruct ( valid_access_dec m1 chunk b ofs Writable); inv STORE. auto. Qed. Theorem perm_store_1: forall b' ofs' p, perm m1 b' ofs' p -> perm m2 b' ofs' p. Proof. intros. unfold perm in *. rewrite store_access; auto. Qed. Theorem perm_store_2: forall b' ofs' p, perm m2 b' ofs' p -> perm m1 b' ofs' p. Proof. intros. unfold perm in *. rewrite store_access in H; auto. Qed. Hint Local Resolve perm_store_1 perm_store_2: mem. Theorem nextblock_store: nextblock m2 = nextblock m1. Proof. intros. unfold store in STORE. destruct ( valid_access_dec m1 chunk b ofs Writable); inv STORE. auto. Qed. Theorem store_valid_block_1: forall b', valid_block m1 b' -> valid_block m2 b'. Proof. unfold valid_block; intros. rewrite nextblock_store; auto. Qed. Theorem store_valid_block_2: forall b', valid_block m2 b' -> valid_block m1 b'. Proof. unfold valid_block; intros. rewrite nextblock_store in H; auto. Qed. Hint Local Resolve store_valid_block_1 store_valid_block_2: mem. Theorem store_valid_access_1: forall chunk' b' ofs' p, valid_access m1 chunk' b' ofs' p -> valid_access m2 chunk' b' ofs' p. Proof. intros. inv H. constructor; try red; auto with mem. Qed. Theorem store_valid_access_2: forall chunk' b' ofs' p, valid_access m2 chunk' b' ofs' p -> valid_access m1 chunk' b' ofs' p. Proof. intros. inv H. constructor; try red; auto with mem. Qed. Theorem store_valid_access_3: valid_access m1 chunk b ofs Writable. Proof. unfold store in STORE. destruct (valid_access_dec m1 chunk b ofs Writable). auto. congruence. Qed. Hint Local Resolve store_valid_access_1 store_valid_access_2 store_valid_access_3: mem. Theorem bounds_store: forall b', bounds m2 b' = bounds m1 b'. Proof. intros. unfold store in STORE. destruct ( valid_access_dec m1 chunk b ofs Writable); inv STORE. simpl. auto. Qed. Theorem load_store_similar: forall chunk', size_chunk chunk' = size_chunk chunk -> exists v', load chunk' m2 b ofs = Some v' /\ decode_encode_val v chunk chunk' v'. Proof. intros. exploit (valid_access_load m2 chunk'). eapply valid_access_compat. symmetry; eauto. eauto with mem. intros [v' LOAD]. exists v'; split; auto. exploit load_result; eauto. intros B. rewrite B. rewrite store_mem_contents; simpl. rewrite update_s. replace (size_chunk_nat chunk') with (length (encode_val chunk v)). rewrite getN_setN_same. apply decode_encode_val_general. rewrite encode_val_length. repeat rewrite size_chunk_conv in H. apply inj_eq_rev; auto. Qed. Theorem load_store_same: Val.has_type v (type_of_chunk chunk) -> load chunk m2 b ofs = Some (Val.load_result chunk v). Proof. intros. destruct (load_store_similar chunk) as [v' [A B]]. auto. rewrite A. decEq. eapply decode_encode_val_similar; eauto. Qed. Theorem load_store_other: forall chunk' b' ofs', b' <> b \/ ofs' + size_chunk chunk' <= ofs \/ ofs + size_chunk chunk <= ofs' -> load chunk' m2 b' ofs' = load chunk' m1 b' ofs'. Proof. intros. unfold load. destruct (valid_access_dec m1 chunk' b' ofs' Readable). rewrite pred_dec_true. decEq. decEq. rewrite store_mem_contents; simpl. unfold update. destruct (zeq b' b). subst b'. apply getN_setN_outside. rewrite encode_val_length. repeat rewrite <- size_chunk_conv. intuition. auto. eauto with mem. rewrite pred_dec_false. auto. eauto with mem. Qed. Theorem loadbytes_store_same: loadbytes m2 b ofs (size_chunk chunk) = Some(encode_val chunk v). Proof. intros. assert (valid_access m2 chunk b ofs Readable) by eauto with mem. unfold loadbytes. rewrite pred_dec_true. rewrite store_mem_contents; simpl. rewrite update_s. replace (nat_of_Z (size_chunk chunk)) with (length (encode_val chunk v)). rewrite getN_setN_same. auto. rewrite encode_val_length. auto. apply H. Qed. Theorem loadbytes_store_other: forall b' ofs' n, b' <> b \/ n <= 0 \/ ofs' + n <= ofs \/ ofs + size_chunk chunk <= ofs' -> loadbytes m2 b' ofs' n = loadbytes m1 b' ofs' n. Proof. intros. unfold loadbytes. destruct (range_perm_dec m1 b' ofs' (ofs' + n) Readable). rewrite pred_dec_true. decEq. rewrite store_mem_contents; simpl. unfold update. destruct (zeq b' b). subst b'. destruct H. congruence. destruct (zle n 0). rewrite (nat_of_Z_neg _ z). auto. destruct H. omegaContradiction. apply getN_setN_outside. rewrite encode_val_length. rewrite <- size_chunk_conv. rewrite nat_of_Z_eq. auto. omega. auto. red; intros. eauto with mem. rewrite pred_dec_false. auto. red; intro; elim n0; red; intros; eauto with mem. Qed. Lemma setN_property: forall (P: memval -> Prop) vl p q c, (forall v, In v vl -> P v) -> p <= q < p + Z_of_nat (length vl) -> P(setN vl p c q). Proof. induction vl; intros. simpl in H0. omegaContradiction. simpl length in H0. rewrite inj_S in H0. simpl. destruct (zeq p q). subst q. rewrite setN_outside. rewrite update_s. auto with coqlib. omega. apply IHvl. auto with coqlib. omega. Qed. Lemma getN_in: forall c q n p, p <= q < p + Z_of_nat n -> In (c q) (getN n p c). Proof. induction n; intros. simpl in H; omegaContradiction. rewrite inj_S in H. simpl. destruct (zeq p q). subst q. auto. right. apply IHn. omega. Qed. Theorem load_pointer_store: forall chunk' b' ofs' v_b v_o, load chunk' m2 b' ofs' = Some(Vptr v_b v_o) -> (chunk = Mint32 /\ v = Vptr v_b v_o /\ chunk' = Mint32 /\ b' = b /\ ofs' = ofs) \/ (b' <> b \/ ofs' + size_chunk chunk' <= ofs \/ ofs + size_chunk chunk <= ofs'). Proof. intros. exploit load_result; eauto. rewrite store_mem_contents; simpl. unfold update. destruct (zeq b' b); auto. subst b'. intro DEC. destruct (zle (ofs' + size_chunk chunk') ofs); auto. destruct (zle (ofs + size_chunk chunk) ofs'); auto. destruct (size_chunk_nat_pos chunk) as [sz SZ]. destruct (size_chunk_nat_pos chunk') as [sz' SZ']. exploit decode_pointer_shape; eauto. intros [CHUNK' PSHAPE]. clear CHUNK'. generalize (encode_val_shape chunk v). intro VSHAPE. set (c := mem_contents m1 b) in *. set (c' := setN (encode_val chunk v) ofs c) in *. destruct (zeq ofs ofs'). (* 1. ofs = ofs': must be same chunks and same value *) subst ofs'. inv VSHAPE. exploit decode_val_pointer_inv; eauto. intros [A B]. subst chunk'. simpl in B. inv B. generalize H4. unfold c'. rewrite <- H0. simpl. rewrite setN_outside; try omega. rewrite update_s. intros. exploit (encode_val_pointer_inv chunk v v_b v_o). rewrite <- H0. subst mv1. eauto. intros [C [D E]]. left; auto. destruct (zlt ofs ofs'). (* 2. ofs < ofs': ofs ofs' ofs+|chunk| [-------------------] write [-------------------] read The byte at ofs' satisfies memval_valid_cont (consequence of write). For the read to return a pointer, it must satisfy ~memval_valid_cont. *) elimtype False. assert (~memval_valid_cont (c' ofs')). rewrite SZ' in PSHAPE. simpl in PSHAPE. inv PSHAPE. auto. assert (memval_valid_cont (c' ofs')). inv VSHAPE. unfold c'. rewrite <- H1. simpl. apply setN_property. auto. assert (length mvl = sz). generalize (encode_val_length chunk v). rewrite <- H1. rewrite SZ. simpl; congruence. rewrite H4. rewrite size_chunk_conv in z0. omega. contradiction. (* 3. ofs > ofs': ofs' ofs ofs'+|chunk'| [-------------------] write [----------------] read The byte at ofs satisfies memval_valid_first (consequence of write). For the read to return a pointer, it must satisfy ~memval_valid_first. *) elimtype False. assert (memval_valid_first (c' ofs)). inv VSHAPE. unfold c'. rewrite <- H0. simpl. rewrite setN_outside. rewrite update_s. auto. omega. assert (~memval_valid_first (c' ofs)). rewrite SZ' in PSHAPE. simpl in PSHAPE. inv PSHAPE. apply H4. apply getN_in. rewrite size_chunk_conv in z. rewrite SZ' in z. rewrite inj_S in z. omega. contradiction. Qed. End STORE. Hint Local Resolve perm_store_1 perm_store_2: mem. Hint Local Resolve store_valid_block_1 store_valid_block_2: mem. Hint Local Resolve store_valid_access_1 store_valid_access_2 store_valid_access_3: mem. Theorem load_store_pointer_overlap: forall chunk m1 b ofs v_b v_o m2 chunk' ofs' v, store chunk m1 b ofs (Vptr v_b v_o) = Some m2 -> load chunk' m2 b ofs' = Some v -> ofs' <> ofs -> ofs' + size_chunk chunk' > ofs -> ofs + size_chunk chunk > ofs' -> v = Vundef. Proof. intros. exploit store_mem_contents; eauto. intro ST. exploit load_result; eauto. intro LD. rewrite LD; clear LD. Opaque encode_val. rewrite ST; simpl. rewrite update_s. set (c := mem_contents m1 b). set (c' := setN (encode_val chunk (Vptr v_b v_o)) ofs c). destruct (decode_val_shape chunk' (getN (size_chunk_nat chunk') ofs' c')) as [OK | VSHAPE]. apply getN_length. exact OK. elimtype False. destruct (size_chunk_nat_pos chunk) as [sz SZ]. destruct (size_chunk_nat_pos chunk') as [sz' SZ']. assert (ENC: encode_val chunk (Vptr v_b v_o) = list_repeat (size_chunk_nat chunk) Undef \/ pointer_encoding_shape (encode_val chunk (Vptr v_b v_o))). destruct chunk; try (left; reflexivity). right. apply encode_pointer_shape. assert (GET: getN (size_chunk_nat chunk) ofs c' = encode_val chunk (Vptr v_b v_o)). unfold c'. rewrite <- (encode_val_length chunk (Vptr v_b v_o)). apply getN_setN_same. destruct (zlt ofs ofs'). (* ofs < ofs': ofs ofs' ofs+|chunk| [-------------------] write [-------------------] read The byte at ofs' is Undef or not memval_valid_first (because write of pointer). The byte at ofs' must be memval_valid_first and not Undef (otherwise load returns Vundef). *) assert (memval_valid_first (c' ofs') /\ c' ofs' <> Undef). rewrite SZ' in VSHAPE. simpl in VSHAPE. inv VSHAPE. auto. assert (~memval_valid_first (c' ofs') \/ c' ofs' = Undef). unfold c'. destruct ENC. right. apply setN_property. rewrite H5. intros. eapply in_list_repeat; eauto. rewrite encode_val_length. rewrite <- size_chunk_conv. omega. left. revert H5. rewrite <- GET. rewrite SZ. simpl. intros. inv H5. apply setN_property. apply H9. rewrite getN_length. rewrite size_chunk_conv in H3. rewrite SZ in H3. rewrite inj_S in H3. omega. intuition. (* ofs > ofs': ofs' ofs ofs'+|chunk'| [-------------------] write [----------------] read The byte at ofs is Undef or not memval_valid_cont (because write of pointer). The byte at ofs must be memval_valid_cont and not Undef (otherwise load returns Vundef). *) assert (memval_valid_cont (c' ofs) /\ c' ofs <> Undef). rewrite SZ' in VSHAPE. simpl in VSHAPE. inv VSHAPE. apply H8. apply getN_in. rewrite size_chunk_conv in H2. rewrite SZ' in H2. rewrite inj_S in H2. omega. assert (~memval_valid_cont (c' ofs) \/ c' ofs = Undef). elim ENC. rewrite <- GET. rewrite SZ. simpl. intros. right; congruence. rewrite <- GET. rewrite SZ. simpl. intros. inv H5. auto. intuition. Qed. Theorem load_store_pointer_mismatch: forall chunk m1 b ofs v_b v_o m2 chunk' v, store chunk m1 b ofs (Vptr v_b v_o) = Some m2 -> load chunk' m2 b ofs = Some v -> chunk <> Mint32 \/ chunk' <> Mint32 -> v = Vundef. Proof. intros. exploit store_mem_contents; eauto. intro ST. exploit load_result; eauto. intro LD. rewrite LD; clear LD. Opaque encode_val. rewrite ST; simpl. rewrite update_s. set (c1 := mem_contents m1 b). set (e := encode_val chunk (Vptr v_b v_o)). destruct (size_chunk_nat_pos chunk) as [sz SZ]. destruct (size_chunk_nat_pos chunk') as [sz' SZ']. assert (match e with | Undef :: _ => True | Pointer _ _ _ :: _ => chunk = Mint32 | _ => False end). Transparent encode_val. unfold e, encode_val. rewrite SZ. destruct chunk; simpl; auto. destruct e as [ | e1 el]. contradiction. rewrite SZ'. simpl. rewrite setN_outside. rewrite update_s. destruct e1; try contradiction. destruct chunk'; auto. destruct chunk'; auto. intuition. omega. Qed. Lemma store_similar_chunks: forall chunk1 chunk2 v1 v2 m b ofs, encode_val chunk1 v1 = encode_val chunk2 v2 -> store chunk1 m b ofs v1 = store chunk2 m b ofs v2. Proof. intros. unfold store. assert (size_chunk chunk1 = size_chunk chunk2). repeat rewrite size_chunk_conv. rewrite <- (encode_val_length chunk1 v1). rewrite <- (encode_val_length chunk2 v2). congruence. unfold store. destruct (valid_access_dec m chunk1 b ofs Writable); destruct (valid_access_dec m chunk2 b ofs Writable); auto. f_equal. apply mkmem_ext; auto. congruence. elimtype False. destruct chunk1; destruct chunk2; inv H0; unfold valid_access, align_chunk in *; try contradiction. elimtype False. destruct chunk1; destruct chunk2; inv H0; unfold valid_access, align_chunk in *; try contradiction. Qed. Theorem store_signed_unsigned_8: forall m b ofs v, store Mint8signed m b ofs v = store Mint8unsigned m b ofs v. Proof. intros. apply store_similar_chunks. apply encode_val_int8_signed_unsigned. Qed. Theorem store_signed_unsigned_16: forall m b ofs v, store Mint16signed m b ofs v = store Mint16unsigned m b ofs v. Proof. intros. apply store_similar_chunks. apply encode_val_int16_signed_unsigned. Qed. Theorem store_int8_zero_ext: forall m b ofs n, store Mint8unsigned m b ofs (Vint (Int.zero_ext 8 n)) = store Mint8unsigned m b ofs (Vint n). Proof. intros. apply store_similar_chunks. apply encode_val_int8_zero_ext. Qed. Theorem store_int8_sign_ext: forall m b ofs n, store Mint8signed m b ofs (Vint (Int.sign_ext 8 n)) = store Mint8signed m b ofs (Vint n). Proof. intros. apply store_similar_chunks. apply encode_val_int8_sign_ext. Qed. Theorem store_int16_zero_ext: forall m b ofs n, store Mint16unsigned m b ofs (Vint (Int.zero_ext 16 n)) = store Mint16unsigned m b ofs (Vint n). Proof. intros. apply store_similar_chunks. apply encode_val_int16_zero_ext. Qed. Theorem store_int16_sign_ext: forall m b ofs n, store Mint16signed m b ofs (Vint (Int.sign_ext 16 n)) = store Mint16signed m b ofs (Vint n). Proof. intros. apply store_similar_chunks. apply encode_val_int16_sign_ext. Qed. Theorem store_float32_truncate: forall m b ofs n, store Mfloat32 m b ofs (Vfloat (Float.singleoffloat n)) = store Mfloat32 m b ofs (Vfloat n). Proof. intros. apply store_similar_chunks. simpl. decEq. apply encode_float32_cast. Qed. (** ** Properties related to [alloc]. *) Section ALLOC. Variable m1: mem. Variables lo hi: Z. Variable m2: mem. Variable b: block. Hypothesis ALLOC: alloc m1 lo hi = (m2, b). Theorem nextblock_alloc: nextblock m2 = Zsucc (nextblock m1). Proof. injection ALLOC; intros. rewrite <- H0; auto. Qed. Theorem alloc_result: b = nextblock m1. Proof. injection ALLOC; auto. Qed. Theorem valid_block_alloc: forall b', valid_block m1 b' -> valid_block m2 b'. Proof. unfold valid_block; intros. rewrite nextblock_alloc. omega. Qed. Theorem fresh_block_alloc: ~(valid_block m1 b). Proof. unfold valid_block. rewrite alloc_result. omega. Qed. Theorem valid_new_block: valid_block m2 b. Proof. unfold valid_block. rewrite alloc_result. rewrite nextblock_alloc. omega. Qed. Hint Local Resolve valid_block_alloc fresh_block_alloc valid_new_block: mem. Theorem valid_block_alloc_inv: forall b', valid_block m2 b' -> b' = b \/ valid_block m1 b'. Proof. unfold valid_block; intros. rewrite nextblock_alloc in H. rewrite alloc_result. unfold block; omega. Qed. Theorem perm_alloc_1: forall b' ofs p, perm m1 b' ofs p -> perm m2 b' ofs p. Proof. unfold perm; intros. injection ALLOC; intros. rewrite <- H1; simpl. subst b. unfold update. destruct (zeq b' (nextblock m1)); auto. elimtype False. destruct (nextblock_noaccess m1 b'). omega. rewrite bounds_noaccess in H. contradiction. rewrite H0. simpl; omega. Qed. Theorem perm_alloc_2: forall ofs, lo <= ofs < hi -> perm m2 b ofs Freeable. Proof. unfold perm; intros. injection ALLOC; intros. rewrite <- H1; simpl. subst b. rewrite update_s. unfold proj_sumbool. rewrite zle_true. rewrite zlt_true. simpl. auto with mem. omega. omega. Qed. Theorem perm_alloc_3: forall ofs p, ofs < lo \/ hi <= ofs -> ~perm m2 b ofs p. Proof. unfold perm; intros. injection ALLOC; intros. rewrite <- H1; simpl. subst b. rewrite update_s. unfold proj_sumbool. destruct H. rewrite zle_false. simpl. congruence. omega. rewrite zlt_false. rewrite andb_false_r. intro; contradiction. omega. Qed. Hint Local Resolve perm_alloc_1 perm_alloc_2 perm_alloc_3: mem. Theorem perm_alloc_inv: forall b' ofs p, perm m2 b' ofs p -> if zeq b' b then lo <= ofs < hi else perm m1 b' ofs p. Proof. intros until p; unfold perm. inv ALLOC. simpl. unfold update. destruct (zeq b' (nextblock m1)); intros. destruct (zle lo ofs); try contradiction. destruct (zlt ofs hi); try contradiction. split; auto. auto. Qed. Theorem valid_access_alloc_other: forall chunk b' ofs p, valid_access m1 chunk b' ofs p -> valid_access m2 chunk b' ofs p. Proof. intros. inv H. constructor; auto with mem. red; auto with mem. Qed. Theorem valid_access_alloc_same: forall chunk ofs, lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) -> valid_access m2 chunk b ofs Freeable. Proof. intros. constructor; auto with mem. red; intros. apply perm_alloc_2. omega. Qed. Hint Local Resolve valid_access_alloc_other valid_access_alloc_same: mem. Theorem valid_access_alloc_inv: forall chunk b' ofs p, valid_access m2 chunk b' ofs p -> if eq_block b' b then lo <= ofs /\ ofs + size_chunk chunk <= hi /\ (align_chunk chunk | ofs) else valid_access m1 chunk b' ofs p. Proof. intros. inv H. generalize (size_chunk_pos chunk); intro. unfold eq_block. destruct (zeq b' b). subst b'. assert (perm m2 b ofs p). apply H0. omega. assert (perm m2 b (ofs + size_chunk chunk - 1) p). apply H0. omega. exploit perm_alloc_inv. eexact H2. rewrite zeq_true. intro. exploit perm_alloc_inv. eexact H3. rewrite zeq_true. intro. intuition omega. split; auto. red; intros. exploit perm_alloc_inv. apply H0. eauto. rewrite zeq_false; auto. Qed. Theorem bounds_alloc: forall b', bounds m2 b' = if eq_block b' b then (lo, hi) else bounds m1 b'. Proof. injection ALLOC; intros. rewrite <- H; rewrite <- H0; simpl. unfold update. auto. Qed. Theorem bounds_alloc_same: bounds m2 b = (lo, hi). Proof. rewrite bounds_alloc. apply dec_eq_true. Qed. Theorem bounds_alloc_other: forall b', b' <> b -> bounds m2 b' = bounds m1 b'. Proof. intros. rewrite bounds_alloc. apply dec_eq_false. auto. Qed. Theorem load_alloc_unchanged: forall chunk b' ofs, valid_block m1 b' -> load chunk m2 b' ofs = load chunk m1 b' ofs. Proof. intros. unfold load. destruct (valid_access_dec m2 chunk b' ofs Readable). exploit valid_access_alloc_inv; eauto. destruct (eq_block b' b); intros. subst b'. elimtype False. eauto with mem. rewrite pred_dec_true; auto. injection ALLOC; intros. rewrite <- H2; simpl. rewrite update_o. auto. rewrite H1. apply sym_not_equal; eauto with mem. rewrite pred_dec_false. auto. eauto with mem. Qed. Theorem load_alloc_other: forall chunk b' ofs v, load chunk m1 b' ofs = Some v -> load chunk m2 b' ofs = Some v. Proof. intros. rewrite <- H. apply load_alloc_unchanged. eauto with mem. Qed. Theorem load_alloc_same: forall chunk ofs v, load chunk m2 b ofs = Some v -> v = Vundef. Proof. intros. exploit load_result; eauto. intro. rewrite H0. injection ALLOC; intros. rewrite <- H2; simpl. rewrite <- H1. rewrite update_s. destruct chunk; reflexivity. Qed. Theorem load_alloc_same': forall chunk ofs, lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) -> load chunk m2 b ofs = Some Vundef. Proof. intros. assert (exists v, load chunk m2 b ofs = Some v). apply valid_access_load. constructor; auto. red; intros. eapply perm_implies. apply perm_alloc_2. omega. auto with mem. destruct H2 as [v LOAD]. rewrite LOAD. decEq. eapply load_alloc_same; eauto. Qed. End ALLOC. Hint Local Resolve valid_block_alloc fresh_block_alloc valid_new_block: mem. Hint Local Resolve valid_access_alloc_other valid_access_alloc_same: mem. (** ** Properties related to [free]. *) Theorem range_perm_free: forall m1 b lo hi, range_perm m1 b lo hi Freeable -> { m2: mem | free m1 b lo hi = Some m2 }. Proof. intros; unfold free. rewrite pred_dec_true; auto. econstructor; eauto. Qed. Section FREE. Variable m1: mem. Variable bf: block. Variables lo hi: Z. Variable m2: mem. Hypothesis FREE: free m1 bf lo hi = Some m2. Theorem free_range_perm: range_perm m1 bf lo hi Freeable. Proof. unfold free in FREE. destruct (range_perm_dec m1 bf lo hi Freeable); auto. congruence. Qed. Lemma free_result: m2 = unchecked_free m1 bf lo hi. Proof. unfold free in FREE. destruct (range_perm_dec m1 bf lo hi Freeable). congruence. congruence. Qed. Theorem nextblock_free: nextblock m2 = nextblock m1. Proof. rewrite free_result; reflexivity. Qed. Theorem valid_block_free_1: forall b, valid_block m1 b -> valid_block m2 b. Proof. intros. rewrite free_result. assumption. Qed. Theorem valid_block_free_2: forall b, valid_block m2 b -> valid_block m1 b. Proof. intros. rewrite free_result in H. assumption. Qed. Hint Local Resolve valid_block_free_1 valid_block_free_2: mem. Theorem perm_free_1: forall b ofs p, b <> bf \/ ofs < lo \/ hi <= ofs -> perm m1 b ofs p -> perm m2 b ofs p. Proof. intros. rewrite free_result. unfold perm, unchecked_free; simpl. unfold update. destruct (zeq b bf). subst b. destruct (zle lo ofs); simpl. destruct (zlt ofs hi); simpl. elimtype False; intuition. auto. auto. auto. Qed. Theorem perm_free_2: forall ofs p, lo <= ofs < hi -> ~ perm m2 bf ofs p. Proof. intros. rewrite free_result. unfold perm, unchecked_free; simpl. rewrite update_s. unfold proj_sumbool. rewrite zle_true. rewrite zlt_true. simpl. congruence. omega. omega. Qed. Theorem perm_free_3: forall b ofs p, perm m2 b ofs p -> perm m1 b ofs p. Proof. intros until p. rewrite free_result. unfold perm, unchecked_free; simpl. unfold update. destruct (zeq b bf). subst b. destruct (zle lo ofs); simpl. destruct (zlt ofs hi); simpl. intro; contradiction. congruence. auto. auto. Qed. Theorem valid_access_free_1: forall chunk b ofs p, valid_access m1 chunk b ofs p -> b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs -> valid_access m2 chunk b ofs p. Proof. intros. inv H. constructor; auto with mem. red; intros. eapply perm_free_1; eauto. destruct (zlt lo hi). intuition. right. omega. Qed. Theorem valid_access_free_2: forall chunk ofs p, lo < hi -> ofs + size_chunk chunk > lo -> ofs < hi -> ~(valid_access m2 chunk bf ofs p). Proof. intros; red; intros. inv H2. generalize (size_chunk_pos chunk); intros. destruct (zlt ofs lo). elim (perm_free_2 lo p). omega. apply H3. omega. elim (perm_free_2 ofs p). omega. apply H3. omega. Qed. Theorem valid_access_free_inv_1: forall chunk b ofs p, valid_access m2 chunk b ofs p -> valid_access m1 chunk b ofs p. Proof. intros. destruct H. split; auto. red; intros. generalize (H ofs0 H1). rewrite free_result. unfold perm, unchecked_free; simpl. unfold update. destruct (zeq b bf). subst b. destruct (zle lo ofs0); simpl. destruct (zlt ofs0 hi); simpl. intro; contradiction. congruence. auto. auto. Qed. Theorem valid_access_free_inv_2: forall chunk ofs p, valid_access m2 chunk bf ofs p -> lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs. Proof. intros. destruct (zlt lo hi); auto. destruct (zle (ofs + size_chunk chunk) lo); auto. destruct (zle hi ofs); auto. elim (valid_access_free_2 chunk ofs p); auto. omega. Qed. Theorem bounds_free: forall b, bounds m2 b = bounds m1 b. Proof. intros. rewrite free_result; simpl. auto. Qed. Theorem load_free: forall chunk b ofs, b <> bf \/ lo >= hi \/ ofs + size_chunk chunk <= lo \/ hi <= ofs -> load chunk m2 b ofs = load chunk m1 b ofs. Proof. intros. unfold load. destruct (valid_access_dec m2 chunk b ofs Readable). rewrite pred_dec_true. rewrite free_result; auto. simpl. f_equal. f_equal. unfold clearN. rewrite size_chunk_conv in H. remember (size_chunk_nat chunk) as n; clear Heqn. clear v FREE. revert lo hi ofs H; induction n; intros; simpl; auto. f_equal. destruct (zeq b bf); auto. subst bf. destruct (zle lo ofs); auto. destruct (zlt ofs hi); auto. elimtype False. destruct H as [? | [? | [? | ?]]]; try omega. contradict H; auto. rewrite inj_S in H; omega. apply IHn. rewrite inj_S in H. destruct H as [? | [? | [? | ?]]]; auto. unfold block in *; omega. unfold block in *; omega. apply valid_access_free_inv_1; auto. rewrite pred_dec_false; auto. red; intro; elim n. eapply valid_access_free_1; eauto. Qed. End FREE. Hint Local Resolve valid_block_free_1 valid_block_free_2 perm_free_1 perm_free_2 perm_free_3 valid_access_free_1 valid_access_free_inv_1: mem. (** ** Properties related to [drop_perm] *) Theorem range_perm_drop_1: forall m b lo hi p m', drop_perm m b lo hi p = Some m' -> range_perm m b lo hi p. Proof. unfold drop_perm; intros. destruct (range_perm_dec m b lo hi p). auto. discriminate. Qed. Theorem range_perm_drop_2: forall m b lo hi p, range_perm m b lo hi p -> {m' | drop_perm m b lo hi p = Some m' }. Proof. unfold drop_perm; intros. destruct (range_perm_dec m b lo hi p). econstructor. eauto. contradiction. Qed. Section DROP. Variable m: mem. Variable b: block. Variable lo hi: Z. Variable p: permission. Variable m': mem. Hypothesis DROP: drop_perm m b lo hi p = Some m'. Theorem nextblock_drop: nextblock m' = nextblock m. Proof. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP; auto. Qed. Theorem perm_drop_1: forall ofs, lo <= ofs < hi -> perm m' b ofs p. Proof. intros. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. unfold perm. simpl. rewrite update_s. unfold proj_sumbool. rewrite zle_true. rewrite zlt_true. simpl. constructor. omega. omega. Qed. Theorem perm_drop_2: forall ofs p', lo <= ofs < hi -> perm m' b ofs p' -> perm_order p p'. Proof. intros. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. revert H0. unfold perm; simpl. rewrite update_s. unfold proj_sumbool. rewrite zle_true. rewrite zlt_true. simpl. auto. omega. omega. Qed. Theorem perm_drop_3: forall b' ofs p', b' <> b \/ ofs < lo \/ hi <= ofs -> perm m b' ofs p' -> perm m' b' ofs p'. Proof. intros. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. unfold perm; simpl. unfold update. destruct (zeq b' b). subst b'. unfold proj_sumbool. destruct (zle lo ofs). destruct (zlt ofs hi). byContradiction. intuition omega. auto. auto. auto. Qed. Theorem perm_drop_4: forall b' ofs p', perm m' b' ofs p' -> perm m b' ofs p'. Proof. intros. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. revert H. unfold perm; simpl. unfold update. destruct (zeq b' b). subst b'. unfold proj_sumbool. destruct (zle lo ofs). destruct (zlt ofs hi). simpl. intros. apply perm_implies with p. apply r. tauto. auto. auto. auto. auto. Qed. Theorem bounds_drop: forall b', bounds m' b' = bounds m b'. Proof. intros. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. unfold bounds; simpl. auto. Qed. Lemma valid_access_drop_1: forall chunk b' ofs p', b' <> b \/ ofs + size_chunk chunk <= lo \/ hi <= ofs \/ perm_order p p' -> valid_access m chunk b' ofs p' -> valid_access m' chunk b' ofs p'. Proof. intros. destruct H0. split; auto. red; intros. destruct (zeq b' b). subst b'. destruct (zlt ofs0 lo). eapply perm_drop_3; eauto. destruct (zle hi ofs0). eapply perm_drop_3; eauto. apply perm_implies with p. eapply perm_drop_1; eauto. omega. generalize (size_chunk_pos chunk); intros. intuition. omegaContradiction. omegaContradiction. eapply perm_drop_3; eauto. Qed. Lemma valid_access_drop_2: forall chunk b' ofs p', valid_access m' chunk b' ofs p' -> valid_access m chunk b' ofs p'. Proof. intros. destruct H; split; auto. red; intros. eapply perm_drop_4; eauto. Qed. (* Lemma valid_access_drop_3: forall chunk b' ofs p', valid_access m' chunk b' ofs p' -> b' <> b \/ Intv.disjoint (lo, hi) (ofs, ofs + size_chunk chunk) \/ perm_order p p'. Proof. intros. destruct H. destruct (zeq b' b); auto. subst b'. destruct (Intv.disjoint_dec (lo, hi) (ofs, ofs + size_chunk chunk)); auto. exploit intv_not_disjoint; eauto. intros [x [A B]]. right; right. apply perm_drop_2 with x. auto. apply H. auto. Qed. *) Theorem load_drop: forall chunk b' ofs, b' <> b \/ ofs + size_chunk chunk <= lo \/ hi <= ofs \/ perm_order p Readable -> load chunk m' b' ofs = load chunk m b' ofs. Proof. intros. unfold load. destruct (valid_access_dec m chunk b' ofs Readable). rewrite pred_dec_true. unfold drop_perm in DROP. destruct (range_perm_dec m b lo hi p); inv DROP. simpl. unfold update. destruct (zeq b' b). subst b'. decEq. decEq. apply getN_exten. rewrite <- size_chunk_conv. intros. unfold proj_sumbool. destruct (zle lo i). destruct (zlt i hi). destruct (perm_order_dec p Readable). auto. elimtype False. intuition. auto. auto. auto. eapply valid_access_drop_1; eauto. rewrite pred_dec_false. auto. red; intros; elim n. eapply valid_access_drop_2; eauto. Qed. End DROP. (** * Extensionality properties *) Lemma mem_access_ext: forall m1 m2, perm m1 = perm m2 -> mem_access m1 = mem_access m2. Proof. intros. apply extensionality; intro b. apply extensionality; intro ofs. case_eq (mem_access m1 b ofs); case_eq (mem_access m2 b ofs); intros; auto. assert (perm m1 b ofs p <-> perm m2 b ofs p) by (rewrite H; intuition). assert (perm m1 b ofs p0 <-> perm m2 b ofs p0) by (rewrite H; intuition). unfold perm, perm_order' in H2,H3. rewrite H0 in H2,H3; rewrite H1 in H2,H3. f_equal. assert (perm_order p p0 -> perm_order p0 p -> p0=p) by (clear; intros; inv H; inv H0; auto). intuition. assert (perm m1 b ofs p <-> perm m2 b ofs p) by (rewrite H; intuition). unfold perm, perm_order' in H2; rewrite H0 in H2; rewrite H1 in H2. assert (perm_order p p) by auto with mem. intuition. assert (perm m1 b ofs p <-> perm m2 b ofs p) by (rewrite H; intuition). unfold perm, perm_order' in H2; rewrite H0 in H2; rewrite H1 in H2. assert (perm_order p p) by auto with mem. intuition. Qed. Lemma mem_ext': forall m1 m2, mem_access m1 = mem_access m2 -> nextblock m1 = nextblock m2 -> (forall b, 0 < b < nextblock m1 -> bounds m1 b = bounds m2 b) -> (forall b ofs, perm_order' (mem_access m1 b ofs) Readable -> mem_contents m1 b ofs = mem_contents m2 b ofs) -> m1 = m2. Proof. intros. destruct m1; destruct m2; simpl in *. destruct H; subst. apply mkmem_ext; auto. apply extensionality; intro b. apply extensionality; intro ofs. destruct (perm_order'_dec (mem_access0 b ofs) Readable). auto. destruct (noread_undef0 b ofs); try contradiction. destruct (noread_undef1 b ofs); try contradiction. congruence. apply extensionality; intro b. destruct (nextblock_noaccess0 b); auto. destruct (nextblock_noaccess1 b); auto. congruence. Qed. Theorem mem_ext: forall m1 m2, perm m1 = perm m2 -> nextblock m1 = nextblock m2 -> (forall b, 0 < b < nextblock m1 -> bounds m1 b = bounds m2 b) -> (forall b ofs, loadbytes m1 b ofs 1 = loadbytes m2 b ofs 1) -> m1 = m2. Proof. intros. generalize (mem_access_ext _ _ H); clear H; intro. apply mem_ext'; auto. intros. specialize (H2 b ofs). unfold loadbytes in H2; simpl in H2. destruct (range_perm_dec m1 b ofs (ofs+1)). destruct (range_perm_dec m2 b ofs (ofs+1)). inv H2; auto. contradict n. intros ofs' ?; assert (ofs'=ofs) by omega; subst ofs'. unfold perm, perm_order'. rewrite <- H; destruct (mem_access m1 b ofs); try destruct p; intuition. contradict n. intros ofs' ?; assert (ofs'=ofs) by omega; subst ofs'. unfold perm. destruct (mem_access m1 b ofs); try destruct p; intuition. Qed. (** * Generic injections *) (** A memory state [m1] generically injects into another memory state [m2] via the memory injection [f] if the following conditions hold: - each access in [m2] that corresponds to a valid access in [m1] is itself valid; - the memory value associated in [m1] to an accessible address must inject into [m2]'s memory value at the corersponding address. *) Record mem_inj (f: meminj) (m1 m2: mem) : Prop := mk_mem_inj { mi_access: forall b1 b2 delta chunk ofs p, f b1 = Some(b2, delta) -> valid_access m1 chunk b1 ofs p -> valid_access m2 chunk b2 (ofs + delta) p; mi_memval: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> perm m1 b1 ofs Nonempty -> memval_inject f (m1.(mem_contents) b1 ofs) (m2.(mem_contents) b2 (ofs + delta)) }. (** Preservation of permissions *) Lemma perm_inj: forall f m1 m2 b1 ofs p b2 delta, mem_inj f m1 m2 -> perm m1 b1 ofs p -> f b1 = Some(b2, delta) -> perm m2 b2 (ofs + delta) p. Proof. intros. assert (valid_access m1 Mint8unsigned b1 ofs p). split. red; intros. simpl in H2. replace ofs0 with ofs by omega. auto. simpl. apply Zone_divide. exploit mi_access; eauto. intros [A B]. apply A. simpl; omega. Qed. (** Preservation of loads. *) Lemma getN_inj: forall f m1 m2 b1 b2 delta, mem_inj f m1 m2 -> f b1 = Some(b2, delta) -> forall n ofs, range_perm m1 b1 ofs (ofs + Z_of_nat n) Readable -> list_forall2 (memval_inject f) (getN n ofs (m1.(mem_contents) b1)) (getN n (ofs + delta) (m2.(mem_contents) b2)). Proof. induction n; intros; simpl. constructor. rewrite inj_S in H1. constructor. eapply mi_memval; eauto. apply perm_implies with Readable. apply H1. omega. constructor. replace (ofs + delta + 1) with ((ofs + 1) + delta) by omega. apply IHn. red; intros; apply H1; omega. Qed. Lemma load_inj: forall f m1 m2 chunk b1 ofs b2 delta v1, mem_inj f m1 m2 -> load chunk m1 b1 ofs = Some v1 -> f b1 = Some (b2, delta) -> exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inject f v1 v2. Proof. intros. exists (decode_val chunk (getN (size_chunk_nat chunk) (ofs + delta) (m2.(mem_contents) b2))). split. unfold load. apply pred_dec_true. eapply mi_access; eauto with mem. exploit load_result; eauto. intro. rewrite H2. apply decode_val_inject. apply getN_inj; auto. rewrite <- size_chunk_conv. exploit load_valid_access; eauto. intros [A B]. auto. Qed. (** Preservation of stores. *) Lemma setN_inj: forall (access: Z -> Prop) delta f vl1 vl2, list_forall2 (memval_inject f) vl1 vl2 -> forall p c1 c2, (forall q, access q -> memval_inject f (c1 q) (c2 (q + delta))) -> (forall q, access q -> memval_inject f ((setN vl1 p c1) q) ((setN vl2 (p + delta) c2) (q + delta))). Proof. induction 1; intros; simpl. auto. replace (p + delta + 1) with ((p + 1) + delta) by omega. apply IHlist_forall2; auto. intros. unfold update at 1. destruct (zeq q0 p). subst q0. rewrite update_s. auto. rewrite update_o. auto. omega. Qed. Definition meminj_no_overlap (f: meminj) (m: mem) : Prop := forall b1 b1' delta1 b2 b2' delta2, b1 <> b2 -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> b1' <> b2' (* \/ low_bound m b1 >= high_bound m b1 \/ low_bound m b2 >= high_bound m b2 *) \/ high_bound m b1 + delta1 <= low_bound m b2 + delta2 \/ high_bound m b2 + delta2 <= low_bound m b1 + delta1. Lemma meminj_no_overlap_perm: forall f m b1 b1' delta1 b2 b2' delta2 ofs1 ofs2, meminj_no_overlap f m -> b1 <> b2 -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> perm m b1 ofs1 Nonempty -> perm m b2 ofs2 Nonempty -> b1' <> b2' \/ ofs1 + delta1 <> ofs2 + delta2. Proof. intros. exploit H; eauto. intro. exploit perm_in_bounds. eexact H3. intro. exploit perm_in_bounds. eexact H4. intro. destruct H5. auto. right. omega. Qed. Lemma store_mapped_inj: forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2, mem_inj f m1 m2 -> store chunk m1 b1 ofs v1 = Some n1 -> meminj_no_overlap f m1 -> f b1 = Some (b2, delta) -> val_inject f v1 v2 -> exists n2, store chunk m2 b2 (ofs + delta) v2 = Some n2 /\ mem_inj f n1 n2. Proof. intros. inversion H. assert (valid_access m2 chunk b2 (ofs + delta) Writable). eapply mi_access0; eauto with mem. destruct (valid_access_store _ _ _ _ v2 H4) as [n2 STORE]. exists n2; split. eauto. constructor. (* access *) intros. eapply store_valid_access_1; [apply STORE |]. eapply mi_access0; eauto. eapply store_valid_access_2; [apply H0 |]. auto. (* mem_contents *) intros. assert (perm m1 b0 ofs0 Nonempty). eapply perm_store_2; eauto. rewrite (store_mem_contents _ _ _ _ _ _ H0). rewrite (store_mem_contents _ _ _ _ _ _ STORE). unfold update. destruct (zeq b0 b1). subst b0. (* block = b1, block = b2 *) assert (b3 = b2) by congruence. subst b3. assert (delta0 = delta) by congruence. subst delta0. rewrite zeq_true. apply setN_inj with (access := fun ofs => perm m1 b1 ofs Nonempty). apply encode_val_inject; auto. auto. auto. destruct (zeq b3 b2). subst b3. (* block <> b1, block = b2 *) rewrite setN_other. auto. rewrite encode_val_length. rewrite <- size_chunk_conv. intros. assert (b2 <> b2 \/ ofs0 + delta0 <> (r - delta) + delta). eapply meminj_no_overlap_perm; eauto. exploit store_valid_access_3. eexact H0. intros [A B]. eapply perm_implies. apply A. omega. auto with mem. destruct H9. congruence. omega. (* block <> b1, block <> b2 *) eauto. Qed. Lemma store_unmapped_inj: forall f chunk m1 b1 ofs v1 n1 m2, mem_inj f m1 m2 -> store chunk m1 b1 ofs v1 = Some n1 -> f b1 = None -> mem_inj f n1 m2. Proof. intros. inversion H. constructor. (* access *) eauto with mem. (* mem_contents *) intros. rewrite (store_mem_contents _ _ _ _ _ _ H0). rewrite update_o. eauto with mem. congruence. Qed. Lemma store_outside_inj: forall f m1 m2 chunk b ofs v m2', mem_inj f m1 m2 -> (forall b' delta ofs', f b' = Some(b, delta) -> perm m1 b' ofs' Nonempty -> ofs' + delta < ofs \/ ofs' + delta >= ofs + size_chunk chunk) -> store chunk m2 b ofs v = Some m2' -> mem_inj f m1 m2'. Proof. intros. inversion H. constructor. (* access *) eauto with mem. (* mem_contents *) intros. rewrite (store_mem_contents _ _ _ _ _ _ H1). unfold update. destruct (zeq b2 b). subst b2. rewrite setN_outside. auto. rewrite encode_val_length. rewrite <- size_chunk_conv. eapply H0; eauto. eauto with mem. Qed. (** Preservation of allocations *) Lemma alloc_right_inj: forall f m1 m2 lo hi b2 m2', mem_inj f m1 m2 -> alloc m2 lo hi = (m2', b2) -> mem_inj f m1 m2'. Proof. intros. injection H0. intros NEXT MEM. inversion H. constructor. (* access *) intros. eauto with mem. (* mem_contents *) intros. assert (valid_access m2 Mint8unsigned b0 (ofs + delta) Nonempty). eapply mi_access0; eauto. split. simpl. red; intros. assert (ofs0 = ofs) by omega. congruence. simpl. apply Zone_divide. assert (valid_block m2 b0) by eauto with mem. rewrite <- MEM; simpl. rewrite update_o. eauto with mem. rewrite NEXT. apply sym_not_equal. eauto with mem. Qed. Lemma alloc_left_unmapped_inj: forall f m1 m2 lo hi m1' b1, mem_inj f m1 m2 -> alloc m1 lo hi = (m1', b1) -> f b1 = None -> mem_inj f m1' m2. Proof. intros. inversion H. constructor. (* access *) unfold update; intros. exploit valid_access_alloc_inv; eauto. unfold eq_block. intros. destruct (zeq b0 b1). congruence. eauto. (* mem_contents *) injection H0; intros NEXT MEM. intros. rewrite <- MEM; simpl. rewrite NEXT. unfold update. exploit perm_alloc_inv; eauto. intros. destruct (zeq b0 b1). constructor. eauto. Qed. Definition inj_offset_aligned (delta: Z) (size: Z) : Prop := forall chunk, size_chunk chunk <= size -> (align_chunk chunk | delta). Lemma alloc_left_mapped_inj: forall f m1 m2 lo hi m1' b1 b2 delta, mem_inj f m1 m2 -> alloc m1 lo hi = (m1', b1) -> valid_block m2 b2 -> inj_offset_aligned delta (hi-lo) -> (forall ofs p, lo <= ofs < hi -> perm m2 b2 (ofs + delta) p) -> f b1 = Some(b2, delta) -> mem_inj f m1' m2. Proof. intros. inversion H. constructor. (* access *) intros. exploit valid_access_alloc_inv; eauto. unfold eq_block. intros. destruct (zeq b0 b1). subst b0. rewrite H4 in H5. inversion H5; clear H5; subst b3 delta0. split. red; intros. replace ofs0 with ((ofs0 - delta) + delta) by omega. apply H3. omega. destruct H6. apply Zdivide_plus_r. auto. apply H2. omega. eauto. (* mem_contents *) injection H0; intros NEXT MEM. intros. rewrite <- MEM; simpl. rewrite NEXT. unfold update. exploit perm_alloc_inv; eauto. intros. destruct (zeq b0 b1). constructor. eauto. Qed. Lemma free_left_inj: forall f m1 m2 b lo hi m1', mem_inj f m1 m2 -> free m1 b lo hi = Some m1' -> mem_inj f m1' m2. Proof. intros. exploit free_result; eauto. intro FREE. inversion H. constructor. (* access *) intros. eauto with mem. (* mem_contents *) intros. rewrite FREE; simpl. assert (b=b1 /\ lo <= ofs < hi \/ (b<>b1 \/ ofs free m2 b lo hi = Some m2' -> (forall b1 delta ofs p, f b1 = Some(b, delta) -> perm m1 b1 ofs p -> lo <= ofs + delta < hi -> False) -> mem_inj f m1 m2'. Proof. intros. exploit free_result; eauto. intro FREE. inversion H. constructor. (* access *) intros. exploit mi_access0; eauto. intros [RG AL]. split; auto. red; intros. eapply perm_free_1; eauto. destruct (zeq b2 b); auto. subst b. right. destruct (zlt ofs0 lo); auto. destruct (zle hi ofs0); auto. elimtype False. eapply H1 with (ofs := ofs0 - delta). eauto. apply H3. omega. omega. (* mem_contents *) intros. rewrite FREE; simpl. specialize (mi_memval0 _ _ _ _ H2 H3). assert (b=b2 /\ lo <= ofs+delta < hi \/ (b<>b2 \/ ofs+delta drop_perm m1 b lo hi p = Some m1' -> f b = None -> mem_inj f m1' m2. Proof. intros. inv H. constructor. intros. eapply mi_access0. eauto. eapply valid_access_drop_2; eauto. intros. replace (mem_contents m1' b1 ofs) with (mem_contents m1 b1 ofs). apply mi_memval0; auto. eapply perm_drop_4; eauto. unfold drop_perm in H0. destruct (range_perm_dec m1 b lo hi p); inv H0. simpl. rewrite update_o; auto. congruence. Qed. Lemma drop_mapped_inj: forall f m1 m2 b1 b2 delta lo hi p m1', mem_inj f m1 m2 -> drop_perm m1 b1 lo hi p = Some m1' -> meminj_no_overlap f m1 -> f b1 = Some(b2, delta) -> exists m2', drop_perm m2 b2 (lo + delta) (hi + delta) p = Some m2' /\ mem_inj f m1' m2'. Proof. intros. assert ({ m2' | drop_perm m2 b2 (lo + delta) (hi + delta) p = Some m2' }). apply range_perm_drop_2. red; intros. replace ofs with ((ofs - delta) + delta) by omega. eapply perm_inj; eauto. eapply range_perm_drop_1; eauto. omega. destruct X as [m2' DROP]. exists m2'; split; auto. inv H. constructor; intros. (* access *) exploit mi_access0; eauto. eapply valid_access_drop_2; eauto. intros [A B]. split; auto. red; intros. destruct (eq_block b1 b0). subst b0. rewrite H2 in H; inv H. (* b1 = b0 *) destruct (zlt ofs0 (lo + delta0)). eapply perm_drop_3; eauto. destruct (zle (hi + delta0) ofs0). eapply perm_drop_3; eauto. destruct H3 as [C D]. assert (perm_order p p0). eapply perm_drop_2. eexact H0. instantiate (1 := ofs0 - delta0). omega. apply C. omega. apply perm_implies with p; auto. eapply perm_drop_1. eauto. omega. (* b1 <> b0 *) eapply perm_drop_3; eauto. exploit H1; eauto. intros [P | P]. auto. right. destruct (zlt lo hi). exploit range_perm_in_bounds. eapply range_perm_drop_1. eexact H0. auto. intros [U V]. exploit valid_access_drop_2. eexact H0. eauto. intros [C D]. exploit range_perm_in_bounds. eexact C. generalize (size_chunk_pos chunk); omega. intros [X Y]. generalize (size_chunk_pos chunk). omega. omega. (* memval *) assert (A: perm m1 b0 ofs Nonempty). eapply perm_drop_4; eauto. exploit mi_memval0; eauto. intros B. unfold drop_perm in *. destruct (range_perm_dec m1 b1 lo hi p); inversion H0; clear H0. clear H5. destruct (range_perm_dec m2 b2 (lo + delta) (hi + delta) p); inversion DROP; clear DROP. clear H4. simpl. unfold update. destruct (zeq b0 b1). (* b1 = b0 *) subst b0. rewrite H2 in H; inv H. rewrite zeq_true. unfold proj_sumbool. destruct (zle lo ofs). rewrite zle_true. destruct (zlt ofs hi). rewrite zlt_true. destruct (perm_order_dec p Readable). simpl. auto. simpl. constructor. omega. rewrite zlt_false. simpl. auto. omega. omega. rewrite zle_false. simpl. auto. omega. (* b1 <> b0 *) destruct (zeq b3 b2). (* b2 = b3 *) subst b3. exploit H1. eauto. eauto. eauto. intros [P | P]. congruence. exploit perm_in_bounds; eauto. intros X. destruct (zle (lo + delta) (ofs + delta0)). destruct (zlt (ofs + delta0) (hi + delta)). destruct (zlt lo hi). exploit range_perm_in_bounds. eexact r. auto. intros [Y Z]. omegaContradiction. omegaContradiction. simpl. auto. simpl. auto. auto. Qed. (** * Memory extensions *) (** A store [m2] extends a store [m1] if [m2] can be obtained from [m1] by increasing the sizes of the memory blocks of [m1] (decreasing the low bounds, increasing the high bounds), and replacing some of the [Vundef] values stored in [m1] by more defined values stored in [m2] at the same locations. *) Record extends_ (m1 m2: mem) : Prop := mk_extends { mext_next: nextblock m1 = nextblock m2; mext_inj: mem_inj inject_id m1 m2 (* mext_bounds: forall b, low_bound m2 b <= low_bound m1 b /\ high_bound m1 b <= high_bound m2 b *) }. Definition extends := extends_. Theorem extends_refl: forall m, extends m m. Proof. intros. constructor. auto. constructor. intros. unfold inject_id in H; inv H. replace (ofs + 0) with ofs by omega. auto. intros. unfold inject_id in H; inv H. replace (ofs + 0) with ofs by omega. apply memval_inject_id. (* intros. omega. *) Qed. Theorem load_extends: forall chunk m1 m2 b ofs v1, extends m1 m2 -> load chunk m1 b ofs = Some v1 -> exists v2, load chunk m2 b ofs = Some v2 /\ Val.lessdef v1 v2. Proof. intros. inv H. exploit load_inj; eauto. unfold inject_id; reflexivity. intros [v2 [A B]]. exists v2; split. replace (ofs + 0) with ofs in A by omega. auto. rewrite val_inject_id in B. auto. Qed. Theorem loadv_extends: forall chunk m1 m2 addr1 addr2 v1, extends m1 m2 -> loadv chunk m1 addr1 = Some v1 -> Val.lessdef addr1 addr2 -> exists v2, loadv chunk m2 addr2 = Some v2 /\ Val.lessdef v1 v2. Proof. unfold loadv; intros. inv H1. destruct addr2; try congruence. eapply load_extends; eauto. congruence. Qed. Theorem store_within_extends: forall chunk m1 m2 b ofs v1 m1' v2, extends m1 m2 -> store chunk m1 b ofs v1 = Some m1' -> Val.lessdef v1 v2 -> exists m2', store chunk m2 b ofs v2 = Some m2' /\ extends m1' m2'. Proof. intros. inversion H. exploit store_mapped_inj; eauto. unfold inject_id; red; intros. inv H3; inv H4. auto. unfold inject_id; reflexivity. rewrite val_inject_id. eauto. intros [m2' [A B]]. exists m2'; split. replace (ofs + 0) with ofs in A by omega. auto. split; auto. rewrite (nextblock_store _ _ _ _ _ _ H0). rewrite (nextblock_store _ _ _ _ _ _ A). auto. (* intros. rewrite (bounds_store _ _ _ _ _ _ H0). rewrite (bounds_store _ _ _ _ _ _ A). auto. *) Qed. Theorem store_outside_extends: forall chunk m1 m2 b ofs v m2', extends m1 m2 -> store chunk m2 b ofs v = Some m2' -> ofs + size_chunk chunk <= low_bound m1 b \/ high_bound m1 b <= ofs -> extends m1 m2'. Proof. intros. inversion H. constructor. rewrite (nextblock_store _ _ _ _ _ _ H0). auto. eapply store_outside_inj; eauto. unfold inject_id; intros. inv H2. exploit perm_in_bounds; eauto. omega. (* intros. rewrite (bounds_store _ _ _ _ _ _ H0). auto. *) Qed. Theorem storev_extends: forall chunk m1 m2 addr1 v1 m1' addr2 v2, extends m1 m2 -> storev chunk m1 addr1 v1 = Some m1' -> Val.lessdef addr1 addr2 -> Val.lessdef v1 v2 -> exists m2', storev chunk m2 addr2 v2 = Some m2' /\ extends m1' m2'. Proof. unfold storev; intros. inv H1. destruct addr2; try congruence. eapply store_within_extends; eauto. congruence. Qed. Theorem alloc_extends: forall m1 m2 lo1 hi1 b m1' lo2 hi2, extends m1 m2 -> alloc m1 lo1 hi1 = (m1', b) -> lo2 <= lo1 -> hi1 <= hi2 -> exists m2', alloc m2 lo2 hi2 = (m2', b) /\ extends m1' m2'. Proof. intros. inv H. case_eq (alloc m2 lo2 hi2); intros m2' b' ALLOC. assert (b' = b). rewrite (alloc_result _ _ _ _ _ H0). rewrite (alloc_result _ _ _ _ _ ALLOC). auto. subst b'. exists m2'; split; auto. constructor. rewrite (nextblock_alloc _ _ _ _ _ H0). rewrite (nextblock_alloc _ _ _ _ _ ALLOC). congruence. eapply alloc_left_mapped_inj with (m1 := m1) (m2 := m2') (b2 := b) (delta := 0); eauto. eapply alloc_right_inj; eauto. eauto with mem. red. intros. apply Zdivide_0. intros. eapply perm_implies with Freeable; auto with mem. eapply perm_alloc_2; eauto. omega. Qed. Theorem free_left_extends: forall m1 m2 b lo hi m1', extends m1 m2 -> free m1 b lo hi = Some m1' -> extends m1' m2. Proof. intros. inv H. constructor. rewrite (nextblock_free _ _ _ _ _ H0). auto. eapply free_left_inj; eauto. (* intros. rewrite (bounds_free _ _ _ _ _ H0). auto. *) Qed. Theorem free_right_extends: forall m1 m2 b lo hi m2', extends m1 m2 -> free m2 b lo hi = Some m2' -> (forall ofs p, lo <= ofs < hi -> ~perm m1 b ofs p) -> extends m1 m2'. Proof. intros. inv H. constructor. rewrite (nextblock_free _ _ _ _ _ H0). auto. eapply free_right_inj; eauto. unfold inject_id; intros. inv H. elim (H1 ofs p); auto. omega. (* intros. rewrite (bounds_free _ _ _ _ _ H0). auto. *) Qed. Theorem free_parallel_extends: forall m1 m2 b lo hi m1', extends m1 m2 -> free m1 b lo hi = Some m1' -> exists m2', free m2 b lo hi = Some m2' /\ extends m1' m2'. Proof. intros. inversion H. assert ({ m2': mem | free m2 b lo hi = Some m2' }). apply range_perm_free. red; intros. replace ofs with (ofs + 0) by omega. eapply perm_inj with (b1 := b); eauto. eapply free_range_perm; eauto. destruct X as [m2' FREE]. exists m2'; split; auto. inv H. constructor. rewrite (nextblock_free _ _ _ _ _ H0). rewrite (nextblock_free _ _ _ _ _ FREE). auto. eapply free_right_inj with (m1 := m1'); eauto. eapply free_left_inj; eauto. unfold inject_id; intros. inv H. assert (~perm m1' b ofs p). eapply perm_free_2; eauto. omega. contradiction. (* intros. rewrite (bounds_free _ _ _ _ _ H0). rewrite (bounds_free _ _ _ _ _ FREE). auto. *) Qed. Theorem valid_block_extends: forall m1 m2 b, extends m1 m2 -> (valid_block m1 b <-> valid_block m2 b). Proof. intros. inv H. unfold valid_block. rewrite mext_next0. omega. Qed. Theorem perm_extends: forall m1 m2 b ofs p, extends m1 m2 -> perm m1 b ofs p -> perm m2 b ofs p. Proof. intros. inv H. replace ofs with (ofs + 0) by omega. eapply perm_inj; eauto. Qed. Theorem valid_access_extends: forall m1 m2 chunk b ofs p, extends m1 m2 -> valid_access m1 chunk b ofs p -> valid_access m2 chunk b ofs p. Proof. intros. inv H. replace ofs with (ofs + 0) by omega. eapply mi_access; eauto. auto. Qed. (* Theorem bounds_extends: forall m1 m2 b, extends m1 m2 -> low_bound m2 b <= low_bound m1 b /\ high_bound m1 b <= high_bound m2 b. Proof. intros. inv H. auto. Qed. *) (** * Memory injections *) (** A memory state [m1] injects into another memory state [m2] via the memory injection [f] if the following conditions hold: - each access in [m2] that corresponds to a valid access in [m1] is itself valid; - the memory value associated in [m1] to an accessible address must inject into [m2]'s memory value at the corersponding address; - unallocated blocks in [m1] must be mapped to [None] by [f]; - if [f b = Some(b', delta)], [b'] must be valid in [m2]; - distinct blocks in [m1] are mapped to non-overlapping sub-blocks in [m2]; - the sizes of [m2]'s blocks are representable with signed machine integers; - the offsets [delta] are representable with signed machine integers. *) Record inject_ (f: meminj) (m1 m2: mem) : Prop := mk_inject { mi_inj: mem_inj f m1 m2; mi_freeblocks: forall b, ~(valid_block m1 b) -> f b = None; mi_mappedblocks: forall b b' delta, f b = Some(b', delta) -> valid_block m2 b'; mi_no_overlap: meminj_no_overlap f m1; mi_range_offset: forall b b' delta, f b = Some(b', delta) -> Int.min_signed <= delta <= Int.max_signed; mi_range_block: forall b b' delta, f b = Some(b', delta) -> delta = 0 \/ (Int.min_signed <= low_bound m2 b' /\ high_bound m2 b' <= Int.max_signed) }. Definition inject := inject_. Hint Local Resolve mi_mappedblocks mi_range_offset: mem. (** Preservation of access validity and pointer validity *) Theorem valid_block_inject_1: forall f m1 m2 b1 b2 delta, f b1 = Some(b2, delta) -> inject f m1 m2 -> valid_block m1 b1. Proof. intros. inv H. destruct (zlt b1 (nextblock m1)). auto. assert (f b1 = None). eapply mi_freeblocks; eauto. congruence. Qed. Theorem valid_block_inject_2: forall f m1 m2 b1 b2 delta, f b1 = Some(b2, delta) -> inject f m1 m2 -> valid_block m2 b2. Proof. intros. eapply mi_mappedblocks; eauto. Qed. Hint Local Resolve valid_block_inject_1 valid_block_inject_2: mem. Theorem perm_inject: forall f m1 m2 b1 b2 delta ofs p, f b1 = Some(b2, delta) -> inject f m1 m2 -> perm m1 b1 ofs p -> perm m2 b2 (ofs + delta) p. Proof. intros. inv H0. eapply perm_inj; eauto. Qed. Theorem valid_access_inject: forall f m1 m2 chunk b1 ofs b2 delta p, f b1 = Some(b2, delta) -> inject f m1 m2 -> valid_access m1 chunk b1 ofs p -> valid_access m2 chunk b2 (ofs + delta) p. Proof. intros. eapply mi_access; eauto. apply mi_inj; auto. Qed. Theorem valid_pointer_inject: forall f m1 m2 b1 ofs b2 delta, f b1 = Some(b2, delta) -> inject f m1 m2 -> valid_pointer m1 b1 ofs = true -> valid_pointer m2 b2 (ofs + delta) = true. Proof. intros. rewrite valid_pointer_valid_access in H1. rewrite valid_pointer_valid_access. eapply valid_access_inject; eauto. Qed. (** The following lemmas establish the absence of machine integer overflow during address computations. *) Lemma address_inject: forall f m1 m2 b1 ofs1 b2 delta, inject f m1 m2 -> perm m1 b1 (Int.signed ofs1) Nonempty -> f b1 = Some (b2, delta) -> Int.signed (Int.add ofs1 (Int.repr delta)) = Int.signed ofs1 + delta. Proof. intros. exploit perm_inject; eauto. intro A. exploit perm_in_bounds. eexact A. intros [B C]. exploit mi_range_block; eauto. intros [D | [E F]]. subst delta. rewrite Int.add_zero. omega. rewrite Int.add_signed. repeat rewrite Int.signed_repr. auto. eapply mi_range_offset; eauto. omega. eapply mi_range_offset; eauto. Qed. Lemma address_inject': forall f m1 m2 chunk b1 ofs1 b2 delta, inject f m1 m2 -> valid_access m1 chunk b1 (Int.signed ofs1) Nonempty -> f b1 = Some (b2, delta) -> Int.signed (Int.add ofs1 (Int.repr delta)) = Int.signed ofs1 + delta. Proof. intros. destruct H0. eapply address_inject; eauto. apply H0. generalize (size_chunk_pos chunk). omega. Qed. Theorem valid_pointer_inject_no_overflow: forall f m1 m2 b ofs b' x, inject f m1 m2 -> valid_pointer m1 b (Int.signed ofs) = true -> f b = Some(b', x) -> Int.min_signed <= Int.signed ofs + Int.signed (Int.repr x) <= Int.max_signed. Proof. intros. rewrite valid_pointer_valid_access in H0. exploit address_inject'; eauto. intros. rewrite Int.signed_repr; eauto. rewrite <- H2. apply Int.signed_range. eapply mi_range_offset; eauto. Qed. Theorem valid_pointer_inject_val: forall f m1 m2 b ofs b' ofs', inject f m1 m2 -> valid_pointer m1 b (Int.signed ofs) = true -> val_inject f (Vptr b ofs) (Vptr b' ofs') -> valid_pointer m2 b' (Int.signed ofs') = true. Proof. intros. inv H1. exploit valid_pointer_inject_no_overflow; eauto. intro NOOV. rewrite Int.add_signed. rewrite Int.signed_repr; auto. rewrite Int.signed_repr. eapply valid_pointer_inject; eauto. eapply mi_range_offset; eauto. Qed. Theorem inject_no_overlap: forall f m1 m2 b1 b2 b1' b2' delta1 delta2 ofs1 ofs2, inject f m1 m2 -> b1 <> b2 -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> perm m1 b1 ofs1 Nonempty -> perm m1 b2 ofs2 Nonempty -> b1' <> b2' \/ ofs1 + delta1 <> ofs2 + delta2. Proof. intros. inv H. eapply meminj_no_overlap_perm; eauto. Qed. Theorem different_pointers_inject: forall f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, inject f m m' -> b1 <> b2 -> valid_pointer m b1 (Int.signed ofs1) = true -> valid_pointer m b2 (Int.signed ofs2) = true -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> b1' <> b2' \/ Int.signed (Int.add ofs1 (Int.repr delta1)) <> Int.signed (Int.add ofs2 (Int.repr delta2)). Proof. intros. rewrite valid_pointer_valid_access in H1. rewrite valid_pointer_valid_access in H2. rewrite (address_inject' _ _ _ _ _ _ _ _ H H1 H3). rewrite (address_inject' _ _ _ _ _ _ _ _ H H2 H4). inv H1. simpl in H5. inv H2. simpl in H1. eapply meminj_no_overlap_perm. eapply mi_no_overlap; eauto. eauto. eauto. eauto. apply (H5 (Int.signed ofs1)). omega. apply (H1 (Int.signed ofs2)). omega. Qed. (** Preservation of loads *) Theorem load_inject: forall f m1 m2 chunk b1 ofs b2 delta v1, inject f m1 m2 -> load chunk m1 b1 ofs = Some v1 -> f b1 = Some (b2, delta) -> exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inject f v1 v2. Proof. intros. inv H. eapply load_inj; eauto. Qed. Theorem loadv_inject: forall f m1 m2 chunk a1 a2 v1, inject f m1 m2 -> loadv chunk m1 a1 = Some v1 -> val_inject f a1 a2 -> exists v2, loadv chunk m2 a2 = Some v2 /\ val_inject f v1 v2. Proof. intros. inv H1; simpl in H0; try discriminate. exploit load_inject; eauto. intros [v2 [LOAD INJ]]. exists v2; split; auto. simpl. replace (Int.signed (Int.add ofs1 (Int.repr delta))) with (Int.signed ofs1 + delta). auto. symmetry. eapply address_inject'; eauto with mem. Qed. (** Preservation of stores *) Theorem store_mapped_inject: forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2, inject f m1 m2 -> store chunk m1 b1 ofs v1 = Some n1 -> f b1 = Some (b2, delta) -> val_inject f v1 v2 -> exists n2, store chunk m2 b2 (ofs + delta) v2 = Some n2 /\ inject f n1 n2. Proof. intros. inversion H. exploit store_mapped_inj; eauto. intros [n2 [STORE MI]]. exists n2; split. eauto. constructor. (* inj *) auto. (* freeblocks *) eauto with mem. (* mappedblocks *) eauto with mem. (* no overlap *) red; intros. repeat rewrite (bounds_store _ _ _ _ _ _ H0). eauto. (* range offset *) eauto. (* range blocks *) intros. rewrite (bounds_store _ _ _ _ _ _ STORE). eauto. Qed. Theorem store_unmapped_inject: forall f chunk m1 b1 ofs v1 n1 m2, inject f m1 m2 -> store chunk m1 b1 ofs v1 = Some n1 -> f b1 = None -> inject f n1 m2. Proof. intros. inversion H. constructor. (* inj *) eapply store_unmapped_inj; eauto. (* freeblocks *) eauto with mem. (* mappedblocks *) eauto with mem. (* no overlap *) red; intros. repeat rewrite (bounds_store _ _ _ _ _ _ H0). eauto. (* range offset *) eauto. (* range blocks *) auto. Qed. Theorem store_outside_inject: forall f m1 m2 chunk b ofs v m2', inject f m1 m2 -> (forall b' delta, f b' = Some(b, delta) -> high_bound m1 b' + delta <= ofs \/ ofs + size_chunk chunk <= low_bound m1 b' + delta) -> store chunk m2 b ofs v = Some m2' -> inject f m1 m2'. Proof. intros. inversion H. constructor. (* inj *) eapply store_outside_inj; eauto. intros. exploit perm_in_bounds; eauto. intro. exploit H0; eauto. intro. omega. (* freeblocks *) auto. (* mappedblocks *) eauto with mem. (* no overlap *) auto. (* range offset *) auto. (* rang blocks *) intros. rewrite (bounds_store _ _ _ _ _ _ H1). eauto. Qed. Theorem storev_mapped_inject: forall f chunk m1 a1 v1 n1 m2 a2 v2, inject f m1 m2 -> storev chunk m1 a1 v1 = Some n1 -> val_inject f a1 a2 -> val_inject f v1 v2 -> exists n2, storev chunk m2 a2 v2 = Some n2 /\ inject f n1 n2. Proof. intros. inv H1; simpl in H0; try discriminate. simpl. replace (Int.signed (Int.add ofs1 (Int.repr delta))) with (Int.signed ofs1 + delta). eapply store_mapped_inject; eauto. symmetry. eapply address_inject'; eauto with mem. Qed. (* Preservation of allocations *) Theorem alloc_right_inject: forall f m1 m2 lo hi b2 m2', inject f m1 m2 -> alloc m2 lo hi = (m2', b2) -> inject f m1 m2'. Proof. intros. injection H0. intros NEXT MEM. inversion H. constructor. (* inj *) eapply alloc_right_inj; eauto. (* freeblocks *) auto. (* mappedblocks *) eauto with mem. (* no overlap *) auto. (* range offset *) auto. (* range block *) intros. rewrite (bounds_alloc_other _ _ _ _ _ H0). eauto. eapply valid_not_valid_diff; eauto with mem. Qed. Theorem alloc_left_unmapped_inject: forall f m1 m2 lo hi m1' b1, inject f m1 m2 -> alloc m1 lo hi = (m1', b1) -> exists f', inject f' m1' m2 /\ inject_incr f f' /\ f' b1 = None /\ (forall b, b <> b1 -> f' b = f b). Proof. intros. inversion H. assert (inject_incr f (update b1 None f)). red; unfold update; intros. destruct (zeq b b1). subst b. assert (f b1 = None). eauto with mem. congruence. auto. assert (mem_inj (update b1 None f) m1 m2). inversion mi_inj0; constructor; eauto with mem. unfold update; intros. destruct (zeq b0 b1). congruence. eauto. unfold update; intros. destruct (zeq b0 b1). congruence. apply memval_inject_incr with f; auto. exists (update b1 None f); split. constructor. (* inj *) eapply alloc_left_unmapped_inj; eauto. apply update_s. (* freeblocks *) intros. unfold update. destruct (zeq b b1). auto. apply mi_freeblocks0. red; intro; elim H3. eauto with mem. (* mappedblocks *) unfold update; intros. destruct (zeq b b1). congruence. eauto. (* no overlap *) unfold update; red; intros. destruct (zeq b0 b1); destruct (zeq b2 b1); try congruence. repeat rewrite (bounds_alloc_other _ _ _ _ _ H0); eauto. (* range offset *) unfold update; intros. destruct (zeq b b1). congruence. eauto. (* range block *) unfold update; intros. destruct (zeq b b1). congruence. eauto. (* incr *) split. auto. (* image *) split. apply update_s. (* incr *) intros; apply update_o; auto. Qed. Theorem alloc_left_mapped_inject: forall f m1 m2 lo hi m1' b1 b2 delta, inject f m1 m2 -> alloc m1 lo hi = (m1', b1) -> valid_block m2 b2 -> Int.min_signed <= delta <= Int.max_signed -> delta = 0 \/ Int.min_signed <= low_bound m2 b2 /\ high_bound m2 b2 <= Int.max_signed -> (forall ofs p, lo <= ofs < hi -> perm m2 b2 (ofs + delta) p) -> inj_offset_aligned delta (hi-lo) -> (forall b ofs, f b = Some (b2, ofs) -> high_bound m1 b + ofs <= lo + delta \/ hi + delta <= low_bound m1 b + ofs) -> exists f', inject f' m1' m2 /\ inject_incr f f' /\ f' b1 = Some(b2, delta) /\ (forall b, b <> b1 -> f' b = f b). Proof. intros. inversion H. assert (inject_incr f (update b1 (Some(b2, delta)) f)). red; unfold update; intros. destruct (zeq b b1). subst b. assert (f b1 = None). eauto with mem. congruence. auto. assert (mem_inj (update b1 (Some(b2, delta)) f) m1 m2). inversion mi_inj0; constructor; eauto with mem. unfold update; intros. destruct (zeq b0 b1). inv H8. elim (fresh_block_alloc _ _ _ _ _ H0). eauto with mem. eauto. unfold update; intros. destruct (zeq b0 b1). inv H8. elim (fresh_block_alloc _ _ _ _ _ H0). eauto with mem. apply memval_inject_incr with f; auto. exists (update b1 (Some(b2, delta)) f). split. constructor. (* inj *) eapply alloc_left_mapped_inj; eauto. apply update_s. (* freeblocks *) unfold update; intros. destruct (zeq b b1). subst b. elim H9. eauto with mem. eauto with mem. (* mappedblocks *) unfold update; intros. destruct (zeq b b1). inv H9. auto. eauto. (* overlap *) unfold update; red; intros. repeat rewrite (bounds_alloc _ _ _ _ _ H0). unfold eq_block. destruct (zeq b0 b1); destruct (zeq b3 b1); simpl. inv H10; inv H11. congruence. inv H10. destruct (zeq b1' b2'); auto. subst b2'. right. generalize (H6 _ _ H11). tauto. inv H11. destruct (zeq b1' b2'); auto. subst b2'. right. eapply H6; eauto. eauto. (* range offset *) unfold update; intros. destruct (zeq b b1). inv H9. auto. eauto. (* range block *) unfold update; intros. destruct (zeq b b1). inv H9. auto. eauto. (* incr *) split. auto. (* image of b1 *) split. apply update_s. (* image of others *) intros. apply update_o; auto. Qed. Theorem alloc_parallel_inject: forall f m1 m2 lo1 hi1 m1' b1 lo2 hi2, inject f m1 m2 -> alloc m1 lo1 hi1 = (m1', b1) -> lo2 <= lo1 -> hi1 <= hi2 -> exists f', exists m2', exists b2, alloc m2 lo2 hi2 = (m2', b2) /\ inject f' m1' m2' /\ inject_incr f f' /\ f' b1 = Some(b2, 0) /\ (forall b, b <> b1 -> f' b = f b). Proof. intros. case_eq (alloc m2 lo2 hi2). intros m2' b2 ALLOC. exploit alloc_left_mapped_inject. eapply alloc_right_inject; eauto. eauto. instantiate (1 := b2). eauto with mem. instantiate (1 := 0). generalize Int.min_signed_neg Int.max_signed_pos; omega. auto. intros. apply perm_implies with Freeable; auto with mem. eapply perm_alloc_2; eauto. omega. red; intros. apply Zdivide_0. intros. elimtype False. apply (valid_not_valid_diff m2 b2 b2); eauto with mem. intros [f' [A [B [C D]]]]. exists f'; exists m2'; exists b2; auto. Qed. (** Preservation of [free] operations *) Lemma free_left_inject: forall f m1 m2 b lo hi m1', inject f m1 m2 -> free m1 b lo hi = Some m1' -> inject f m1' m2. Proof. intros. inversion H. constructor. (* inj *) eapply free_left_inj; eauto. (* freeblocks *) eauto with mem. (* mappedblocks *) auto. (* no overlap *) red; intros. repeat rewrite (bounds_free _ _ _ _ _ H0). eauto. (* range offset *) auto. (* range block *) auto. Qed. Lemma free_list_left_inject: forall f m2 l m1 m1', inject f m1 m2 -> free_list m1 l = Some m1' -> inject f m1' m2. Proof. induction l; simpl; intros. inv H0. auto. destruct a as [[b lo] hi]. generalize H0. case_eq (free m1 b lo hi); intros. apply IHl with m; auto. eapply free_left_inject; eauto. congruence. Qed. Lemma free_right_inject: forall f m1 m2 b lo hi m2', inject f m1 m2 -> free m2 b lo hi = Some m2' -> (forall b1 delta ofs p, f b1 = Some(b, delta) -> perm m1 b1 ofs p -> lo <= ofs + delta < hi -> False) -> inject f m1 m2'. Proof. intros. inversion H. constructor. (* inj *) eapply free_right_inj; eauto. (* freeblocks *) auto. (* mappedblocks *) eauto with mem. (* no overlap *) auto. (* range offset *) auto. (* range blocks *) intros. rewrite (bounds_free _ _ _ _ _ H0). eauto. Qed. Lemma perm_free_list: forall l m m' b ofs p, free_list m l = Some m' -> perm m' b ofs p -> perm m b ofs p /\ (forall lo hi, In (b, lo, hi) l -> lo <= ofs < hi -> False). Proof. induction l; intros until p; simpl. intros. inv H. split; auto. destruct a as [[b1 lo1] hi1]. case_eq (free m b1 lo1 hi1); intros; try congruence. exploit IHl; eauto. intros [A B]. split. eauto with mem. intros. destruct H2. inv H2. elim (perm_free_2 _ _ _ _ _ H ofs p). auto. auto. eauto. Qed. Theorem free_inject: forall f m1 l m1' m2 b lo hi m2', inject f m1 m2 -> free_list m1 l = Some m1' -> free m2 b lo hi = Some m2' -> (forall b1 delta ofs p, f b1 = Some(b, delta) -> perm m1 b1 ofs p -> lo <= ofs + delta < hi -> exists lo1, exists hi1, In (b1, lo1, hi1) l /\ lo1 <= ofs < hi1) -> inject f m1' m2'. Proof. intros. eapply free_right_inject; eauto. eapply free_list_left_inject; eauto. intros. exploit perm_free_list; eauto. intros [A B]. exploit H2; eauto. intros [lo1 [hi1 [C D]]]. eauto. Qed. (* Theorem free_inject': forall f m1 l m1' m2 b lo hi m2', inject f m1 m2 -> free_list m1 l = Some m1' -> free m2 b lo hi = Some m2' -> (forall b1 delta, f b1 = Some(b, delta) -> In (b1, low_bound m1 b1, high_bound m1 b1) l) -> inject f m1' m2'. Proof. intros. eapply free_inject; eauto. intros. exists (low_bound m1 b1); exists (high_bound m1 b1). split. eauto. apply perm_in_bounds with p. auto. Qed. *) (** Injecting a memory into itself. *) Definition flat_inj (thr: block) : meminj := fun (b: block) => if zlt b thr then Some(b, 0) else None. Definition inject_neutral (thr: block) (m: mem) := mem_inj (flat_inj thr) m m. Remark flat_inj_no_overlap: forall thr m, meminj_no_overlap (flat_inj thr) m. Proof. unfold flat_inj; intros; red; intros. destruct (zlt b1 thr); inversion H0; subst. destruct (zlt b2 thr); inversion H1; subst. auto. Qed. Theorem neutral_inject: forall m, inject_neutral (nextblock m) m -> inject (flat_inj (nextblock m)) m m. Proof. intros. constructor. (* meminj *) auto. (* freeblocks *) unfold flat_inj, valid_block; intros. apply zlt_false. omega. (* mappedblocks *) unfold flat_inj, valid_block; intros. destruct (zlt b (nextblock m)); inversion H0; subst. auto. (* no overlap *) apply flat_inj_no_overlap. (* range *) unfold flat_inj; intros. destruct (zlt b (nextblock m)); inv H0. generalize Int.min_signed_neg Int.max_signed_pos; omega. (* range *) unfold flat_inj; intros. destruct (zlt b (nextblock m)); inv H0. auto. Qed. Theorem empty_inject_neutral: forall thr, inject_neutral thr empty. Proof. intros; red; constructor. (* access *) unfold flat_inj; intros. destruct (zlt b1 thr); inv H. replace (ofs + 0) with ofs by omega; auto. (* mem_contents *) intros; simpl; constructor. Qed. Theorem alloc_inject_neutral: forall thr m lo hi b m', alloc m lo hi = (m', b) -> inject_neutral thr m -> nextblock m < thr -> inject_neutral thr m'. Proof. intros; red. eapply alloc_left_mapped_inj with (m1 := m) (b2 := b) (delta := 0). eapply alloc_right_inj; eauto. eauto. eauto with mem. red. intros. apply Zdivide_0. intros. apply perm_implies with Freeable; auto with mem. eapply perm_alloc_2; eauto. omega. unfold flat_inj. apply zlt_true. rewrite (alloc_result _ _ _ _ _ H). auto. Qed. Theorem store_inject_neutral: forall chunk m b ofs v m' thr, store chunk m b ofs v = Some m' -> inject_neutral thr m -> b < thr -> val_inject (flat_inj thr) v v -> inject_neutral thr m'. Proof. intros; red. exploit store_mapped_inj. eauto. eauto. apply flat_inj_no_overlap. unfold flat_inj. apply zlt_true; auto. eauto. replace (ofs + 0) with ofs by omega. intros [m'' [A B]]. congruence. Qed. Theorem drop_inject_neutral: forall m b lo hi p m' thr, drop_perm m b lo hi p = Some m' -> inject_neutral thr m -> b < thr -> inject_neutral thr m'. Proof. unfold inject_neutral; intros. exploit drop_mapped_inj; eauto. apply flat_inj_no_overlap. unfold flat_inj. apply zlt_true; eauto. repeat rewrite Zplus_0_r. intros [m'' [A B]]. congruence. Qed. End Mem. Notation mem := Mem.mem. Global Opaque Mem.alloc Mem.free Mem.store Mem.load. Hint Resolve Mem.valid_not_valid_diff Mem.perm_implies Mem.perm_valid_block Mem.range_perm_implies Mem.valid_access_implies Mem.valid_access_valid_block Mem.valid_access_perm Mem.valid_access_load Mem.load_valid_access Mem.valid_access_store Mem.perm_store_1 Mem.perm_store_2 Mem.nextblock_store Mem.store_valid_block_1 Mem.store_valid_block_2 Mem.store_valid_access_1 Mem.store_valid_access_2 Mem.store_valid_access_3 Mem.nextblock_alloc Mem.alloc_result Mem.valid_block_alloc Mem.fresh_block_alloc Mem.valid_new_block Mem.perm_alloc_1 Mem.perm_alloc_2 Mem.perm_alloc_3 Mem.perm_alloc_inv Mem.valid_access_alloc_other Mem.valid_access_alloc_same Mem.valid_access_alloc_inv Mem.range_perm_free Mem.free_range_perm Mem.nextblock_free Mem.valid_block_free_1 Mem.valid_block_free_2 Mem.perm_free_1 Mem.perm_free_2 Mem.perm_free_3 Mem.valid_access_free_1 Mem.valid_access_free_2 Mem.valid_access_free_inv_1 Mem.valid_access_free_inv_2 : mem.