(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness of instruction selection for operators *) Require Import Coqlib. Require Import AST Integers Floats. Require Import Values Memory Builtins Globalenvs. Require Import Cminor Op CminorSel. Require Import Compopts. Require Import SelectOp. Local Open Scope cminorsel_scope. Local Transparent Archi.ptr64. (** * Useful lemmas and tactics *) (** The following are trivial lemmas and custom tactics that help perform backward (inversion) and forward reasoning over the evaluation of operator applications. *) Ltac EvalOp := eapply eval_Eop; eauto with evalexpr. Ltac InvEval1 := match goal with | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] => inv H; InvEval1 | _ => idtac end. Ltac InvEval2 := match goal with | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] => simpl in H; inv H | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | _ => idtac end. Ltac InvEval := InvEval1; InvEval2; InvEval2. Ltac TrivialExists := match goal with | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto] end. (** * Correctness of the smart constructors *) Section CMCONSTR. Variable ge: genv. Variable sp: val. Variable e: env. Variable m: mem. (** We now show that the code generated by "smart constructor" functions such as [SelectOp.notint] behaves as expected. Continuing the [notint] example, we show that if the expression [e] evaluates to some value [v], then [SelectOp.notint e] evaluates to a value [v'] which is either [Val.notint v] or more defined than [Val.notint v]. All proofs follow a common pattern: - Reasoning by case over the result of the classification functions (such as [add_match] for integer addition), gathering additional information on the shape of the argument expressions in the non-default cases. - Inversion of the evaluations of the arguments, exploiting the additional information thus gathered. - Equational reasoning over the arithmetic operations performed, using the lemmas from the [Int], [Float] and [Value] modules. - Construction of an evaluation derivation for the expression returned by the smart constructor. *) Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop := forall le a x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v. Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop := forall le a x b y, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v. Theorem eval_addrsymbol: forall le id ofs, exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v. Proof. intros. unfold addrsymbol. econstructor; split. EvalOp. simpl; eauto. auto. Qed. Theorem eval_addrstack: forall le ofs, exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v. Proof. intros. unfold addrstack. econstructor; split. EvalOp. simpl; eauto. auto. Qed. Theorem eval_notint: unary_constructor_sound notint Val.notint. Proof. assert (forall v, Val.lessdef (Val.notint (Val.notint v)) v). destruct v; simpl; auto. rewrite Int.not_involutive; auto. unfold notint; red; intros until x; case (notint_match a); intros; InvEval. TrivialExists. subst. exists v1; split; auto. subst. TrivialExists. subst. TrivialExists. subst. TrivialExists. subst. exists (Val.and v1 v0); split; auto. EvalOp. subst. exists (Val.or v1 v0); split; auto. EvalOp. subst. exists (Val.xor v1 v0); split; auto. EvalOp. subst. exists (Val.or v0 (Val.notint v1)); split. EvalOp. destruct v0; destruct v1; simpl; auto. rewrite Int.not_and_or_not. rewrite Int.not_involutive. rewrite Int.or_commut. auto. subst. exists (Val.and v0 (Val.notint v1)); split. EvalOp. destruct v0; destruct v1; simpl; auto. rewrite Int.not_or_and_not. rewrite Int.not_involutive. rewrite Int.and_commut. auto. subst x. TrivialExists. simpl. rewrite Val.not_xor. rewrite Val.xor_assoc. auto. TrivialExists. Qed. Remark shift_symbol_address: forall id ofs delta, Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.of_int delta)) = Val.add (Genv.symbol_address ge id ofs) (Vint delta). Proof. intros. unfold Genv.symbol_address. destruct (Genv.find_symbol ge id); auto. Qed. Theorem eval_addimm: forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)). Proof. red; unfold addimm; intros until x. predSpec Int.eq Int.eq_spec n Int.zero. subst n. intros. exists x; split; auto. destruct x; simpl; auto. rewrite Int.add_zero. auto. rewrite Ptrofs.add_zero. auto. case (addimm_match a); intros; InvEval; simpl; TrivialExists; simpl. rewrite Int.add_commut. auto. unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto. rewrite Ptrofs.add_commut; auto. destruct sp; simpl; auto. rewrite Ptrofs.add_assoc. do 3 f_equal. apply Ptrofs.add_commut. subst. rewrite Val.add_assoc. rewrite Int.add_commut. auto. subst. rewrite Ptrofs.add_commut. rewrite shift_symbol_address. rewrite ! Val.add_assoc. f_equal. f_equal. apply Val.add_commut. Qed. Theorem eval_addsymbol: forall s ofs, unary_constructor_sound (addsymbol s ofs) (Val.add (Genv.symbol_address ge s ofs)). Proof. red; unfold addsymbol; intros until x. case (addsymbol_match a); intros; InvEval; simpl; TrivialExists; simpl. rewrite shift_symbol_address. auto. rewrite shift_symbol_address. subst x. rewrite Val.add_assoc. f_equal. f_equal. apply Val.add_commut. Qed. Theorem eval_add: binary_constructor_sound add Val.add. Proof. red; intros until y. unfold add; case (add_match a b); intros; InvEval. - rewrite Val.add_commut. apply eval_addimm; auto. - apply eval_addimm; auto. - apply eval_addsymbol; auto. - rewrite Val.add_commut. apply eval_addsymbol; auto. - subst. replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2))) with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))). apply eval_addimm. EvalOp. repeat rewrite Val.add_assoc. decEq. apply Val.add_permut. - subst. replace (Val.add (Val.add v1 (Vint n1)) y) with (Val.add (Val.add v1 y) (Vint n1)). apply eval_addimm. EvalOp. repeat rewrite Val.add_assoc. decEq. apply Val.add_commut. - subst. TrivialExists. econstructor. EvalOp. simpl. reflexivity. econstructor. eauto. constructor. simpl. rewrite Val.add_permut, Val.add_commut. do 2 f_equal. destruct sp; simpl; auto. rewrite Ptrofs.add_assoc; auto. - replace (Val.add x y) with (Val.add (Genv.symbol_address ge s (Ptrofs.add ofs (Ptrofs.of_int n))) (Val.add v1 v0)). apply eval_addsymbol; auto. EvalOp. subst. rewrite shift_symbol_address. rewrite ! Val.add_assoc. f_equal. rewrite Val.add_permut. f_equal. apply Val.add_commut. - subst. rewrite Val.add_assoc. apply eval_addsymbol. EvalOp. - subst. rewrite <- Val.add_assoc. apply eval_addimm. EvalOp. - subst. rewrite Val.add_permut. apply eval_addsymbol. EvalOp. - TrivialExists. Qed. Theorem eval_subimm: forall n, unary_constructor_sound (subimm n) (fun v => Val.sub (Vint n) v). Proof. intros; red; intros until x. unfold subimm. destruct (subimm_match a); intros. InvEval. TrivialExists. InvEval. subst x. TrivialExists. unfold eval_operation. destruct v1; simpl; auto. rewrite ! Int.sub_add_opp. rewrite Int.add_assoc. f_equal. f_equal. f_equal. rewrite Int.neg_add_distr. apply Int.add_commut. TrivialExists. Qed. Theorem eval_sub: binary_constructor_sound sub Val.sub. Proof. red; intros until y. unfold sub; case (sub_match a b); intros; InvEval. rewrite Val.sub_add_opp. apply eval_addimm; auto. apply eval_subimm; auto. subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r. rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp. apply eval_addimm; EvalOp. subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp. subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp. TrivialExists. Qed. Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v). Proof. red; intros. unfold negint. apply eval_subimm; auto. Qed. Lemma eval_rolm: forall amount mask, unary_constructor_sound (fun a => rolm a amount mask) (fun x => Val.rolm x amount mask). Proof. red; intros until x. unfold rolm; case (rolm_match a); intros; InvEval. TrivialExists. subst. rewrite Val.rolm_rolm. TrivialExists. subst. rewrite <- Val.rolm_zero. rewrite Val.rolm_rolm. rewrite (Int.add_commut Int.zero). rewrite Int.add_zero. TrivialExists. TrivialExists. Qed. Theorem eval_shlimm: forall n, unary_constructor_sound (fun a => shlimm a n) (fun x => Val.shl x (Vint n)). Proof. red; intros. unfold shlimm. predSpec Int.eq Int.eq_spec n Int.zero. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:?. rewrite Val.shl_rolm; auto. apply eval_rolm; auto. TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shruimm: forall n, unary_constructor_sound (fun a => shruimm a n) (fun x => Val.shru x (Vint n)). Proof. red; intros. unfold shruimm. predSpec Int.eq Int.eq_spec n Int.zero. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:?. rewrite Val.shru_rolm; auto. apply eval_rolm; auto. TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shrimm: forall n, unary_constructor_sound (fun a => shrimm a n) (fun x => Val.shr x (Vint n)). Proof. red; intros until x. unfold shrimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:WS. case (shrimm_match a); intros. InvEval. exists (Vint (Int.shr n1 n)); split. EvalOp. simpl; rewrite WS; auto. simpl; destruct (Int.lt mask1 Int.zero) eqn:?. TrivialExists. replace (Val.shr x (Vint n)) with (Val.shru x (Vint n)). apply eval_shruimm; auto. destruct x; simpl; auto. rewrite WS. decEq. symmetry. InvEval. destruct v1; simpl in H0; inv H0. apply Int.shr_and_is_shru_and; auto. simpl. TrivialExists. intros. simpl. TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Lemma eval_mulimm_base: forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros; unfold mulimm_base. generalize (Int.one_bits_decomp n). generalize (Int.one_bits_range n). destruct (Int.one_bits n). intros. TrivialExists. destruct l. intros. rewrite H1. simpl. rewrite Int.add_zero. replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul. apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib. destruct l. intros. destruct (optim_for_size tt). TrivialExists. rewrite H1. simpl. exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]]. exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]]. exists (Val.add v1 v2); split. econstructor. eauto. EvalOp. rewrite Int.add_zero. replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0))) with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))). rewrite Val.mul_add_distr_r. repeat rewrite Val.shl_mul. apply Val.add_lessdef; auto. simpl. repeat rewrite H0; auto with coqlib. intros. TrivialExists. Qed. Theorem eval_mulimm: forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros until x; unfold mulimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto. predSpec Int.eq Int.eq_spec n Int.one. intros. exists x; split; auto. destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto. case (mulimm_match a); intros; InvEval. TrivialExists. simpl. rewrite Int.mul_commut; auto. subst. rewrite Val.mul_add_distr_l. exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]]. exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]]. exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto. rewrite Val.mul_commut; auto. apply eval_mulimm_base; auto. Qed. Theorem eval_mul: binary_constructor_sound mul Val.mul. Proof. red; intros until y. unfold mul; case (mul_match a b); intros; InvEval. rewrite Val.mul_commut. apply eval_mulimm. auto. apply eval_mulimm. auto. TrivialExists. Qed. Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs. Proof. unfold mulhs; red; intros; TrivialExists. Qed. Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu. Proof. unfold mulhu; red; intros; TrivialExists. Qed. Theorem eval_andimm: forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)). Proof. intros; red; intros until x. unfold andimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. subst. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. rewrite Int.and_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. subst. exists x; split. auto. destruct x; simpl; auto. rewrite Int.and_mone; auto. clear H H0. case (andimm_match a); intros. InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto. set (n' := Int.and n n2). destruct (Int.eq (Int.shru (Int.shl n' amount) amount) n' && Int.ltu amount Int.iwordsize) eqn:?. InvEval. destruct (andb_prop _ _ Heqb). generalize (Int.eq_spec (Int.shru (Int.shl n' amount) amount) n'). rewrite H1; intros. replace (Val.and x (Vint n)) with (Val.rolm v0 (Int.sub Int.iwordsize amount) (Int.and (Int.shru Int.mone amount) n')). apply eval_rolm; auto. subst. destruct v0; simpl; auto. rewrite H3. simpl. decEq. rewrite Int.and_assoc. rewrite (Int.and_commut n2 n). transitivity (Int.and (Int.shru i amount) (Int.and n n2)). rewrite (Int.shru_rolm i); auto. unfold Int.rolm. rewrite Int.and_assoc; auto. symmetry. apply Int.shr_and_shru_and. auto. set (e2 := Eop (Oshrimm amount) (t2 ::: Enil)) in *. InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists. InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists. InvEval. subst. TrivialExists. simpl. destruct v1; auto. simpl. unfold Int.rolm. rewrite Int.and_assoc. decEq. decEq. decEq. apply Int.and_commut. destruct (Int.eq (Int.shru (Int.shl n amount) amount) n && Int.ltu amount Int.iwordsize) eqn:?. InvEval. destruct (andb_prop _ _ Heqb). generalize (Int.eq_spec (Int.shru (Int.shl n amount) amount) n). rewrite H0; intros. replace (Val.and x (Vint n)) with (Val.rolm v1 (Int.sub Int.iwordsize amount) (Int.and (Int.shru Int.mone amount) n)). apply eval_rolm; auto. subst x. destruct v1; simpl; auto. rewrite H1; simpl. decEq. transitivity (Int.and (Int.shru i amount) n). rewrite (Int.shru_rolm i); auto. unfold Int.rolm. rewrite Int.and_assoc; auto. symmetry. apply Int.shr_and_shru_and. auto. TrivialExists. TrivialExists. Qed. Theorem eval_and: binary_constructor_sound and Val.and. Proof. red; intros until y; unfold and; case (and_match a b); intros; InvEval. rewrite Val.and_commut. apply eval_andimm; auto. apply eval_andimm; auto. subst. rewrite Val.and_commut. TrivialExists. subst. TrivialExists. TrivialExists. Qed. Theorem eval_orimm: forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)). Proof. intros; red; intros until x. unfold orimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.or_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. subst. exists (Vint Int.mone); split. EvalOp. destruct x; simpl; auto. rewrite Int.or_mone; auto. clear H H0. destruct (orimm_match a); intros; InvEval. TrivialExists. simpl. rewrite Int.or_commut; auto. subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists. TrivialExists. Qed. Remark eval_same_expr: forall a1 a2 le v1 v2, same_expr_pure a1 a2 = true -> eval_expr ge sp e m le a1 v1 -> eval_expr ge sp e m le a2 v2 -> a1 = a2 /\ v1 = v2. Proof. intros until v2. destruct a1; simpl; try (intros; discriminate). destruct a2; simpl; try (intros; discriminate). case (ident_eq i i0); intros. subst i0. inversion H0. inversion H1. split. auto. congruence. discriminate. Qed. Theorem eval_or: binary_constructor_sound or Val.or. Proof. red; intros until y; unfold or; case (or_match a b); intros. (* rolm - rolm *) destruct (Int.eq amount1 amount2 && same_expr_pure t1 t2) eqn:?. destruct (andb_prop _ _ Heqb0). generalize (Int.eq_spec amount1 amount2). rewrite H1. intro. subst amount2. InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]. subst. rewrite Val.or_rolm. TrivialExists. TrivialExists. (* andimm - rolm *) destruct (Int.eq mask1 (Int.not mask2) && is_rlw_mask mask2) eqn:?. destruct (andb_prop _ _ Heqb0). generalize (Int.eq_spec mask1 (Int.not mask2)); rewrite H1; intros. InvEval. subst. TrivialExists. TrivialExists. (* rolm - andimm *) destruct (Int.eq mask2 (Int.not mask1) && is_rlw_mask mask1) eqn:?. destruct (andb_prop _ _ Heqb0). generalize (Int.eq_spec mask2 (Int.not mask1)); rewrite H1; intros. InvEval. subst. rewrite Val.or_commut. TrivialExists. TrivialExists. (* intconst *) InvEval. rewrite Val.or_commut. apply eval_orimm; auto. InvEval. apply eval_orimm; auto. (* orc *) InvEval. subst. rewrite Val.or_commut. TrivialExists. InvEval. subst. TrivialExists. (* default *) TrivialExists. Qed. Theorem eval_xorimm: forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)). Proof. intros; red; intros until x. unfold xorimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.xor_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. subst. rewrite <- Val.not_xor. apply eval_notint; auto. clear H H0. destruct (xorimm_match a); intros; InvEval. TrivialExists. simpl. rewrite Int.xor_commut; auto. subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists. subst x. TrivialExists. simpl. rewrite Val.not_xor. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut; auto. TrivialExists. Qed. Theorem eval_xor: binary_constructor_sound xor Val.xor. Proof. red; intros until y; unfold xor; case (xor_match a b); intros; InvEval. rewrite Val.xor_commut. apply eval_xorimm; auto. apply eval_xorimm; auto. subst. rewrite Val.xor_commut. rewrite Val.not_xor. rewrite <- Val.xor_assoc. rewrite <- Val.not_xor. rewrite Val.xor_commut. TrivialExists. subst. rewrite Val.not_xor. rewrite <- Val.xor_assoc. rewrite <- Val.not_xor. TrivialExists. TrivialExists. Qed. Theorem eval_divs_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divs x y = Some z -> exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divs_base. exists z; split. EvalOp. auto. Qed. Lemma eval_mod_aux: forall divop semdivop, (forall sp x y m, eval_operation ge sp divop (x :: y :: nil) m = semdivop x y) -> forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> semdivop x y = Some z -> eval_expr ge sp e m le (mod_aux divop a b) (Val.sub x (Val.mul z y)). Proof. intros; unfold mod_aux. eapply eval_Elet. eexact H0. eapply eval_Elet. apply eval_lift. eexact H1. eapply eval_Eop. eapply eval_Econs. eapply eval_Eletvar. simpl; reflexivity. eapply eval_Econs. eapply eval_Eop. eapply eval_Econs. eapply eval_Eop. eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. apply eval_Enil. rewrite H. eauto. eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. apply eval_Enil. simpl; reflexivity. apply eval_Enil. reflexivity. Qed. Theorem eval_mods_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.mods x y = Some z -> exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v. Proof. intros; unfold mods_base. exploit Val.mods_divs; eauto. intros [v [A B]]. subst. econstructor; split; eauto. apply eval_mod_aux with (semdivop := Val.divs); auto. Qed. Theorem eval_divu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divu x y = Some z -> exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divu_base. exists z; split. EvalOp. auto. Qed. Theorem eval_modu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.modu x y = Some z -> exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v. Proof. intros; unfold modu_base. exploit Val.modu_divu; eauto. intros [v [A B]]. subst. econstructor; split; eauto. apply eval_mod_aux with (semdivop := Val.divu); auto. Qed. Theorem eval_shrximm: forall le a n x z, eval_expr ge sp e m le a x -> Val.shrx x (Vint n) = Some z -> exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v. Proof. intros. unfold shrximm. predSpec Int.eq Int.eq_spec n Int.zero. subst n. exists x; split; auto. destruct x; simpl in H0; try discriminate. destruct (Int.ltu Int.zero (Int.repr 31)); inv H0. replace (Int.shrx i Int.zero) with i. auto. unfold Int.shrx, Int.divs. rewrite Int.shl_zero. change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto. econstructor; split. EvalOp. auto. Qed. Theorem eval_shl: binary_constructor_sound shl Val.shl. Proof. red; intros until y; unfold shl; case (shl_match b); intros. InvEval. apply eval_shlimm; auto. TrivialExists. Qed. Theorem eval_shr: binary_constructor_sound shr Val.shr. Proof. red; intros until y; unfold shr; case (shr_match b); intros. InvEval. apply eval_shrimm; auto. TrivialExists. Qed. Theorem eval_shru: binary_constructor_sound shru Val.shru. Proof. red; intros until y; unfold shru; case (shru_match b); intros. InvEval. apply eval_shruimm; auto. TrivialExists. Qed. Theorem eval_negf: unary_constructor_sound negf Val.negf. Proof. red; intros. TrivialExists. Qed. Theorem eval_absf: unary_constructor_sound absf Val.absf. Proof. red; intros. TrivialExists. Qed. Theorem eval_addf: binary_constructor_sound addf Val.addf. Proof. red; intros; TrivialExists. Qed. Theorem eval_subf: binary_constructor_sound subf Val.subf. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulf: binary_constructor_sound mulf Val.mulf. Proof. red; intros; TrivialExists. Qed. Theorem eval_negfs: unary_constructor_sound negfs Val.negfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_absfs: unary_constructor_sound absfs Val.absfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_addfs: binary_constructor_sound addfs Val.addfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_subfs: binary_constructor_sound subfs Val.subfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs. Proof. red; intros; TrivialExists. Qed. Section COMP_IMM. Variable default: comparison -> int -> condition. Variable intsem: comparison -> int -> int -> bool. Variable sem: comparison -> val -> val -> val. Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y). Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef. Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y). Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)). Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m). Lemma eval_compimm: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v /\ Val.lessdef (sem c x (Vint n2)) v. Proof. intros until x. unfold compimm; case (compimm_match c a); intros. (* constant *) InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto. (* eq cmp *) InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. exists (Vint Int.zero); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto. rewrite sem_undef; auto. (* ne cmp *) InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. exists (Vint Int.one); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto. rewrite sem_undef; auto. (* eq andimm *) destruct (Int.eq_dec n2 Int.zero). InvEval; subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_eq. destruct (Int.eq (Int.and i n1) Int.zero); auto. TrivialExists. simpl. rewrite sem_default. auto. (* ne andimm *) destruct (Int.eq_dec n2 Int.zero). InvEval; subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_ne. destruct (Int.eq (Int.and i n1) Int.zero); auto. TrivialExists. simpl. rewrite sem_default. auto. (* default *) TrivialExists. simpl. rewrite sem_default. auto. Qed. Hypothesis sem_swap: forall c x y, sem (swap_comparison c) x y = sem c y x. Lemma eval_compimm_swap: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v /\ Val.lessdef (sem c (Vint n2) x) v. Proof. intros. rewrite <- sem_swap. eapply eval_compimm; eauto. Qed. End COMP_IMM. Theorem eval_comp: forall c, binary_constructor_sound (comp c) (Val.cmp c). Proof. intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compu: forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c). Proof. intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compf: forall c, binary_constructor_sound (compf c) (Val.cmpf c). Proof. intros; red; intros. unfold compf. TrivialExists. Qed. Theorem eval_compfs: forall c, binary_constructor_sound (compfs c) (Val.cmpfs c). Proof. intros; red; intros. unfold compfs. replace (Val.cmpfs c x y) with (Val.cmpf c (Val.floatofsingle x) (Val.floatofsingle y)). TrivialExists. constructor. EvalOp. simpl; reflexivity. constructor. EvalOp. simpl; reflexivity. constructor. auto. destruct x; auto. destruct y; auto. unfold Val.cmpf, Val.cmpfs; simpl. rewrite Float32.cmp_double. auto. Qed. Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8). Proof. red; intros until x. unfold cast8signed. destruct (cast8signed_match a); intros. InvEval; TrivialExists. TrivialExists. Qed. Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8). Proof. red; intros. unfold cast8unsigned. rewrite Val.zero_ext_and. apply eval_andimm; auto. omega. Qed. Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16). Proof. red; intros until x. unfold cast16signed. destruct (cast16signed_match a); intros. InvEval; TrivialExists. TrivialExists. Qed. Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16). Proof. red; intros. unfold cast16unsigned. rewrite Val.zero_ext_and. apply eval_andimm; auto. omega. Qed. Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat. Proof. red; intros. unfold singleoffloat. TrivialExists. Qed. Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle. Proof. red; intros. unfold floatofsingle. TrivialExists. Qed. Theorem eval_intoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intoffloat x = Some y -> exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v. Proof. intros; unfold intoffloat. TrivialExists. Qed. Theorem eval_intuoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intuoffloat x = Some y -> exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v. Proof. intros. destruct x; simpl in H0; try discriminate. destruct (Float.to_intu f) as [n|] eqn:?; simpl in H0; inv H0. exists (Vint n); split; auto. unfold intuoffloat. destruct Archi.ppc64. econstructor. constructor; eauto. constructor. simpl; rewrite Heqo; auto. set (im := Int.repr Int.half_modulus). set (fm := Float.of_intu im). assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f)). constructor. auto. assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar O) (Vfloat fm)). constructor. auto. econstructor. eauto. econstructor. instantiate (1 := Vfloat fm). EvalOp. eapply eval_Econdition with (va := Float.cmp Clt f fm). eauto with evalexpr. destruct (Float.cmp Clt f fm) eqn:?. exploit Float.to_intu_to_int_1; eauto. intro EQ. EvalOp. simpl. rewrite EQ; auto. exploit Float.to_intu_to_int_2; eauto. change Float.ox8000_0000 with im. fold fm. intro EQ. set (t2 := subf (Eletvar (S O)) (Eletvar O)). set (t3 := intoffloat t2). exploit (eval_subf (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f) (Eletvar O)); eauto. fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2. exploit (eval_addimm Float.ox8000_0000 (Vfloat fm :: Vfloat f :: le) t3). unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto. intros [v4 [A4 B4]]. simpl in B4. inv B4. rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4. rewrite (Int.add_commut (Int.neg im)) in A4. rewrite Int.add_neg_zero in A4. rewrite Int.add_zero in A4. auto. Qed. Theorem eval_floatofint: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofint x = Some y -> exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v. Proof. intros until y. unfold floatofint. destruct (floatofint_match a); intros. InvEval. TrivialExists. destruct Archi.ppc64. TrivialExists. rename e0 into a. destruct x; simpl in H0; inv H0. exists (Vfloat (Float.of_int i)); split; auto. set (t1 := addimm Float.ox8000_0000 a). set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: t1 ::: Enil)). set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil). exploit (eval_addimm Float.ox8000_0000 le a). eauto. fold t1. intros [v1 [A1 B1]]. simpl in B1. inv B1. exploit (eval_subf le t2). unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. unfold eval_operation. eauto. instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto. intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.of_int_from_words. auto. Qed. Theorem eval_floatofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofintu x = Some y -> exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v. Proof. intros until y. unfold floatofintu. destruct (floatofintu_match a); intros. InvEval. TrivialExists. destruct Archi.ppc64. TrivialExists. rename e0 into a. destruct x; simpl in H0; inv H0. exists (Vfloat (Float.of_intu i)); split; auto. unfold floatofintu. set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: a ::: Enil)). set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil). exploit (eval_subf le t2). unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. unfold eval_operation. eauto. instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto. intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.of_intu_from_words. auto. Qed. Theorem eval_intofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intofsingle x = Some y -> exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v. Proof. intros; unfold intofsingle. assert (Val.intoffloat (Val.floatofsingle x) = Some y). { destruct x; simpl in H0; try discriminate. destruct (Float32.to_int f) eqn:F; inv H0. apply Float32.to_int_double in F. simpl. unfold Float32.to_double in F; rewrite F; auto. } apply eval_intoffloat with (Val.floatofsingle x); auto. EvalOp. Qed. Theorem eval_singleofint: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofint x = Some y -> exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v. Proof. intros. unfold singleofint. assert (exists z, Val.floatofint x = Some z /\ y = Val.singleoffloat z). { destruct x; inv H0. simpl. exists (Vfloat (Float.of_int i)); simpl; split; auto. f_equal. apply Float32.of_int_double. } destruct H1 as (z & A & B). subst y. exploit eval_floatofint; eauto. intros (v & C & D). exists (Val.singleoffloat v); split. EvalOp. inv D; auto. Qed. Theorem eval_intuofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intuofsingle x = Some y -> exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v. Proof. intros; unfold intuofsingle. assert (Val.intuoffloat (Val.floatofsingle x) = Some y). { destruct x; simpl in H0; try discriminate. destruct (Float32.to_intu f) eqn:F; inv H0. apply Float32.to_intu_double in F. simpl. unfold Float32.to_double in F; rewrite F; auto. } apply eval_intuoffloat with (Val.floatofsingle x); auto. EvalOp. Qed. Theorem eval_singleofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofintu x = Some y -> exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v. Proof. intros. unfold singleofintu. assert (exists z, Val.floatofintu x = Some z /\ y = Val.singleoffloat z). { destruct x; inv H0. simpl. exists (Vfloat (Float.of_intu i)); simpl; split; auto. f_equal. apply Float32.of_intu_double. } destruct H1 as (z & A & B). subst y. exploit eval_floatofintu; eauto. intros (v & C & D). exists (Val.singleoffloat v); split. EvalOp. inv D; auto. Qed. Theorem eval_select: forall le ty cond al vl a1 v1 a2 v2 a b, select ty cond al a1 a2 = Some a -> eval_exprlist ge sp e m le al vl -> eval_expr ge sp e m le a1 v1 -> eval_expr ge sp e m le a2 v2 -> eval_condition cond vl m = Some b -> exists v, eval_expr ge sp e m le a v /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v. Proof. unfold select; intros. destruct (match ty with Tint => true | Tfloat => true | Tsingle => true | Tlong => Archi.ppc64 | _ => false end); inv H. exists (Val.select (Some b) v1 v2 ty); split. apply eval_Eop with (v1 :: v2 :: vl). constructor; auto. constructor; auto. simpl. rewrite H3; auto. auto. Qed. Theorem eval_addressing: forall le chunk a v b ofs, eval_expr ge sp e m le a v -> v = Vptr b ofs -> match addressing chunk a with (mode, args) => exists vl, eval_exprlist ge sp e m le args vl /\ eval_addressing ge sp mode vl = Some v end. Proof. intros until v. unfold addressing; case (addressing_match a); intros; InvEval. exists (@nil val). split. eauto with evalexpr. simpl. auto. exists (@nil val). split. eauto with evalexpr. simpl. auto. exists (v1 :: nil). split. eauto with evalexpr. simpl. congruence. exists (v1 :: nil). split. eauto with evalexpr. simpl. congruence. destruct (can_use_Aindexed2 chunk). exists (v1 :: v0 :: nil). split. eauto with evalexpr. simpl. congruence. exists (Vptr b ofs :: nil). split. constructor. EvalOp. simpl; congruence. constructor. simpl. rewrite Ptrofs.add_zero. auto. exists (v :: nil). split. eauto with evalexpr. subst v. simpl. rewrite Ptrofs.add_zero. auto. Qed. Theorem eval_builtin_arg: forall a v, eval_expr ge sp e m nil a v -> CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v. Proof. intros until v. unfold builtin_arg; case (builtin_arg_match a); intros; InvEval. - constructor. - constructor. - constructor. - constructor. - simpl in H5. inv H5. constructor. - subst v. constructor; auto. - inv H. InvEval. simpl in H6; inv H6. constructor; auto. - inv H. InvEval. simpl in H6. inv H6. constructor; auto. - inv H. repeat constructor; auto. - inv H. repeat constructor; auto. - inv H. repeat constructor; auto. - constructor; auto. Qed. (** Platform-specific known builtins *) Theorem eval_platform_builtin: forall bf al a vl v le, platform_builtin bf al = Some a -> eval_exprlist ge sp e m le al vl -> platform_builtin_sem bf vl = Some v -> exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'. Proof. intros. discriminate. Qed. End CMCONSTR.