(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* Prashanth Mundkur, SRI International *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* The contributions by Prashanth Mundkur are reused and adapted *) (* under the terms of a Contributor License Agreement between *) (* SRI International and INRIA. *) (* *) (* *********************************************************************) (** Correctness of instruction selection for operators *) Require Import Coqlib Zbits. Require Import AST Integers Floats. Require Import Values Memory Builtins Globalenvs. Require Import Cminor Op CminorSel. Require Import SelectOp. Local Open Scope cminorsel_scope. (** * Useful lemmas and tactics *) (** The following are trivial lemmas and custom tactics that help perform backward (inversion) and forward reasoning over the evaluation of operator applications. *) Ltac EvalOp := eapply eval_Eop; eauto with evalexpr. Ltac InvEval1 := match goal with | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] => inv H; InvEval1 | _ => idtac end. Ltac InvEval2 := match goal with | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] => simpl in H; inv H | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | _ => idtac end. Ltac InvEval := InvEval1; InvEval2; InvEval2. Ltac TrivialExists := match goal with | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto] end. (** * Correctness of the smart constructors *) Section CMCONSTR. Variable ge: genv. Variable sp: val. Variable e: env. Variable m: mem. (** We now show that the code generated by "smart constructor" functions such as [Selection.notint] behaves as expected. Continuing the [notint] example, we show that if the expression [e] evaluates to some integer value [Vint n], then [Selection.notint e] evaluates to a value [Vint (Int.not n)] which is indeed the integer negation of the value of [e]. All proofs follow a common pattern: - Reasoning by case over the result of the classification functions (such as [add_match] for integer addition), gathering additional information on the shape of the argument expressions in the non-default cases. - Inversion of the evaluations of the arguments, exploiting the additional information thus gathered. - Equational reasoning over the arithmetic operations performed, using the lemmas from the [Int] and [Float] modules. - Construction of an evaluation derivation for the expression returned by the smart constructor. *) Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop := forall le a x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v. Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop := forall le a x b y, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v. Theorem eval_addrsymbol: forall le id ofs, exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v. Proof. intros. unfold addrsymbol. econstructor; split. EvalOp. simpl; eauto. auto. Qed. Theorem eval_addrstack: forall le ofs, exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v. Proof. intros. unfold addrstack. econstructor; split. EvalOp. simpl; eauto. auto. Qed. Theorem eval_addimm: forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)). Proof. red; unfold addimm; intros until x. predSpec Int.eq Int.eq_spec n Int.zero. - subst n. intros. exists x; split; auto. destruct x; simpl; auto. rewrite Int.add_zero; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_zero; auto. - case (addimm_match a); intros; InvEval; simpl. + TrivialExists; simpl. rewrite Int.add_commut. auto. + econstructor; split. EvalOp. simpl; eauto. unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_commut; auto. + econstructor; split. EvalOp. simpl; eauto. destruct sp; simpl; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_assoc. rewrite (Ptrofs.add_commut m0). auto. + TrivialExists; simpl. subst x. rewrite Val.add_assoc. rewrite Int.add_commut. auto. + TrivialExists. Qed. Theorem eval_add: binary_constructor_sound add Val.add. Proof. red; intros until y. unfold add; case (add_match a b); intros; InvEval. - rewrite Val.add_commut. apply eval_addimm; auto. - apply eval_addimm; auto. - subst. replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2))) with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))). apply eval_addimm. EvalOp. repeat rewrite Val.add_assoc. decEq. apply Val.add_permut. - subst. econstructor; split. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto. rewrite Val.add_commut. destruct sp; simpl; auto. destruct v1; simpl; auto. destruct Archi.ptr64 eqn:SF; auto. apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. rewrite (Ptrofs.add_commut (Ptrofs.of_int n1)), Ptrofs.add_assoc. f_equal. auto with ptrofs. destruct Archi.ptr64 eqn:SF; auto. - subst. econstructor; split. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto. destruct sp; simpl; auto. destruct v1; simpl; auto. destruct Archi.ptr64 eqn:SF; auto. apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. f_equal. rewrite Ptrofs.add_commut. auto with ptrofs. destruct Archi.ptr64 eqn:SF; auto. - subst. replace (Val.add (Val.add v1 (Vint n1)) y) with (Val.add (Val.add v1 y) (Vint n1)). apply eval_addimm. EvalOp. repeat rewrite Val.add_assoc. decEq. apply Val.add_commut. - subst. replace (Val.add x (Val.add v1 (Vint n2))) with (Val.add (Val.add x v1) (Vint n2)). apply eval_addimm. EvalOp. repeat rewrite Val.add_assoc. reflexivity. - TrivialExists. Qed. Theorem eval_sub: binary_constructor_sound sub Val.sub. Proof. red; intros until y. unfold sub; case (sub_match a b); intros; InvEval. - rewrite Val.sub_add_opp. apply eval_addimm; auto. - subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r. rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp. apply eval_addimm; EvalOp. - subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp. - subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp. - TrivialExists. Qed. Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v). Proof. red; intros until x. unfold negint. case (negint_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_shlimm: forall n, unary_constructor_sound (fun a => shlimm a n) (fun x => Val.shl x (Vint n)). Proof. red; intros until x. unfold shlimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shlimm_match a); intros; InvEval. - exists (Vint (Int.shl n1 n)); split. EvalOp. simpl. rewrite LT. auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. + exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp. subst. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto. rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto. + subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shruimm: forall n, unary_constructor_sound (fun a => shruimm a n) (fun x => Val.shru x (Vint n)). Proof. red; intros until x. unfold shruimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shruimm_match a); intros; InvEval. - exists (Vint (Int.shru n1 n)); split. EvalOp. simpl. rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp. subst. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto. subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shrimm: forall n, unary_constructor_sound (fun a => shrimm a n) (fun x => Val.shr x (Vint n)). Proof. red; intros until x. unfold shrimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shrimm_match a); intros; InvEval. - exists (Vint (Int.shr n1 n)); split. EvalOp. simpl. rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp. subst. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. rewrite LT. rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto. subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Lemma eval_mulimm_base: forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros; unfold mulimm_base. assert (DFL: exists v, eval_expr ge sp e m le (Eop Omul (Eop (Ointconst n) Enil ::: a ::: Enil)) v /\ Val.lessdef (Val.mul x (Vint n)) v). TrivialExists. econstructor. EvalOp. simpl; eauto. econstructor. eauto. constructor. rewrite Val.mul_commut. auto. generalize (Int.one_bits_decomp n). generalize (Int.one_bits_range n). destruct (Int.one_bits n). - intros. auto. - destruct l. + intros. rewrite H1. simpl. rewrite Int.add_zero. replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul. apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib. + destruct l. intros. rewrite H1. simpl. exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]]. exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]]. exploit (eval_add (x :: le)). eexact A1. eexact A2. intros [v [A B]]. exists v; split. econstructor; eauto. rewrite Int.add_zero. replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0))) with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))). rewrite Val.mul_add_distr_r. repeat rewrite Val.shl_mul. eapply Val.lessdef_trans. 2: eauto. apply Val.add_lessdef; auto. simpl. repeat rewrite H0; auto with coqlib. intros. auto. Qed. Theorem eval_mulimm: forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros until x; unfold mulimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto. predSpec Int.eq Int.eq_spec n Int.one. intros. exists x; split; auto. destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto. case (mulimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.mul_commut; auto. - subst. rewrite Val.mul_add_distr_l. exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]]. exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]]. exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto. rewrite Val.mul_commut; auto. - apply eval_mulimm_base; auto. Qed. Theorem eval_mul: binary_constructor_sound mul Val.mul. Proof. red; intros until y. unfold mul; case (mul_match a b); intros; InvEval. rewrite Val.mul_commut. apply eval_mulimm. auto. apply eval_mulimm. auto. TrivialExists. Qed. Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs. Proof. red; intros. unfold mulhs; destruct Archi.ptr64 eqn:SF. - econstructor; split. EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto. constructor. EvalOp. simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto. destruct x; simpl; auto. destruct y; simpl; auto. change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl. apply Val.lessdef_same. f_equal. transitivity (Int.repr (Z.shiftr (Int.signed i * Int.signed i0) 32)). unfold Int.mulhs; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity. apply Int.same_bits_eq; intros n N. change Int.zwordsize with 32 in *. assert (N1: 0 <= n < 64) by lia. rewrite Int64.bits_loword by auto. rewrite Int64.bits_shr' by auto. change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64. rewrite zlt_true by lia. rewrite Int.testbit_repr by auto. unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia). transitivity (Z.testbit (Int.signed i * Int.signed i0) (n + 32)). rewrite Z.shiftr_spec by lia. auto. apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr. change Int64.zwordsize with 64; lia. - TrivialExists. Qed. Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu. Proof. red; intros. unfold mulhu; destruct Archi.ptr64 eqn:SF. - econstructor; split. EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto. constructor. EvalOp. simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto. destruct x; simpl; auto. destruct y; simpl; auto. change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl. apply Val.lessdef_same. f_equal. transitivity (Int.repr (Z.shiftr (Int.unsigned i * Int.unsigned i0) 32)). unfold Int.mulhu; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity. apply Int.same_bits_eq; intros n N. change Int.zwordsize with 32 in *. assert (N1: 0 <= n < 64) by lia. rewrite Int64.bits_loword by auto. rewrite Int64.bits_shru' by auto. change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64. rewrite zlt_true by lia. rewrite Int.testbit_repr by auto. unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia). transitivity (Z.testbit (Int.unsigned i * Int.unsigned i0) (n + 32)). rewrite Z.shiftr_spec by lia. auto. apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr. change Int64.zwordsize with 64; lia. - TrivialExists. Qed. Theorem eval_andimm: forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)). Proof. intros; red; intros until x. unfold andimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. exists x; split; auto. subst. destruct x; simpl; auto. rewrite Int.and_mone; auto. case (andimm_match a); intros. - InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto. - InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists. - TrivialExists. Qed. Theorem eval_and: binary_constructor_sound and Val.and. Proof. red; intros until y; unfold and; case (and_match a b); intros; InvEval. - rewrite Val.and_commut. apply eval_andimm; auto. - apply eval_andimm; auto. - TrivialExists. Qed. Theorem eval_orimm: forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)). Proof. intros; red; intros until x. unfold orimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.or_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. exists (Vint Int.mone); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto. destruct (orimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.or_commut; auto. - subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists. - TrivialExists. Qed. Theorem eval_or: binary_constructor_sound or Val.or. Proof. red; intros until y; unfold or; case (or_match a b); intros; InvEval. - rewrite Val.or_commut. apply eval_orimm; auto. - apply eval_orimm; auto. - TrivialExists. Qed. Theorem eval_xorimm: forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)). Proof. intros; red; intros until x. unfold xorimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists x; split. auto. destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto. intros. destruct (xorimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.xor_commut; auto. - subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. predSpec Int.eq Int.eq_spec (Int.xor n2 n) Int.zero. + exists v1; split; auto. destruct v1; simpl; auto. rewrite H0, Int.xor_zero; auto. + TrivialExists. - TrivialExists. Qed. Theorem eval_xor: binary_constructor_sound xor Val.xor. Proof. red; intros until y; unfold xor; case (xor_match a b); intros; InvEval. - rewrite Val.xor_commut. apply eval_xorimm; auto. - apply eval_xorimm; auto. - TrivialExists. Qed. Theorem eval_notint: unary_constructor_sound notint Val.notint. Proof. unfold notint; red; intros. rewrite Val.not_xor. apply eval_xorimm; auto. Qed. Theorem eval_divs_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divs x y = Some z -> exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divs_base. exists z; split. EvalOp. auto. Qed. Theorem eval_mods_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.mods x y = Some z -> exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v. Proof. intros. unfold mods_base. exists z; split. EvalOp. auto. Qed. Theorem eval_divu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divu x y = Some z -> exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divu_base. exists z; split. EvalOp. auto. Qed. Theorem eval_modu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.modu x y = Some z -> exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v. Proof. intros. unfold modu_base. exists z; split. EvalOp. auto. Qed. Theorem eval_shrximm: forall le a n x z, eval_expr ge sp e m le a x -> Val.shrx x (Vint n) = Some z -> exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v. Proof. intros. unfold shrximm. predSpec Int.eq Int.eq_spec n Int.zero. subst n. exists x; split; auto. destruct x; simpl in H0; try discriminate. destruct (Int.ltu Int.zero (Int.repr 31)); inv H0. replace (Int.shrx i Int.zero) with i. auto. unfold Int.shrx, Int.divs. rewrite Int.shl_zero. change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto. econstructor; split. EvalOp. auto. (* intros. destruct x; simpl in H0; try discriminate. destruct (Int.ltu n (Int.repr 31)) eqn:LTU; inv H0. unfold shrximm. predSpec Int.eq Int.eq_spec n Int.zero. - subst n. exists (Vint i); split; auto. unfold Int.shrx, Int.divs. rewrite Z.quot_1_r. rewrite Int.repr_signed. auto. - assert (NZ: Int.unsigned n <> 0). { intro EQ; elim H0. rewrite <- (Int.repr_unsigned n). rewrite EQ; auto. } assert (LT: 0 <= Int.unsigned n < 31) by (apply Int.ltu_inv in LTU; assumption). assert (LTU2: Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize = true). { unfold Int.ltu; apply zlt_true. unfold Int.sub. change (Int.unsigned Int.iwordsize) with 32. rewrite Int.unsigned_repr. lia. assert (32 < Int.max_unsigned) by reflexivity. lia. } assert (X: eval_expr ge sp e m le (Eop (Oshrimm (Int.repr (Int.zwordsize - 1))) (a ::: Enil)) (Vint (Int.shr i (Int.repr (Int.zwordsize - 1))))). { EvalOp. } assert (Y: eval_expr ge sp e m le (shrximm_inner a n) (Vint (Int.shru (Int.shr i (Int.repr (Int.zwordsize - 1))) (Int.sub Int.iwordsize n)))). { EvalOp. simpl. rewrite LTU2. auto. } TrivialExists. constructor. EvalOp. simpl; eauto. constructor. simpl. unfold Int.ltu; rewrite zlt_true. rewrite Int.shrx_shr_2 by auto. reflexivity. change (Int.unsigned Int.iwordsize) with 32; lia. *) Qed. Theorem eval_shl: binary_constructor_sound shl Val.shl. Proof. red; intros until y; unfold shl; case (shl_match b); intros. InvEval. apply eval_shlimm; auto. TrivialExists. Qed. Theorem eval_shr: binary_constructor_sound shr Val.shr. Proof. red; intros until y; unfold shr; case (shr_match b); intros. InvEval. apply eval_shrimm; auto. TrivialExists. Qed. Theorem eval_shru: binary_constructor_sound shru Val.shru. Proof. red; intros until y; unfold shru; case (shru_match b); intros. InvEval. apply eval_shruimm; auto. TrivialExists. Qed. Theorem eval_negf: unary_constructor_sound negf Val.negf. Proof. red; intros. TrivialExists. Qed. Theorem eval_absf: unary_constructor_sound absf Val.absf. Proof. red; intros. TrivialExists. Qed. Theorem eval_addf: binary_constructor_sound addf Val.addf. Proof. red; intros; TrivialExists. Qed. Theorem eval_subf: binary_constructor_sound subf Val.subf. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulf: binary_constructor_sound mulf Val.mulf. Proof. red; intros; TrivialExists. Qed. Theorem eval_negfs: unary_constructor_sound negfs Val.negfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_absfs: unary_constructor_sound absfs Val.absfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_addfs: binary_constructor_sound addfs Val.addfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_subfs: binary_constructor_sound subfs Val.subfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs. Proof. red; intros; TrivialExists. Qed. Section COMP_IMM. Variable default: comparison -> int -> condition. Variable intsem: comparison -> int -> int -> bool. Variable sem: comparison -> val -> val -> val. Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y). Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef. Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y). Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)). Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m). Lemma eval_compimm: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v /\ Val.lessdef (sem c x (Vint n2)) v. Proof. intros until x. unfold compimm; case (compimm_match c a); intros. (* constant *) - InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto. (* eq cmp *) - InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). + subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. exists (Vint Int.zero); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto. rewrite sem_undef; auto. (* ne cmp *) - InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). + subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. exists (Vint Int.one); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto. rewrite sem_undef; auto. (* default *) - TrivialExists. simpl. rewrite sem_default. auto. Qed. Hypothesis sem_swap: forall c x y, sem (swap_comparison c) x y = sem c y x. Lemma eval_compimm_swap: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v /\ Val.lessdef (sem c (Vint n2) x) v. Proof. intros. rewrite <- sem_swap. eapply eval_compimm; eauto. Qed. End COMP_IMM. Theorem eval_comp: forall c, binary_constructor_sound (comp c) (Val.cmp c). Proof. intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compu: forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c). Proof. intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compf: forall c, binary_constructor_sound (compf c) (Val.cmpf c). Proof. intros; red; intros. unfold compf. TrivialExists. Qed. Theorem eval_compfs: forall c, binary_constructor_sound (compfs c) (Val.cmpfs c). Proof. intros; red; intros. unfold compfs. TrivialExists. Qed. Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8). Proof. red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8). Proof. red; intros until x. unfold cast8unsigned. rewrite Val.zero_ext_and. apply eval_andimm. lia. Qed. Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16). Proof. red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16). Proof. red; intros until x. unfold cast8unsigned. rewrite Val.zero_ext_and. apply eval_andimm. lia. Qed. Theorem eval_intoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intoffloat x = Some y -> exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v. Proof. intros; unfold intoffloat. TrivialExists. Qed. Theorem eval_intuoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intuoffloat x = Some y -> exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v. Proof. intros; unfold intuoffloat. TrivialExists. Qed. Theorem eval_floatofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofintu x = Some y -> exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v. Proof. intros until y; unfold floatofintu. case (floatofintu_match a); intros. InvEval. simpl in H0. TrivialExists. TrivialExists. Qed. Theorem eval_floatofint: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofint x = Some y -> exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v. Proof. intros until y; unfold floatofint. case (floatofint_match a); intros. InvEval. simpl in H0. TrivialExists. TrivialExists. Qed. Theorem eval_intofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intofsingle x = Some y -> exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v. Proof. intros; unfold intofsingle. TrivialExists. Qed. Theorem eval_singleofint: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofint x = Some y -> exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v. Proof. intros; unfold singleofint; TrivialExists. Qed. Theorem eval_intuofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intuofsingle x = Some y -> exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v. Proof. intros; unfold intuofsingle. TrivialExists. Qed. Theorem eval_singleofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofintu x = Some y -> exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v. Proof. intros; unfold intuofsingle. TrivialExists. Qed. Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat. Proof. red; intros. unfold singleoffloat. TrivialExists. Qed. Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle. Proof. red; intros. unfold floatofsingle. TrivialExists. Qed. Theorem eval_select: forall le ty cond al vl a1 v1 a2 v2 a b, select ty cond al a1 a2 = Some a -> eval_exprlist ge sp e m le al vl -> eval_expr ge sp e m le a1 v1 -> eval_expr ge sp e m le a2 v2 -> eval_condition cond vl m = Some b -> exists v, eval_expr ge sp e m le a v /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v. Proof. unfold select; intros; discriminate. Qed. Theorem eval_addressing: forall le chunk a v b ofs, eval_expr ge sp e m le a v -> v = Vptr b ofs -> match addressing chunk a with (mode, args) => exists vl, eval_exprlist ge sp e m le args vl /\ eval_addressing ge sp mode vl = Some v end. Proof. intros until v. unfold addressing; case (addressing_match a); intros; InvEval. - exists (@nil val); split. eauto with evalexpr. simpl. auto. - destruct (Archi.pic_code tt). + exists (Vptr b ofs0 :: nil); split. constructor. EvalOp. simpl. congruence. constructor. simpl. rewrite Ptrofs.add_zero. congruence. + exists (@nil val); split. constructor. simpl; auto. - exists (v1 :: nil); split. eauto with evalexpr. simpl. destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H. simpl. auto. - exists (v1 :: nil); split. eauto with evalexpr. simpl. destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H. simpl. auto. - exists (v :: nil); split. eauto with evalexpr. subst. simpl. rewrite Ptrofs.add_zero; auto. Qed. Theorem eval_builtin_arg: forall a v, eval_expr ge sp e m nil a v -> CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v. Proof. intros until v. unfold builtin_arg; case (builtin_arg_match a); intros. - InvEval. constructor. - InvEval. constructor. - InvEval. constructor. - InvEval. simpl in H5. inv H5. constructor. - InvEval. subst v. constructor; auto. - inv H. InvEval. simpl in H6; inv H6. constructor; auto. - destruct Archi.ptr64 eqn:SF. + constructor; auto. + InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vint n) else Val.add v1 (Vint n)). repeat constructor; auto. rewrite SF; auto. - destruct Archi.ptr64 eqn:SF. + InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vlong n) else Val.add v1 (Vlong n)). repeat constructor; auto. rewrite SF; auto. + constructor; auto. - constructor; auto. Qed. (** Platform-specific known builtins *) Theorem eval_platform_builtin: forall bf al a vl v le, platform_builtin bf al = Some a -> eval_exprlist ge sp e m le al vl -> platform_builtin_sem bf vl = Some v -> exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'. Proof. intros. discriminate. Qed. End CMCONSTR.