(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness of instruction selection for operators *) Require Import Coqlib. Require Import AST Integers Floats. Require Import Values Memory Builtins Globalenvs. Require Import Cminor Op CminorSel. Require Import SelectOp. Local Open Scope cminorsel_scope. (** * Useful lemmas and tactics *) (** The following are trivial lemmas and custom tactics that help perform backward (inversion) and forward reasoning over the evaluation of operator applications. *) Ltac EvalOp := eapply eval_Eop; eauto with evalexpr. Ltac InvEval1 := match goal with | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] => inv H; InvEval1 | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] => inv H; InvEval1 | _ => idtac end. Ltac InvEval2 := match goal with | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] => simpl in H; FuncInv | _ => idtac end. Ltac InvEval := InvEval1; InvEval2; InvEval2; subst. Ltac TrivialExists := match goal with | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto] end. (** * Correctness of the smart constructors *) Section CMCONSTR. Variable ge: genv. Variable sp: val. Variable e: env. Variable m: mem. (** We now show that the code generated by "smart constructor" functions such as [SelectOp.notint] behaves as expected. Continuing the [notint] example, we show that if the expression [e] evaluates to some integer value [Vint n], then [SelectOp.notint e] evaluates to a value [Vint (Int.not n)] which is indeed the integer negation of the value of [e]. All proofs follow a common pattern: - Reasoning by case over the result of the classification functions (such as [add_match] for integer addition), gathering additional information on the shape of the argument expressions in the non-default cases. - Inversion of the evaluations of the arguments, exploiting the additional information thus gathered. - Equational reasoning over the arithmetic operations performed, using the lemmas from the [Int] and [Float] modules. - Construction of an evaluation derivation for the expression returned by the smart constructor. *) Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop := forall le a x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v. Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop := forall le a x b y, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v. Lemma eval_Olea_ptr: forall a el m, eval_operation ge sp (Olea_ptr a) el m = eval_addressing ge sp a el. Proof. unfold Olea_ptr, eval_addressing; intros. destruct Archi.ptr64; auto. Qed. Theorem eval_addrsymbol: forall le id ofs, exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v. Proof. intros. unfold addrsymbol. exists (Genv.symbol_address ge id ofs); split; auto. destruct (symbol_is_external id). predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero. subst. EvalOp. EvalOp. econstructor. EvalOp. simpl; eauto. econstructor. unfold Olea_ptr; destruct Archi.ptr64 eqn:SF; simpl; [ rewrite <- Genv.shift_symbol_address_64 by auto | rewrite <- Genv.shift_symbol_address_32 by auto ]; f_equal; f_equal; rewrite Ptrofs.add_zero_l; [ apply Ptrofs.of_int64_to_int64 | apply Ptrofs.of_int_to_int ]; auto. EvalOp. (*rewrite eval_Olea_ptr. apply eval_addressing_Aglobal. *) Qed. Theorem eval_addrstack: forall le ofs, exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v. Proof. intros. unfold addrstack. TrivialExists. (*rewrite eval_Olea_ptr. apply eval_addressing_Ainstack.*) Qed. Theorem eval_notint: unary_constructor_sound notint Val.notint. Proof. unfold notint; red; intros until x. case (notint_match a); intros; InvEval. - TrivialExists. - rewrite Val.not_xor. rewrite Val.xor_assoc. TrivialExists. - TrivialExists. Qed. Theorem eval_addimm: forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)). Proof. red; unfold addimm; intros until x. predSpec Int.eq Int.eq_spec n Int.zero. - subst n. intros. exists x; split; auto. destruct x; simpl; rewrite ?Int.add_zero, ?Ptrofs.add_zero; auto. - case (addimm_match a); intros; InvEval. + TrivialExists; simpl. rewrite Int.add_commut. auto. + inv H0. simpl in H6. TrivialExists. simpl. erewrite eval_offset_addressing_total_32 by eauto. rewrite Int.repr_signed; auto. + TrivialExists. simpl. rewrite Int.repr_signed; auto. Qed. Theorem eval_add: binary_constructor_sound add Val.add. Proof. assert (A: forall x y, Int.repr (x + y) = Int.add (Int.repr x) (Int.repr y)). { intros; apply Int.eqm_samerepr; auto with ints. } assert (B: forall id ofs n, Archi.ptr64 = false -> Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.repr n)) = Val.add (Genv.symbol_address ge id ofs) (Vint (Int.repr n))). { intros. replace (Ptrofs.repr n) with (Ptrofs.of_int (Int.repr n)) by auto with ptrofs. apply Genv.shift_symbol_address_32; auto. } red; intros until y. unfold add; case (add_match a b); intros; InvEval. - rewrite Val.add_commut. apply eval_addimm; auto. - apply eval_addimm; auto. - TrivialExists. simpl. rewrite A, Val.add_permut_4. auto. - TrivialExists. simpl. rewrite A, Val.add_assoc. decEq; decEq. rewrite Val.add_permut. auto. - TrivialExists. simpl. rewrite A, Val.add_permut_4. rewrite <- Val.add_permut. rewrite <- Val.add_assoc. auto. - TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite ! Val.add_assoc. rewrite (Val.add_commut v1). rewrite Val.add_permut. rewrite Val.add_assoc. auto. - TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite Val.add_assoc. do 2 f_equal. apply Val.add_commut. - TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc. rewrite (Val.add_commut (Vint (Int.repr n1))). rewrite Val.add_permut. do 2 f_equal. apply Val.add_commut. - TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc. rewrite (Val.add_commut (Vint (Int.repr n2))). rewrite Val.add_permut. auto. - TrivialExists. simpl. rewrite Val.add_permut. rewrite Val.add_assoc. decEq; decEq. apply Val.add_commut. - TrivialExists. - TrivialExists. simpl. repeat rewrite Val.add_assoc. decEq; decEq. apply Val.add_commut. - TrivialExists. simpl. rewrite Val.add_assoc; auto. - TrivialExists. simpl. unfold Val.add; destruct Archi.ptr64, x, y; auto. + rewrite Int.add_zero; auto. + rewrite Int.add_zero; auto. + rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto. + rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto. Qed. Theorem eval_sub: binary_constructor_sound sub Val.sub. Proof. red; intros until y. unfold sub; case (sub_match a b); intros; InvEval. - rewrite Val.sub_add_opp. apply eval_addimm; auto. - rewrite Val.sub_add_l. rewrite Val.sub_add_r. rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp. replace (Int.repr (n1 - n2)) with (Int.sub (Int.repr n1) (Int.repr n2)). apply eval_addimm; EvalOp. apply Int.eqm_samerepr; auto with ints. - rewrite Val.sub_add_l. apply eval_addimm; EvalOp. - rewrite Val.sub_add_r. replace (Int.repr (-n2)) with (Int.neg (Int.repr n2)). apply eval_addimm; EvalOp. apply Int.eqm_samerepr; auto with ints. - TrivialExists. Qed. Theorem eval_negint: unary_constructor_sound negint Val.neg. Proof. red; intros until x. unfold negint. case (negint_match a); intros; InvEval. - TrivialExists. - TrivialExists. Qed. Theorem eval_shlimm: forall n, unary_constructor_sound (fun a => shlimm a n) (fun x => Val.shl x (Vint n)). Proof. red; intros until x. unfold shlimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shlimm_match a); intros; InvEval. - exists (Vint (Int.shl n1 n)); split. EvalOp. simpl. rewrite LT. auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. + exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto. rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto. + TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - destruct (shift_is_scale n). + econstructor; split. EvalOp. simpl. eauto. rewrite ! Int.repr_unsigned. destruct v1; simpl; auto. rewrite LT. rewrite Int.shl_mul. rewrite Int.mul_add_distr_l. rewrite (Int.shl_mul (Int.repr n1)). auto. + TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. auto. - destruct (shift_is_scale n). + econstructor; split. EvalOp. simpl. eauto. destruct x; simpl; auto. rewrite LT. rewrite Int.repr_unsigned. rewrite Int.add_zero. rewrite Int.shl_mul. auto. + TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shruimm: forall n, unary_constructor_sound (fun a => shruimm a n) (fun x => Val.shru x (Vint n)). Proof. red; intros until x. unfold shruimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shruimm_match a); intros; InvEval. - exists (Vint (Int.shru n1 n)); split. EvalOp. simpl. rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. + exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp. subst. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto. + TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shrimm: forall n, unary_constructor_sound (fun a => shrimm a n) (fun x => Val.shr x (Vint n)). Proof. red; intros until x. unfold shrimm. predSpec Int.eq Int.eq_spec n Int.zero. intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto. destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl. destruct (shrimm_match a); intros; InvEval. - exists (Vint (Int.shr n1 n)); split. EvalOp. simpl. rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?. + exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp. subst. destruct v1; simpl; auto. rewrite Heqb. destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto. rewrite LT. rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto. + TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. simpl. auto. - TrivialExists. - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Lemma eval_mulimm_base: forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros; unfold mulimm_base. generalize (Int.one_bits_decomp n) (Int.one_bits_range n); intros D R. destruct (Int.one_bits n) as [ | i l]. TrivialExists. destruct l as [ | j l ]. replace (Val.mul x (Vint n)) with (Val.shl x (Vint i)). apply eval_shlimm; auto. destruct x; auto; simpl. rewrite D; simpl; rewrite Int.add_zero. rewrite R by auto with coqlib. rewrite Int.shl_mul. auto. destruct l as [ | k l ]. exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]]. exploit (eval_shlimm j (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]]. exploit eval_add. eexact A1. eexact A2. intros [v3 [A3 B3]]. exists v3; split. econstructor; eauto. rewrite D; simpl; rewrite Int.add_zero. replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one j))) with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint j))). rewrite Val.mul_add_distr_r. repeat rewrite Val.shl_mul. apply Val.lessdef_trans with (Val.add v1 v2); auto. apply Val.add_lessdef; auto. simpl. rewrite ! R by auto with coqlib. auto. TrivialExists. Qed. Theorem eval_mulimm: forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)). Proof. intros; red; intros until x; unfold mulimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto. predSpec Int.eq Int.eq_spec n Int.one. intros. exists x; split; auto. destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto. - case (mulimm_match a); intros; InvEval. + TrivialExists. simpl. rewrite Int.mul_commut; auto. + rewrite Val.mul_add_distr_l. exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]]. exploit (eval_addimm (Int.mul n (Int.repr n2)) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]]. exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto. rewrite Val.mul_commut; auto. + apply eval_mulimm_base; auto. Qed. Theorem eval_mul: binary_constructor_sound mul Val.mul. Proof. red; intros until y. unfold mul; case (mul_match a b); intros; InvEval. - rewrite Val.mul_commut. apply eval_mulimm. auto. - apply eval_mulimm. auto. - TrivialExists. Qed. Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs. Proof. unfold mulhs; red; intros; TrivialExists. Qed. Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu. Proof. unfold mulhu; red; intros; TrivialExists. Qed. Theorem eval_andimm: forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)). Proof. intros; red; intros until x. unfold andimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists (Vint Int.zero); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. exists x; split; auto. destruct x; simpl; auto. subst n. rewrite Int.and_mone. auto. case (andimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.and_commut; auto. - TrivialExists. simpl. rewrite Val.and_assoc. rewrite Int.and_commut. auto. - rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc. rewrite Int.and_commut. auto. lia. - rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc. rewrite Int.and_commut. auto. lia. - TrivialExists. Qed. Theorem eval_and: binary_constructor_sound and Val.and. Proof. red; intros until y; unfold and; case (and_match a b); intros; InvEval. - rewrite Val.and_commut. apply eval_andimm; auto. - apply eval_andimm; auto. - TrivialExists. Qed. Theorem eval_orimm: forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)). Proof. intros; red; intros until x. unfold orimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists x; split. auto. destruct x; simpl; auto. subst n. rewrite Int.or_zero. auto. predSpec Int.eq Int.eq_spec n Int.mone. intros. exists (Vint Int.mone); split. EvalOp. destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto. destruct (orimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.or_commut; auto. - subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists. - TrivialExists. Qed. Remark eval_same_expr: forall a1 a2 le v1 v2, same_expr_pure a1 a2 = true -> eval_expr ge sp e m le a1 v1 -> eval_expr ge sp e m le a2 v2 -> a1 = a2 /\ v1 = v2. Proof. intros until v2. destruct a1; simpl; try (intros; discriminate). destruct a2; simpl; try (intros; discriminate). case (ident_eq i i0); intros. subst i0. inversion H0. inversion H1. split. auto. congruence. discriminate. Qed. Remark int_add_sub_eq: forall x y z, Int.add x y = z -> Int.sub z x = y. Proof. intros. subst z. rewrite Int.sub_add_l. rewrite Int.sub_idem. apply Int.add_zero_l. Qed. Lemma eval_or: binary_constructor_sound or Val.or. Proof. red; intros until y; unfold or; case (or_match a b); intros. (* intconst *) - InvEval. rewrite Val.or_commut. apply eval_orimm; auto. - InvEval. apply eval_orimm; auto. - (* shlimm - shruimm *) predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize. destruct (same_expr_pure t1 t2) eqn:?. InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst. exists (Val.ror v0 (Vint n2)); split. EvalOp. destruct v0; simpl; auto. destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto. destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto. simpl. rewrite <- Int.or_ror; auto. InvEval. econstructor; split; eauto. EvalOp. simpl. erewrite int_add_sub_eq; eauto. TrivialExists. - (* shruimm - shlimm *) predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize. destruct (same_expr_pure t1 t2) eqn:?. InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst. exists (Val.ror v1 (Vint n2)); split. EvalOp. destruct v1; simpl; auto. destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto. destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto. simpl. rewrite Int.or_commut. rewrite <- Int.or_ror; auto. InvEval. econstructor; split; eauto. EvalOp. simpl. erewrite int_add_sub_eq; eauto. rewrite Val.or_commut; auto. TrivialExists. - (* default *) TrivialExists. Qed. Theorem eval_xorimm: forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)). Proof. intros; red; intros until x. unfold xorimm. predSpec Int.eq Int.eq_spec n Int.zero. intros. exists x; split. auto. destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto. destruct (xorimm_match a); intros; InvEval. - TrivialExists. simpl. rewrite Int.xor_commut; auto. - rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists. - rewrite Val.not_xor. rewrite Val.xor_assoc. rewrite (Val.xor_commut (Vint Int.mone)). TrivialExists. - TrivialExists. Qed. Theorem eval_xor: binary_constructor_sound xor Val.xor. Proof. red; intros until y; unfold xor; case (xor_match a b); intros; InvEval. - rewrite Val.xor_commut. apply eval_xorimm; auto. - apply eval_xorimm; auto. - TrivialExists. Qed. Theorem eval_divs_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divs x y = Some z -> exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divs_base. exists z; split. EvalOp. auto. Qed. Theorem eval_divu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.divu x y = Some z -> exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v. Proof. intros. unfold divu_base. exists z; split. EvalOp. auto. Qed. Theorem eval_mods_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.mods x y = Some z -> exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v. Proof. intros. unfold mods_base. exists z; split. EvalOp. auto. Qed. Theorem eval_modu_base: forall le a b x y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.modu x y = Some z -> exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v. Proof. intros. unfold modu_base. exists z; split. EvalOp. auto. Qed. Theorem eval_shrximm: forall le a n x z, eval_expr ge sp e m le a x -> Val.shrx x (Vint n) = Some z -> exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v. Proof. intros. unfold shrximm. predSpec Int.eq Int.eq_spec n Int.zero. subst n. exists x; split; auto. destruct x; simpl in H0; try discriminate. destruct (Int.ltu Int.zero (Int.repr 31)); inv H0. replace (Int.shrx i Int.zero) with i. auto. unfold Int.shrx, Int.divs. rewrite Int.shl_zero. change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto. econstructor; split. EvalOp. auto. Qed. Theorem eval_shl: binary_constructor_sound shl Val.shl. Proof. red; intros until y; unfold shl; case (shl_match b); intros. - InvEval. apply eval_shlimm; auto. - TrivialExists. Qed. Theorem eval_shr: binary_constructor_sound shr Val.shr. Proof. red; intros until y; unfold shr; case (shr_match b); intros. - InvEval. apply eval_shrimm; auto. - TrivialExists. Qed. Theorem eval_shru: binary_constructor_sound shru Val.shru. Proof. red; intros until y; unfold shru; case (shru_match b); intros. - InvEval. apply eval_shruimm; auto. - TrivialExists. Qed. Theorem eval_negf: unary_constructor_sound negf Val.negf. Proof. red; intros. TrivialExists. Qed. Theorem eval_absf: unary_constructor_sound absf Val.absf. Proof. red; intros. TrivialExists. Qed. Theorem eval_addf: binary_constructor_sound addf Val.addf. Proof. red; intros; TrivialExists. Qed. Theorem eval_subf: binary_constructor_sound subf Val.subf. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulf: binary_constructor_sound mulf Val.mulf. Proof. red; intros; TrivialExists. Qed. Theorem eval_negfs: unary_constructor_sound negfs Val.negfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_absfs: unary_constructor_sound absfs Val.absfs. Proof. red; intros. TrivialExists. Qed. Theorem eval_addfs: binary_constructor_sound addfs Val.addfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_subfs: binary_constructor_sound subfs Val.subfs. Proof. red; intros; TrivialExists. Qed. Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs. Proof. red; intros; TrivialExists. Qed. Section COMP_IMM. Variable default: comparison -> int -> condition. Variable intsem: comparison -> int -> int -> bool. Variable sem: comparison -> val -> val -> val. Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y). Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef. Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y). Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)). Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m). Lemma eval_compimm: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v /\ Val.lessdef (sem c x (Vint n2)) v. Proof. intros until x. unfold compimm; case (compimm_match c a); intros. - (* constant *) InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto. - (* eq cmp *) InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto. rewrite sem_undef; auto. exists (Vint Int.zero); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto. rewrite sem_undef; auto. - (* ne cmp *) InvEval. inv H. simpl in H5. inv H5. destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists. simpl. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists. simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto. rewrite sem_undef; auto. exists (Vint Int.one); split. EvalOp. destruct (eval_condition c0 vl m); simpl. unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto. rewrite sem_undef; auto. - (* eq andimm *) destruct (Int.eq_dec n2 Int.zero). InvEval; subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_eq. destruct (Int.eq (Int.and i n1) Int.zero); auto. TrivialExists. simpl. rewrite sem_default. auto. - (* ne andimm *) destruct (Int.eq_dec n2 Int.zero). InvEval; subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_ne. destruct (Int.eq (Int.and i n1) Int.zero); auto. TrivialExists. simpl. rewrite sem_default. auto. - (* default *) TrivialExists. simpl. rewrite sem_default. auto. Qed. Hypothesis sem_swap: forall c x y, sem (swap_comparison c) x y = sem c y x. Lemma eval_compimm_swap: forall le c a n2 x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v /\ Val.lessdef (sem c (Vint n2) x) v. Proof. intros. rewrite <- sem_swap. eapply eval_compimm; eauto. Qed. End COMP_IMM. Theorem eval_comp: forall c, binary_constructor_sound (comp c) (Val.cmp c). Proof. intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compu: forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c). Proof. intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval. eapply eval_compimm_swap; eauto. intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto. eapply eval_compimm; eauto. TrivialExists. Qed. Theorem eval_compf: forall c, binary_constructor_sound (compf c) (Val.cmpf c). Proof. intros; red; intros. unfold compf. TrivialExists. Qed. Theorem eval_compfs: forall c, binary_constructor_sound (compfs c) (Val.cmpfs c). Proof. intros; red; intros. unfold compfs. TrivialExists. Qed. Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8). Proof. red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8). Proof. red; intros until x. unfold cast8unsigned. destruct (cast8unsigned_match a); intros; InvEval. TrivialExists. subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc. rewrite Int.and_commut. apply eval_andimm; auto. lia. TrivialExists. Qed. Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16). Proof. red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16). Proof. red; intros until x. unfold cast16unsigned. destruct (cast16unsigned_match a); intros; InvEval. TrivialExists. subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc. rewrite Int.and_commut. apply eval_andimm; auto. lia. TrivialExists. Qed. Theorem eval_select: forall le ty cond al vl a1 v1 a2 v2 a b, select ty cond al a1 a2 = Some a -> eval_exprlist ge sp e m le al vl -> eval_expr ge sp e m le a1 v1 -> eval_expr ge sp e m le a2 v2 -> eval_condition cond vl m = Some b -> exists v, eval_expr ge sp e m le a v /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v. Proof. unfold select; intros. destruct (select_supported ty); try discriminate. destruct (select_swap cond); inv H. - exists (Val.select (Some (negb b)) v2 v1 ty); split. apply eval_Eop with (v2 :: v1 :: vl). constructor; auto. constructor; auto. simpl. rewrite eval_negate_condition, H3; auto. destruct b; auto. - exists (Val.select (Some b) v1 v2 ty); split. apply eval_Eop with (v1 :: v2 :: vl). constructor; auto. constructor; auto. simpl. rewrite H3; auto. auto. Qed. Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat. Proof. red; intros. unfold singleoffloat. TrivialExists. Qed. Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle. Proof. red; intros. unfold floatofsingle. TrivialExists. Qed. Theorem eval_intoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intoffloat x = Some y -> exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v. Proof. intros; unfold intoffloat. TrivialExists. Qed. Theorem eval_floatofint: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofint x = Some y -> exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v. Proof. intros until y; unfold floatofint. case (floatofint_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_intuoffloat: forall le a x y, eval_expr ge sp e m le a x -> Val.intuoffloat x = Some y -> exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v. Proof. intros. destruct x; simpl in H0; try discriminate. destruct (Float.to_intu f) as [n|] eqn:?; simpl in H0; inv H0. exists (Vint n); split; auto. unfold intuoffloat. destruct Archi.splitlong. - set (im := Int.repr Int.half_modulus). set (fm := Float.of_intu im). assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f)). constructor. auto. assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar O) (Vfloat fm)). constructor. auto. econstructor. eauto. econstructor. instantiate (1 := Vfloat fm). EvalOp. eapply eval_Econdition with (va := Float.cmp Clt f fm). eauto with evalexpr. destruct (Float.cmp Clt f fm) eqn:?. exploit Float.to_intu_to_int_1; eauto. intro EQ. EvalOp. simpl. rewrite EQ; auto. exploit Float.to_intu_to_int_2; eauto. change Float.ox8000_0000 with im. fold fm. intro EQ. set (t2 := subf (Eletvar (S O)) (Eletvar O)). set (t3 := intoffloat t2). exploit (eval_subf (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f) (Eletvar O)); eauto. fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2. exploit (eval_addimm Float.ox8000_0000 (Vfloat fm :: Vfloat f :: le) t3). unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto. intros [v4 [A4 B4]]. simpl in B4. inv B4. rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4. rewrite (Int.add_commut (Int.neg im)) in A4. rewrite Int.add_neg_zero in A4. rewrite Int.add_zero in A4. auto. - apply Float.to_intu_to_long in Heqo. repeat econstructor. eauto. simpl. rewrite Heqo; reflexivity. simpl. unfold Int64.loword. rewrite Int64.unsigned_repr, Int.repr_unsigned; auto. assert (Int.modulus < Int64.max_unsigned) by reflexivity. generalize (Int.unsigned_range n); lia. Qed. Theorem eval_floatofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.floatofintu x = Some y -> exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v. Proof. intros until y; unfold floatofintu. case (floatofintu_match a); intros. - InvEval. TrivialExists. - destruct x; simpl in H0; try discriminate. inv H0. exists (Vfloat (Float.of_intu i)); split; auto. destruct Archi.splitlong. + econstructor. eauto. set (fm := Float.of_intu Float.ox8000_0000). assert (eval_expr ge sp e m (Vint i :: le) (Eletvar O) (Vint i)). constructor. auto. eapply eval_Econdition with (va := Int.ltu i Float.ox8000_0000). eauto with evalexpr. destruct (Int.ltu i Float.ox8000_0000) eqn:?. rewrite Float.of_intu_of_int_1; auto. unfold floatofint. EvalOp. exploit (eval_addimm (Int.neg Float.ox8000_0000) (Vint i :: le) (Eletvar 0)); eauto. simpl. intros [v [A B]]. inv B. unfold addf. EvalOp. constructor. unfold floatofint. EvalOp. simpl; eauto. constructor. EvalOp. simpl; eauto. constructor. simpl; eauto. fold fm. rewrite Float.of_intu_of_int_2; auto. rewrite Int.sub_add_opp. auto. + rewrite Float.of_intu_of_long. repeat econstructor. eauto. reflexivity. Qed. Theorem eval_intofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intofsingle x = Some y -> exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v. Proof. intros; unfold intofsingle. TrivialExists. Qed. Theorem eval_singleofint: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofint x = Some y -> exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v. Proof. intros until y; unfold singleofint. case (singleofint_match a); intros; InvEval. TrivialExists. TrivialExists. Qed. Theorem eval_intuofsingle: forall le a x y, eval_expr ge sp e m le a x -> Val.intuofsingle x = Some y -> exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v. Proof. intros. destruct x; simpl in H0; try discriminate. destruct (Float32.to_intu f) as [n|] eqn:?; simpl in H0; inv H0. unfold intuofsingle. apply eval_intuoffloat with (Vfloat (Float.of_single f)). unfold floatofsingle. EvalOp. simpl. change (Float.of_single f) with (Float32.to_double f). erewrite Float32.to_intu_double; eauto. auto. Qed. Theorem eval_singleofintu: forall le a x y, eval_expr ge sp e m le a x -> Val.singleofintu x = Some y -> exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v. Proof. intros until y; unfold singleofintu. case (singleofintu_match a); intros. InvEval. TrivialExists. destruct x; simpl in H0; try discriminate. inv H0. exploit eval_floatofintu. eauto. simpl. reflexivity. intros (v & A & B). exists (Val.singleoffloat v); split. unfold singleoffloat; EvalOp. inv B; simpl. rewrite Float32.of_intu_double. auto. Qed. Theorem eval_addressing: forall le chunk a v b ofs, eval_expr ge sp e m le a v -> v = Vptr b ofs -> match addressing chunk a with (mode, args) => exists vl, eval_exprlist ge sp e m le args vl /\ eval_addressing ge sp mode vl = Some v end. Proof. intros until ofs. assert (A: v = Vptr b ofs -> eval_addressing ge sp (Aindexed 0) (v :: nil) = Some v). { intros. subst v. unfold eval_addressing. destruct Archi.ptr64 eqn:SF; simpl; rewrite SF; rewrite Ptrofs.add_zero; auto. } assert (D: forall a, eval_expr ge sp e m le a v -> v = Vptr b ofs -> exists vl, eval_exprlist ge sp e m le (a ::: Enil) vl /\ eval_addressing ge sp (Aindexed 0) vl = Some v). { intros. exists (v :: nil); split. constructor; auto. constructor. auto. } unfold addressing; case (addressing_match a); intros. - destruct (negb Archi.ptr64 && addressing_valid addr) eqn:E. + inv H. InvBooleans. apply negb_true_iff in H. unfold eval_addressing; rewrite H. exists vl; auto. + apply D; auto. - destruct (Archi.ptr64 && addressing_valid addr) eqn:E. + inv H. InvBooleans. unfold eval_addressing; rewrite H. exists vl; auto. + apply D; auto. - apply D; auto. Qed. Theorem eval_builtin_arg_addr: forall addr al vl v, eval_exprlist ge sp e m nil al vl -> Op.eval_addressing ge sp addr vl = Some v -> CminorSel.eval_builtin_arg ge sp e m (builtin_arg_addr addr al) v. Proof. intros until v. unfold builtin_arg_addr; case (builtin_arg_addr_match addr al); intros; InvEval. - set (v2 := if Archi.ptr64 then Vlong (Int64.repr n) else Vint (Int.repr n)). assert (EQ: v = if Archi.ptr64 then Val.addl v1 v2 else Val.add v1 v2). { unfold Op.eval_addressing in H0; unfold v2; destruct Archi.ptr64; simpl in H0; inv H0; auto. } rewrite EQ. constructor. constructor; auto. unfold v2; destruct Archi.ptr64; constructor. - rewrite eval_addressing_Aglobal in H0. inv H0. constructor. - rewrite eval_addressing_Ainstack in H0. inv H0. constructor. - constructor. econstructor. eauto. rewrite eval_Olea_ptr. auto. Qed. Theorem eval_builtin_arg: forall a v, eval_expr ge sp e m nil a v -> CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v. Proof. intros until v. unfold builtin_arg; case (builtin_arg_match a); intros; InvEval. - constructor. - constructor. - destruct Archi.ptr64 eqn:SF. + constructor; auto. + inv H. eapply eval_builtin_arg_addr. eauto. unfold Op.eval_addressing; rewrite SF; assumption. - destruct Archi.ptr64 eqn:SF. + inv H. eapply eval_builtin_arg_addr. eauto. unfold Op.eval_addressing; rewrite SF; assumption. + constructor; auto. - simpl in H5. inv H5. constructor. - constructor; auto. - inv H. InvEval. rewrite eval_addressing_Aglobal in H6. inv H6. constructor; auto. - inv H. InvEval. rewrite eval_addressing_Ainstack in H6. inv H6. constructor; auto. - constructor; auto. Qed. (** Platform-specific known builtins *) Theorem eval_platform_builtin: forall bf al a vl v le, platform_builtin bf al = Some a -> eval_exprlist ge sp e m le al vl -> platform_builtin_sem bf vl = Some v -> exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'. Proof. intros until le. intros SEL ARGS SEM. destruct bf; try discriminate. - inv ARGS; try discriminate. inv H0; try discriminate. inv H2; try discriminate. inv SEL. inv SEM. exists (minf v1 v0); split; auto. EvalOp. - inv ARGS; try discriminate. inv H0; try discriminate. inv H2; try discriminate. inv SEL. inv SEM. exists (maxf v1 v0); split; auto. EvalOp. Qed. End CMCONSTR.