// A simple Sieve of Eratosthenes #include #include #define BITMAP_SIZE 64 #define OUTPORT 0x10000000 static uint32_t bitmap[BITMAP_SIZE/32]; static void bitmap_set(int idx) { bitmap[idx/32] |= 1 << (idx % 32); } static bool bitmap_get(int idx) { return (bitmap[idx/32] & (1 << (idx % 32))) != 0; } static void print_chr(char ch) { *((volatile uint32_t*)OUTPORT) = ch; } static void print_str(const char *p) { while (*p != 0) *((volatile uint32_t*)OUTPORT) = *(p++); } static void print_dec(int val) { char buffer[10]; char *p = buffer; while (val || p == buffer) { *(p++) = val % 10; val = val / 10; } while (p != buffer) { *((volatile uint32_t*)OUTPORT) = '0' + *(--p); } } static void print_hex(unsigned int val) { int i; for (i = 32-4; i >= 0; i -= 4) *((volatile uint32_t*)OUTPORT) = "0123456789ABCDEF"[(val >> i) % 16]; } static void print_prime(int idx, int val) { if (idx < 10) print_str(" "); print_dec(idx); if (idx / 10 == 1) goto force_th; switch (idx % 10) { case 1: print_str("st"); break; case 2: print_str("nd"); break; case 3: print_str("rd"); break; force_th: default: print_str("th"); break; } print_str(" prime is "); print_dec(val); print_str(".\n"); } void sieve() { int i, j, k; int idx = 1; print_prime(idx++, 2); for (i = 0; i < BITMAP_SIZE; i++) { if (bitmap_get(i)) continue; print_prime(idx++, 3+2*i); for (j = 2*(3+2*i);; j += 3+2*i) { if (j%2 == 0) continue; k = (j-3)/2; if (k >= BITMAP_SIZE) break; bitmap_set(k); } } } uint32_t *irq(uint32_t *regs, uint32_t irqs) { static int ext_irq_4_count = 0; static int ext_irq_5_count = 0; static int timer_irq_count = 0; if ((irqs & (1<<4)) != 0) { ext_irq_4_count++; // print_str("[EXT-IRQ-4]"); } if ((irqs & (1<<5)) != 0) { ext_irq_5_count++; // print_str("[EXT-IRQ-5]"); } if ((irqs & 1) != 0) { timer_irq_count++; // print_str("[TIMER-IRQ]"); } if ((irqs & 6) != 0) { int i, k; uint32_t pc = regs[0] - 4; uint32_t instr = *(uint32_t*)pc; print_str("\n"); print_str("------------------------------------------------------------\n"); if ((irqs & 2) != 0) { if (instr == 0x00100073) { print_str("SBREAK instruction at 0x"); print_hex(pc); print_str("\n"); } else { print_str("Illegal Instruction at 0x"); print_hex(pc); print_str(": 0x"); print_hex(instr); print_str("\n"); } } if ((irqs & 4) != 0) { print_str("Bus error in Instruction at 0x"); print_hex(pc); print_str(": 0x"); print_hex(instr); print_str("\n"); } for (i = 0; i < 8; i++) for (k = 0; k < 4; k++) { int r = i + k*8; if (r == 0) { print_str("pc "); } else if (r < 10) { print_chr('x'); print_chr('0' + r); print_chr(' '); print_chr(' '); } else if (r < 20) { print_chr('x'); print_chr('1'); print_chr('0' + r - 10); print_chr(' '); } else if (r < 30) { print_chr('x'); print_chr('2'); print_chr('0' + r - 20); print_chr(' '); } else { print_chr('x'); print_chr('3'); print_chr('0' + r - 30); print_chr(' '); } print_hex(regs[r]); print_str(k == 3 ? "\n" : " "); } print_str("------------------------------------------------------------\n"); print_str("Number of fast external IRQs counted: "); print_dec(ext_irq_4_count); print_str("\n"); print_str("Number of slow external IRQs counted: "); print_dec(ext_irq_5_count); print_str("\n"); print_str("Number of timer IRQs counted: "); print_dec(timer_irq_count); print_str("\n"); __asm__("sbreak"); } return regs; }