From e12110637730d067c216abcc86185b761189b342 Mon Sep 17 00:00:00 2001 From: vblot <24938579+vblot@users.noreply.github.com> Date: Fri, 28 May 2021 18:29:37 +0200 Subject: getting rid of native-coq (#95) --- src/Int63/Int63Properties.v | 2768 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2768 insertions(+) create mode 100644 src/Int63/Int63Properties.v (limited to 'src/Int63/Int63Properties.v') diff --git a/src/Int63/Int63Properties.v b/src/Int63/Int63Properties.v new file mode 100644 index 0000000..feb19b8 --- /dev/null +++ b/src/Int63/Int63Properties.v @@ -0,0 +1,2768 @@ +(**************************************************************************) +(* *) +(* SMTCoq *) +(* Copyright (C) 2011 - 2021 *) +(* *) +(* See file "AUTHORS" for the list of authors *) +(* *) +(* This file is distributed under the terms of the CeCILL-C licence *) +(* *) +(**************************************************************************) + + +Require Import Zgcd_alt. +Require Import Bvector. +Require Import Int31 Cyclic31. +Require Export Int63Axioms. +Require Import Eqdep_dec. +Require Import Psatz. +Require Import Znumtheory Zpow_facts. + +Local Open Scope int63_scope. +Local Open Scope Z_scope. + + +Notation Zpower_2 := Z.pow_2_r. +Notation Zpower_Zsucc := Z.pow_succ_r. + + +(* Taken from BigNumPrelude *) + +Lemma Zlt0_not_eq : forall n, 0 n<>0. +Proof. + auto with zarith. +Qed. + +Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H). + +Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. + Proof. + intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto. + case (Z.le_gt_cases b a); intros H4; auto with zarith. + rewrite Zmod_small; auto with zarith. + Qed. + + +(** Trivial lemmas without axiom *) + +Lemma wB_diff_0 : wB <> 0. +Proof. compute;discriminate. Qed. + +Lemma wB_pos : 0 < wB. +Proof. reflexivity. Qed. + +Lemma to_Z_0 : [|0|] = 0. +Proof. reflexivity. Qed. + +Lemma to_Z_1 : [|1|] = 1. +Proof. reflexivity. Qed. + +(** equality *) +Lemma eqb_complete : forall x y, x = y -> (x == y) = true. +Proof. + intros x y H;rewrite H, eqb_refl;trivial. +Qed. + +Lemma eqb_spec : forall x y, (x == y) = true <-> x = y. +Proof. + split;auto using eqb_correct, eqb_complete. +Qed. + +Lemma eqb_false_spec : forall x y, (x == y) = false <-> x <> y. +Proof. + intros;rewrite <- not_true_iff_false, eqb_spec;split;trivial. +Qed. + +Lemma eqb_false_complete : forall x y, x <> y -> (x == y) = false. +Proof. + intros x y;rewrite eqb_false_spec;trivial. +Qed. + +Lemma eqb_false_correct : forall x y, (x == y) = false -> x <> y. +Proof. + intros x y;rewrite eqb_false_spec;trivial. +Qed. + +Definition eqs (i j : int) : {i = j} + { i <> j } := + (if i == j as b return ((b = true -> i = j) -> (b = false -> i <> j) -> {i=j} + {i <> j} ) + then fun (Heq : true = true -> i = j) _ => left _ (Heq (eq_refl true)) + else fun _ (Hdiff : false = false -> i <> j) => right _ (Hdiff (eq_refl false))) + (eqb_correct i j) + (eqb_false_correct i j). + +Lemma eq_dec : forall i j:int, i = j \/ i <> j. +Proof. + intros i j;destruct (eqs i j);auto. +Qed. + +(* TODO: fill these proofs *) +Lemma cast_refl : forall i, cast i i = Some (fun P H => H). +Admitted. +(* Proof. *) +(* unfold cast;intros. *) +(* generalize (eqb_correct i i). *) +(* rewrite eqb_refl;intros. *) +(* rewrite (eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial. *) +(* Qed. *) + +Lemma cast_diff : forall i j, i == j = false -> cast i j = None. +Admitted. +(* Proof. *) +(* intros;unfold cast;intros; generalize (eqb_correct i j). *) +(* rewrite H;trivial. *) +(* Qed. *) + +Lemma eqo_refl : forall i, eqo i i = Some (eq_refl i). +Admitted. +(* Proof. *) +(* unfold eqo;intros. *) +(* generalize (eqb_correct i i). *) +(* rewrite eqb_refl;intros. *) +(* rewrite (eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial. *) +(* Qed. *) + +Lemma eqo_diff : forall i j, i == j = false -> eqo i j = None. +Admitted. +(* Proof. *) +(* unfold eqo;intros; generalize (eqb_correct i j). *) +(* rewrite H;trivial. *) +(* Qed. *) + +(** translation with Z *) +Require Import Ndigits. + +Lemma Z_of_N_double : forall n, Z_of_N (N.double n) = Z.double (Z_of_N n). +Proof. + destruct n;simpl;trivial. +Qed. + +Lemma Z_of_N_double_plus_one : forall n, Z_of_N (Ndouble_plus_one n) = Zdouble_plus_one (Z_of_N n). +Proof. + destruct n;simpl;trivial. +Qed. + +Lemma to_Z_bounded : forall x, 0 <= [|x|] < wB. +Proof. apply phi_bounded. Qed. +(* unfold to_Z, wB;induction size;intros. *) +(* simpl;auto with zarith. *) +(* rewrite inj_S;simpl;assert (W:= IHn (x >> 1)%int). *) +(* rewrite Zpower_Zsucc;auto with zarith. *) +(* destruct (is_even x). *) +(* rewrite Z.double_mult;auto with zarith. *) +(* rewrite Zdouble_plus_one_mult;auto with zarith. *) +(* Qed. *) + +(* TODO: move_this *) +(* Lemma orb_true_iff : forall b1 b2, b1 || b2 = true <-> b1 = true \/ b2 = true. *) +(* Proof. *) +(* split;intros;[apply orb_prop | apply orb_true_intro];trivial. *) +(* Qed. *) + +Lemma to_Z_eq : forall x y, [|x|] = [|y|] <-> x = y. +Proof. + split;intros;subst;trivial. + apply to_Z_inj;trivial. +Qed. + +Lemma leb_ltb_eqb : forall x y, ((x <= y) = (x < y) || (x == y))%int. +Proof. + intros. + apply eq_true_iff_eq. + rewrite leb_spec, orb_true_iff, ltb_spec, eqb_spec, <- to_Z_eq;omega. +Qed. + + +(** Comparison *) + +Lemma compare_spec : + forall x y, compare x y = ([|x|] ?= [|y|]). +Proof. + intros;rewrite compare_def_spec;unfold compare_def. + case_eq (x < y)%int;intros Heq. + rewrite ltb_spec in Heq. + red in Heq;rewrite Heq;trivial. + rewrite <- not_true_iff_false, ltb_spec in Heq. + case_eq (x == y)%int;intros Heq1. + rewrite eqb_spec in Heq1;rewrite Heq1, Z.compare_refl;trivial. + rewrite <- not_true_iff_false, eqb_spec in Heq1. + symmetry;change ([|x|] > [|y|]);rewrite <- to_Z_eq in Heq1;omega. +Qed. + +Lemma is_zero_spec : forall x : int, is_zero x = true <-> x = 0%int. +Proof. + unfold is_zero;intros;apply eqb_spec. +Qed. + + +(** Addition *) + +Lemma addc_spec : forall x y, [+|x +c y|] = [|x|] + [|y|]. +Proof. + intros;rewrite addc_def_spec;unfold addc_def. + assert (W1 := to_Z_bounded x); assert (W2 := to_Z_bounded y). + case_eq ((x + y < x)%int). + rewrite ltb_spec;intros. + change (wB + [|x+y|] = [|x|] + [|y|]). + rewrite add_spec in H |- *. + assert ([|x|] + [|y|] >= wB). + destruct (Z_lt_ge_dec ([|x|] + [|y|]) wB);auto with zarith. + elimtype False;rewrite Zmod_small in H;auto with zarith. + assert (([|x|] + [|y|]) mod wB = [|x|] + [|y|] - wB). + symmetry;apply Zmod_unique with 1;auto with zarith. + rewrite H1;ring. + rewrite <- not_true_iff_false, ltb_spec;intros. + change ([|x+y|] = [|x|] + [|y|]). + rewrite add_spec in *. + assert ([|x|] + [|y|] < wB). + destruct (Z_lt_ge_dec ([|x|] + [|y|]) wB);auto with zarith. + assert (([|x|] + [|y|]) mod wB = [|x|] + [|y|] - wB). + symmetry;apply Zmod_unique with 1;auto with zarith. + elim H;omega. + rewrite Zmod_small;auto with zarith. +Qed. + + +Lemma succc_spec : forall x, [+|succc x|] = [|x|] + 1. +Proof. intros; unfold succc; apply addc_spec. Qed. + +Lemma addcarry_spec : forall x y, [|addcarry x y|] = ([|x|] + [|y|] + 1) mod wB. +Proof. + unfold addcarry;intros. + rewrite add_spec,add_spec,Zplus_mod_idemp_l;trivial. +Qed. + +Lemma addcarryc_spec : forall x y, [+|addcarryc x y|] = [|x|] + [|y|] + 1. +Proof. + intros;rewrite addcarryc_def_spec;unfold addcarryc_def. + assert (W1 := to_Z_bounded x); assert (W2 := to_Z_bounded y). + case_eq ((addcarry x y <= x)%int). + rewrite leb_spec;intros. + change (wB + [|(addcarry x y)|] = [|x|] + [|y|] + 1). + rewrite addcarry_spec in H |- *. + assert ([|x|] + [|y|] + 1 >= wB). + destruct (Z_lt_ge_dec ([|x|] + [|y|] + 1) wB);auto with zarith. + elimtype False;rewrite Zmod_small in H;auto with zarith. + assert (([|x|] + [|y|] + 1) mod wB = [|x|] + [|y|] + 1 - wB). + symmetry;apply Zmod_unique with 1;auto with zarith. + rewrite H1;ring. + rewrite <- not_true_iff_false, leb_spec;intros. + change ([|addcarry x y|] = [|x|] + [|y|] + 1). + rewrite addcarry_spec in *. + assert ([|x|] + [|y|] + 1 < wB). + destruct (Z_lt_ge_dec ([|x|] + [|y|] + 1) wB);auto with zarith. + assert (([|x|] + [|y|] + 1) mod wB = [|x|] + [|y|] + 1 - wB). + symmetry;apply Zmod_unique with 1;auto with zarith. + elim H;omega. + rewrite Zmod_small;auto with zarith. +Qed. + +Lemma succ_spec : forall x, [|succ x|] = ([|x|] + 1) mod wB. +Proof. intros; apply add_spec. Qed. + +(** Subtraction *) +Lemma subc_spec : forall x y, [-|x -c y|] = [|x|] - [|y|]. +Proof. + intros;rewrite subc_def_spec;unfold subc_def. + assert (W1 := to_Z_bounded x); assert (W2 := to_Z_bounded y). + case_eq (y <= x)%int. + rewrite leb_spec;intros. + change ([|x - y|] = [|x|] - [|y|]). + rewrite sub_spec. + rewrite Zmod_small;auto with zarith. + rewrite <- not_true_iff_false, leb_spec;intros. + change (-wB + [|x - y|] = [|x|] - [|y|]). + rewrite sub_spec. + assert (([|x|] - [|y|]) mod wB = [|x|] - [|y|] + wB). + symmetry;apply Zmod_unique with (-1);auto with zarith. + rewrite H0;ring. +Qed. + +Lemma subcarry_spec : + forall x y, [|subcarry x y|] = ([|x|] - [|y|] - 1) mod wB. +Proof. + unfold subcarry; intros. + rewrite sub_spec,sub_spec,Zminus_mod_idemp_l;trivial. +Qed. + +Lemma subcarryc_spec : forall x y, [-|subcarryc x y|] = [|x|] - [|y|] - 1. + intros;rewrite subcarryc_def_spec;unfold subcarryc_def. + assert (W1 := to_Z_bounded x); assert (W2 := to_Z_bounded y). + (* fold (subcarry x y). *) + replace ((x - y - 1)%int) with (subcarry x y) by reflexivity. + case_eq (y < x)%int. + rewrite ltb_spec;intros. + change ([|subcarry x y|] = [|x|] - [|y|] - 1). + rewrite subcarry_spec. + rewrite Zmod_small;auto with zarith. + rewrite <- not_true_iff_false, ltb_spec;intros. + change (-wB + [|subcarry x y|] = [|x|] - [|y|] - 1). + rewrite subcarry_spec. + assert (([|x|] - [|y|] - 1) mod wB = [|x|] - [|y|] - 1 + wB). + symmetry;apply Zmod_unique with (-1);auto with zarith. + rewrite H0;ring. +Qed. + +Lemma oppc_spec : forall x : int, [-|oppc x|] = - [|x|]. +Proof. + unfold oppc;intros;rewrite subc_spec, to_Z_0;trivial. +Qed. + +Lemma opp_spec : forall x : int, [|- x|] = - [|x|] mod wB. +Proof. + unfold opp;intros. rewrite sub_spec, to_Z_0;trivial. +Qed. + +Lemma oppcarry_spec : forall x, [|oppcarry x|] = wB - [|x|] - 1. +Proof. + unfold oppcarry;intros. + rewrite sub_spec. + change [|max_int|] with (wB - 1). + rewrite <- Zminus_plus_distr, Zplus_comm, Zminus_plus_distr. + apply Zmod_small. + generalize (to_Z_bounded x);auto with zarith. +Qed. + +Lemma predc_spec : forall x, [-|predc x|] = [|x|] - 1. +Proof. intros; unfold predc; apply subc_spec. Qed. + +Lemma pred_spec : forall x, [|pred x|] = ([|x|] - 1) mod wB. +Proof. intros; unfold pred; apply sub_spec. Qed. + +Lemma diveucl_spec : + forall x y, + let (q,r) := diveucl x y in + ([|q|],[|r|]) = Z.div_eucl [|x|] [|y|]. +Proof. + intros;rewrite diveucl_def_spec. + unfold diveucl_def;rewrite div_spec, mod_spec. + unfold Z.div, Zmod;destruct (Z.div_eucl [|x|] [|y|]);trivial. +Qed. + +(* Sqrt *) + + (* Direct transcription of an old proof + of a fortran program in boyer-moore *) + +Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2). +Proof. + case (Z_mod_lt a 2); auto with zarith. + intros H1; rewrite Zmod_eq_full; auto with zarith. +Qed. + +Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k -> + (j * k) + j <= ((j + k)/2 + 1) ^ 2. +Proof. + intros Hj; generalize Hj k; pattern j; apply natlike_ind; + auto; clear k j Hj. + intros _ k Hk; repeat rewrite Zplus_0_l. + apply Zmult_le_0_compat; generalize (Z_div_pos k 2); auto with zarith. + intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk. + rewrite Zmult_0_r, Zplus_0_r, Zplus_0_l. + generalize (sqr_pos (Z.succ j / 2)) (quotient_by_2 (Z.succ j)); + unfold Z.succ. + rewrite Zpower_2, Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r. + auto with zarith. + intros k Hk _. + replace ((Z.succ j + Z.succ k) / 2) with ((j + k)/2 + 1). + generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)). + unfold Z.succ; repeat rewrite Zpower_2; + repeat rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r. + repeat rewrite Zmult_1_l; repeat rewrite Zmult_1_r. + auto with zarith. + rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith. + apply f_equal2 with (f := Z.div); auto with zarith. +Qed. + +Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2. +Proof. + intros Hi Hj. + assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith). + apply Z.lt_le_trans with (2 := sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij). + pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith. +Qed. + +Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2. +Proof. + intros Hi. + assert (H1: 0 <= i - 2) by auto with zarith. + assert (H2: 1 <= (i / 2) ^ 2); auto with zarith. + replace i with (1* 2 + (i - 2)); auto with zarith. + rewrite Zpower_2, Z_div_plus_full_l; auto with zarith. + generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2). + rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r. + auto with zarith. + generalize (quotient_by_2 i). + rewrite Zpower_2 in H2 |- *; + repeat (rewrite Zmult_plus_distr_l || + rewrite Zmult_plus_distr_r || + rewrite Zmult_1_l || rewrite Zmult_1_r). + auto with zarith. +Qed. + +Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i. +Proof. + intros Hi Hj Hd; rewrite Zpower_2. + apply Z.le_trans with (j * (i/j)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. +Qed. + +Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j. +Proof. + intros Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto. + intros H1; contradict H; apply Zle_not_lt. + assert (2 * j <= j + (i/j)); auto with zarith. + apply Z.le_trans with (2 * ((j + (i/j))/2)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. +Qed. + + +Lemma sqrt_step_correct rec i j: + 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 -> + 2 * [|j|] < wB -> + (forall j1 : int, + 0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 -> + [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> + [|sqrt_step rec i j|] ^ 2 <= [|i|] < ([|sqrt_step rec i j|] + 1) ^ 2. +Proof. + assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt). + intros Hi Hj Hij H31 Hrec. + unfold sqrt_step. + case_eq ((i / j < j)%int);[ | rewrite <- Bool.not_true_iff_false]; + rewrite ltb_spec, div_spec;intros. + assert ([| j + (i / j)%int|] = [|j|] + [|i|]/[|j|]). + { + rewrite add_spec, Zmod_small;rewrite div_spec; auto with zarith. + split. + - apply Z.add_nonneg_nonneg. + + apply Z.lt_le_incl; apply Z.le_lt_trans with (2 := H). apply Z_div_pos. + * apply Z.lt_gt. abstract omega. + * abstract omega. + + apply Z_div_pos. + * apply Z.lt_gt. assumption. + * abstract omega. + - abstract omega. + } + apply Hrec;rewrite lsr_spec, H0, to_Z_1;change (2^1) with 2. + split; [ | apply sqrt_test_false;auto with zarith]. + replace ([|j|] + [|i|]/[|j|]) with + (1 * 2 + (([|j|] - 2) + [|i|] / [|j|]));[ | ring]. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith). + assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / 2) ; auto with zarith. + case (Zle_lt_or_eq 1 [|j|]); auto with zarith. + { + intro. apply Z_div_pos. + - apply Zgt_pos_0. + - apply Z.add_nonneg_nonneg. + + abstract omega. + + assumption. + } + intros Hj1. + rewrite <- Hj1, Zdiv_1_r. + assert (0 <= ([|i|] - 1) /2)%Z;[ |apply Z_div_pos]; auto with zarith. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply sqrt_main;auto with zarith. + split;[apply sqrt_test_true | ];auto with zarith. +Qed. + +Lemma iter_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] -> + [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < wB -> + (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] -> + [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < wB -> + [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> + [|iter_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter_sqrt n rec i j|] + 1) ^ 2. +Proof. + revert rec i j; elim n; unfold iter_sqrt; fold iter_sqrt; clear n. + intros rec i j Hi Hj Hij H31 Hrec. replace (and (Z.le (Z.pow (to_Z match ltb (div i j) j return int with | true => rec i (lsr (add31 j (div i j)) In) | false => j end) (Zpos (xO xH))) (to_Z i)) (Z.lt (to_Z i) (Z.pow (Z.add (to_Z match ltb (div i j) j return int with | true => rec i (lsr (add31 j (div i j)) In) | false => j end) (Zpos xH)) (Zpos (xO xH))))) with ([|sqrt_step rec i j|] ^ 2 <= [|i|] < ([|sqrt_step rec i j|] + 1) ^ 2) by reflexivity. apply sqrt_step_correct; auto with zarith. + intros; apply Hrec; auto with zarith. + rewrite Zpower_0_r; auto with zarith. + intros n Hrec rec i j Hi Hj Hij H31 HHrec. + replace (and (Z.le (Z.pow (to_Z match ltb (div i j) j return int with | true => iter_sqrt n (iter_sqrt n rec) i (lsr (add31 j (div i j)) In) | false => j end) (Zpos (xO xH))) (to_Z i)) (Z.lt (to_Z i) (Z.pow (Z.add (to_Z match ltb (div i j) j return int with | true => iter_sqrt n (iter_sqrt n rec) i (lsr (add31 j (div i j)) In) | false => j end) (Zpos xH)) (Zpos (xO xH))))) with ([|sqrt_step (iter_sqrt n (iter_sqrt n rec)) i j|] ^ 2 <= [|i|] < ([|sqrt_step (iter_sqrt n (iter_sqrt n rec)) i j|] + 1) ^ 2) by reflexivity. + apply sqrt_step_correct; auto. + intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. + intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith. + intros j3 Hj3 Hpj3. + apply HHrec; auto. + rewrite inj_S, Zpower_Zsucc. + apply Z.le_trans with (2 ^Z_of_nat n + [|j2|]); auto with zarith. + apply Zle_0_nat. +Qed. + +Lemma sqrt_spec : forall x, + [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2. +Proof. + intros i; unfold sqrt. + rewrite compare_spec. case Z.compare_spec; rewrite to_Z_1; + intros Hi; auto with zarith. + repeat rewrite Zpower_2; auto with zarith. + apply iter_sqrt_correct; auto with zarith; + rewrite lsr_spec, to_Z_1; change (2^1) with 2; auto with zarith. + replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring. + assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith). + rewrite Z_div_plus_full_l; auto with zarith. + apply sqrt_init; auto. + assert (W:= Z_mult_div_ge [|i|] 2);assert (W':= to_Z_bounded i);auto with zarith. + intros j2 H1 H2; contradict H2; apply Zlt_not_le. + fold wB;assert (W:=to_Z_bounded i). + apply Z.le_lt_trans with ([|i|]); auto with zarith. + assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith). + apply Z.le_trans with (2 * ([|i|]/2)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. + case (to_Z_bounded i); repeat rewrite Zpower_2; auto with zarith. +Qed. + +Lemma sqrt2_step_def rec ih il j: + sqrt2_step rec ih il j = + if (ih < j)%int then + let quo := fst (diveucl_21 ih il j) in + if (quo < j)%int then + let m := + match j +c quo with + | C0 m1 => m1 >> 1 + | C1 m1 => (m1 >> 1 + 1 << (digits -1))%int + end in + rec ih il m + else j + else j. +Proof. + unfold sqrt2_step; case diveucl_21; intros;simpl. + case (j +c i);trivial. +Qed. + +Lemma sqrt2_lower_bound ih il j: + [|| WW ih il||] < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|]. +Proof. + intros H1. + case (to_Z_bounded j); intros Hbj _. + case (to_Z_bounded il); intros Hbil _. + case (to_Z_bounded ih); intros Hbih Hbih1. + assert (([|ih|] < [|j|] + 1)%Z); auto with zarith. + apply Zlt_square_simpl; auto with zarith. + simpl zn2z_to_Z in H1. + repeat rewrite <-Zpower_2; apply Z.le_lt_trans with (2 := H1). + apply Z.le_trans with ([|ih|] * wB)%Z;try rewrite Zpower_2; auto with zarith. +Qed. + + +Lemma div2_phi ih il j: + [|fst (diveucl_21 ih il j)|] = [|| WW ih il||] /[|j|]. +Proof. + generalize (diveucl_21_spec ih il j). + case diveucl_21; intros q r Heq. + simpl zn2z_to_Z;unfold Z.div;rewrite <- Heq;trivial. +Qed. + +Lemma zn2z_to_Z_pos ih il : 0 <= [||WW ih il||]. +Proof. + simpl zn2z_to_Z;destruct (to_Z_bounded ih);destruct (to_Z_bounded il);auto with zarith. +Qed. + + +Lemma sqrt2_step_correct rec ih il j: + 2 ^ (Z_of_nat (size - 2)) <= [|ih|] -> + 0 < [|j|] -> [|| WW ih il||] < ([|j|] + 1) ^ 2 -> + (forall j1, 0 < [|j1|] < [|j|] -> [|| WW ih il||] < ([|j1|] + 1) ^ 2 -> + [|rec ih il j1|] ^ 2 <= [||WW ih il||] < ([|rec ih il j1|] + 1) ^ 2) -> + [|sqrt2_step rec ih il j|] ^ 2 <= [||WW ih il ||] + < ([|sqrt2_step rec ih il j|] + 1) ^ 2. +Proof. + assert (Hp2: (0 < [|2|])%Z) by exact (refl_equal Lt). + intros Hih Hj Hij Hrec; rewrite sqrt2_step_def. + assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt2_lower_bound with il; auto). + case (to_Z_bounded ih); intros Hih1 _. + case (to_Z_bounded il); intros Hil1 _. + case (to_Z_bounded j); intros _ Hj1. + assert (Hp3: (0 < [||WW ih il||])). + simpl zn2z_to_Z;apply Z.lt_le_trans with ([|ih|] * wB)%Z; auto with zarith. + apply Zmult_lt_0_compat; auto with zarith. + apply Z.lt_le_trans with (2:= Hih); auto with zarith. + cbv zeta. + case_eq (ih < j)%int;intros Heq. + rewrite ltb_spec in Heq. + 2: rewrite <-not_true_iff_false, ltb_spec in Heq. + 2: split; auto. + 2: apply sqrt_test_true; auto with zarith. + 2: unfold zn2z_to_Z; replace [|ih|] with [|j|]; auto with zarith. + 2: assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith). + 2: rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith. + case (Zle_or_lt (2^(Z_of_nat size -1)) [|j|]); intros Hjj. + case_eq (fst (diveucl_21 ih il j) < j)%int;intros Heq0. + 2: rewrite <-not_true_iff_false, ltb_spec, div2_phi in Heq0. + 2: split; auto; apply sqrt_test_true; auto with zarith. + rewrite ltb_spec, div2_phi in Heq0. + match goal with |- context[rec _ _ ?X] => + set (u := X) + end. + assert (H: [|u|] = ([|j|] + ([||WW ih il||])/([|j|]))/2). + unfold u; generalize (addc_spec j (fst (diveucl_21 ih il j))); + case addc;unfold interp_carry;rewrite div2_phi;simpl zn2z_to_Z. + intros i H;rewrite lsr_spec, H;trivial. + intros i H;rewrite <- H. + case (to_Z_bounded i); intros H1i H2i. + rewrite add_spec, Zmod_small, lsr_spec. + change (1 * wB) with ([|(1 << (digits -1))|] * 2)%Z. + rewrite Z_div_plus_full_l; auto with zarith. + change wB with (2 * (wB/2))%Z; auto. + replace [|(1 << (digits - 1))|] with (wB/2); auto. + rewrite lsr_spec; auto. + replace (2^[|1|]) with 2%Z; auto. + split. + { + apply Z.add_nonneg_nonneg. + - apply Z_div_pos. + + apply Zgt_pos_0. + + assumption. + - apply Z_div_pos. + + apply Zgt_pos_0. + + abstract omega. + } + assert ([|i|]/2 < wB/2); auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + apply Hrec; rewrite H; clear u H. + assert (Hf1: 0 <= [||WW ih il||]/ [|j|]) by (apply Z_div_pos; auto with zarith). + case (Zle_lt_or_eq 1 ([|j|])); auto with zarith; intros Hf2. + 2: contradict Heq0; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; assert (H10: forall (x:Z), 0 < x -> 1 <= x) by (intros; omega); auto. + split. + replace ([|j|] + [||WW ih il||]/ [|j|])%Z with + (1 * 2 + (([|j|] - 2) + [||WW ih il||] / [|j|])); try ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= ([|j|] - 2 + [||WW ih il||] / [|j|]) / 2) ; auto with zarith. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - apply Z.add_nonneg_nonneg. + + abstract omega. + + assumption. + } + apply sqrt_test_false; auto with zarith. + apply sqrt_main; auto with zarith. + contradict Hij; apply Zle_not_lt. + assert ((1 + [|j|]) <= 2 ^ (Z_of_nat size - 1)); auto with zarith. + apply Z.le_trans with ((2 ^ (Z_of_nat size - 1)) ^2); auto with zarith. + assert (0 <= 1 + [|j|]); auto with zarith. + apply Zmult_le_compat; auto with zarith. + change ((2 ^ (Z_of_nat size - 1))^2) with (2 ^ (Z_of_nat size - 2) * wB). + apply Z.le_trans with ([|ih|] * wB); auto with zarith. + unfold zn2z_to_Z, wB; auto with zarith. +Qed. + + + +Lemma iter2_sqrt_correct n rec ih il j: + 2^(Z_of_nat (size - 2)) <= [|ih|] -> 0 < [|j|] -> [||WW ih il||] < ([|j|] + 1) ^ 2 -> + (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] -> + [||WW ih il||] < ([|j1|] + 1) ^ 2 -> + [|rec ih il j1|] ^ 2 <= [||WW ih il||] < ([|rec ih il j1|] + 1) ^ 2) -> + [|iter2_sqrt n rec ih il j|] ^ 2 <= [||WW ih il||] + < ([|iter2_sqrt n rec ih il j|] + 1) ^ 2. +Proof. + revert rec ih il j; elim n; unfold iter2_sqrt; fold iter2_sqrt; clear n. + intros rec ih il j Hi Hj Hij Hrec; apply sqrt2_step_correct; auto with zarith. + intros; apply Hrec; auto with zarith. + rewrite Zpower_0_r; auto with zarith. + intros n Hrec rec ih il j Hi Hj Hij HHrec. + apply sqrt2_step_correct; auto. + intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. + intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith. + intros j3 Hj3 Hpj3. + apply HHrec; auto. + rewrite inj_S, Zpower_Zsucc. + apply Z.le_trans with (2 ^Z_of_nat n + [|j2|])%Z; auto with zarith. + apply Zle_0_nat. +Qed. + + +Lemma sqrt2_spec : forall x y, + wB/ 4 <= [|x|] -> + let (s,r) := sqrt2 x y in + [||WW x y||] = [|s|] ^ 2 + [+|r|] /\ + [+|r|] <= 2 * [|s|]. + Proof. + intros ih il Hih; unfold sqrt2. + change [||WW ih il||] with ([||WW ih il||]). + assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by + (intros s; ring). + assert (Hb: 0 <= wB) by (red; intros HH; discriminate). + assert (Hi2: [||WW ih il ||] < ([|max_int|] + 1) ^ 2). + apply Z.le_lt_trans with ((wB - 1) * wB + (wB - 1)); auto with zarith. + 2: apply refl_equal. + case (to_Z_bounded ih); case (to_Z_bounded il); intros H1 H2 H3 H4. + unfold zn2z_to_Z; auto with zarith. + case (iter2_sqrt_correct size (fun _ _ j => j) ih il max_int); auto with zarith. + apply refl_equal. + intros j1 _ HH; contradict HH. + apply Zlt_not_le. + case (to_Z_bounded j1); auto with zarith. + change (2 ^ Z_of_nat size) with ([|max_int|]+1)%Z; auto with zarith. + set (s := iter2_sqrt size (fun _ _ j : int=> j) ih il max_int). + intros Hs1 Hs2. + generalize (mulc_spec s s); case mulc. + simpl fst; simpl snd; intros ih1 il1 Hihl1. + generalize (subc_spec il il1). + case subc; intros il2 Hil2. + simpl interp_carry in Hil2. + case_eq (ih1 < ih)%int; [idtac | rewrite <- not_true_iff_false]; + rewrite ltb_spec; intros Heq. + unfold interp_carry; rewrite Zmult_1_l. + rewrite Zpower_2, Hihl1, Hil2. + case (Zle_lt_or_eq ([|ih1|] + 1) ([|ih|])); auto with zarith. + intros H2; contradict Hs2; apply Zle_not_lt. + replace (([|s|] + 1) ^ 2) with ([||WW ih1 il1||] + 2 * [|s|] + 1). + unfold zn2z_to_Z. + case (to_Z_bounded il); intros Hpil _. + assert (Hl1l: [|il1|] <= [|il|]). + case (to_Z_bounded il2); rewrite Hil2; auto with zarith. + assert ([|ih1|] * wB + 2 * [|s|] + 1 <= [|ih|] * wB); auto with zarith. + case (to_Z_bounded s); intros _ Hps. + case (to_Z_bounded ih1); intros Hpih1 _; auto with zarith. + apply Z.le_trans with (([|ih1|] + 2) * wB); auto with zarith. + rewrite Zmult_plus_distr_l. + assert (2 * [|s|] + 1 <= 2 * wB); auto with zarith. + unfold zn2z_to_Z; rewrite <-Hihl1, Hbin; auto. + intros H2; split. + unfold zn2z_to_Z; rewrite <- H2; ring. + replace (wB + ([|il|] - [|il1|])) with ([||WW ih il||] - ([|s|] * [|s|])). + rewrite <-Hbin in Hs2; assert (([||WW ih il||] < [|s|] * [|s|] + 2 * [|s|] + 1) -> ([||WW ih il||] - [|s|] * [|s|] <= 2 * [|s|])) by omega; auto. + rewrite Hihl1; unfold zn2z_to_Z; rewrite <- H2; ring. + unfold interp_carry. + case (Zle_lt_or_eq [|ih|] [|ih1|]); auto with zarith; intros H. + contradict Hs1. + apply Zlt_not_le; rewrite Zpower_2, Hihl1. + unfold zn2z_to_Z. + case (to_Z_bounded il); intros _ H2. + apply Z.lt_le_trans with (([|ih|] + 1) * wB + 0). + rewrite Zmult_plus_distr_l, Zplus_0_r; auto with zarith. + case (to_Z_bounded il1); intros H3 _. + apply Zplus_le_compat; auto with zarith. + split. + rewrite Zpower_2, Hihl1. + unfold zn2z_to_Z; ring[Hil2 H]. + replace [|il2|] with ([||WW ih il||] - [||WW ih1 il1||]). + unfold zn2z_to_Z at 2; rewrite <-Hihl1. + rewrite <-Hbin in Hs2; assert (([||WW ih il||] < [|s|] * [|s|] + 2 * [|s|] + 1) -> ([||WW ih il||] - [|s|] * [|s|] <= 2 * [|s|])) by omega; auto. + unfold zn2z_to_Z; rewrite H, Hil2; ring. + unfold interp_carry in Hil2 |- *. + assert (Hsih: [|ih - 1|] = [|ih|] - 1). + rewrite sub_spec, Zmod_small; auto; replace [|1|] with 1; auto. + case (to_Z_bounded ih); intros H1 H2. + split; auto with zarith. + apply Z.le_trans with (wB/4 - 1); auto with zarith. + case_eq (ih1 < ih - 1)%int; [idtac | rewrite <- not_true_iff_false]; + rewrite ltb_spec, Hsih; intros Heq. + rewrite Zpower_2, Hihl1. + case (Zle_lt_or_eq ([|ih1|] + 2) [|ih|]); auto with zarith. + intros H2; contradict Hs2; apply Zle_not_lt. + replace (([|s|] + 1) ^ 2) with ([||WW ih1 il1||] + 2 * [|s|] + 1). + unfold zn2z_to_Z. + assert ([|ih1|] * wB + 2 * [|s|] + 1 <= [|ih|] * wB + ([|il|] - [|il1|])); + auto with zarith. + rewrite <-Hil2. + case (to_Z_bounded il2); intros Hpil2 _. + apply Z.le_trans with ([|ih|] * wB + - wB); auto with zarith. + case (to_Z_bounded s); intros _ Hps. + assert (2 * [|s|] + 1 <= 2 * wB); auto with zarith. + apply Z.le_trans with ([|ih1|] * wB + 2 * wB); auto with zarith. + assert (Hi: ([|ih1|] + 3) * wB <= [|ih|] * wB); auto with zarith. + rewrite Zmult_plus_distr_l in Hi; auto with zarith. + unfold zn2z_to_Z; rewrite <-Hihl1, Hbin; auto. + intros H2; unfold zn2z_to_Z; rewrite <-H2. + split. + replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. + rewrite <-Hil2; ring. + replace (1 * wB + [|il2|]) with ([||WW ih il||] - [||WW ih1 il1||]). + unfold zn2z_to_Z at 2; rewrite <-Hihl1. + rewrite <-Hbin in Hs2; assert (([||WW ih il||] < [|s|] * [|s|] + 2 * [|s|] + 1) -> ([||WW ih il||] - [|s|] * [|s|] <= 2 * [|s|])) by omega; auto. + unfold zn2z_to_Z; rewrite <-H2. + replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. + rewrite <-Hil2; ring. + case (Zle_lt_or_eq ([|ih|] - 1) ([|ih1|])); auto with zarith; intros H1. + assert (He: [|ih|] = [|ih1|]). + apply Zle_antisym; auto with zarith. + case (Zle_or_lt [|ih1|] [|ih|]); auto; intros H2. + contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, Hihl1. + unfold zn2z_to_Z. + case (to_Z_bounded il); intros _ Hpil1. + apply Z.lt_le_trans with (([|ih|] + 1) * wB). + rewrite Zmult_plus_distr_l, Zmult_1_l; auto with zarith. + case (to_Z_bounded il1); intros Hpil2 _. + apply Z.le_trans with (([|ih1|]) * wB); auto with zarith. + contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, Hihl1. + unfold zn2z_to_Z; rewrite He. + assert ([|il|] - [|il1|] < 0); auto with zarith. + rewrite <-Hil2. + case (to_Z_bounded il2); auto with zarith. + split. + rewrite Zpower_2, Hihl1. + unfold zn2z_to_Z; rewrite <-H1. + apply trans_equal with ([|ih|] * wB + [|il1|] + ([|il|] - [|il1|])). + ring. + rewrite <-Hil2; ring. + replace [|il2|] with ([||WW ih il||] - [||WW ih1 il1||]). + unfold zn2z_to_Z at 2; rewrite <- Hihl1. + rewrite <-Hbin in Hs2; assert (([||WW ih il||] < [|s|] * [|s|] + 2 * [|s|] + 1) -> ([||WW ih il||] - [|s|] * [|s|] <= 2 * [|s|])) by omega; auto. + unfold zn2z_to_Z. + rewrite <-H1. + ring_simplify. + apply trans_equal with (wB + ([|il|] - [|il1|])). + ring. + rewrite <-Hil2; ring. +Qed. + +Lemma to_Z_gcd : forall i j, + [|gcd i j|] = Zgcdn (2*size) [|j|] [|i|]. +Proof. + unfold gcd. + induction (2*size)%nat; intros. + reflexivity. + simpl. + generalize (to_Z_bounded j)(to_Z_bounded i); intros. + case_eq (j == 0)%int. + rewrite eqb_spec;intros H1;rewrite H1. + replace [|0|] with 0;trivial;rewrite Z.abs_eq;auto with zarith. + rewrite <- not_true_iff_false, eqb_spec;intros. + case_eq [|j|]; intros. + elim H1;apply to_Z_inj;assumption. + rewrite IHn, <- H2, mod_spec;trivial. + rewrite H2 in H;destruct H as (H, _);elim H;trivial. +Qed. + +Lemma gcd_spec : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|]. +Proof. + intros. + rewrite to_Z_gcd. + apply Zis_gcd_sym. + apply Zgcdn_is_gcd. + unfold Zgcd_bound. + generalize (to_Z_bounded b). + destruct [|b|]. + unfold size; intros _; change Int31.size with 31%nat; omega. + intros (_,H). + cut (Psize p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto]. + intros (H,_); compute in H; elim H; auto. +Qed. + +Lemma head00_spec: forall x, [|x|] = 0 -> [|head0 x|] = [|digits|]. +Proof. + change 0 with [|0|];intros x Heq. + apply to_Z_inj in Heq;rewrite Heq;trivial. +Qed. + +Lemma tail00_spec: forall x, [|x|] = 0 -> [|tail0 x|] = [|digits|]. +Proof. + change 0 with [|0|];intros x Heq. + apply to_Z_inj in Heq;rewrite Heq;trivial. +Qed. + +(* lsr lsl *) +Lemma lsl_0_l i: 0 << i = 0%int. +Proof. + apply to_Z_inj. + generalize (lsl_spec 0 i). + rewrite to_Z_0, Zmult_0_l, Zmod_0_l; auto. +Qed. + +Lemma lsl_0_r i: i << 0 = i. +Proof. + apply to_Z_inj. + rewrite lsl_spec, to_Z_0, Zmult_1_r. + apply Zmod_small; apply (to_Z_bounded i). +Qed. + +Lemma lsl_M_r x i (H: (digits <= i = true)%int) : x << i = 0%int. +Proof. + apply to_Z_inj. + rewrite lsl_spec, to_Z_0. + rewrite leb_spec in H. + unfold wB; change (Z_of_nat size) with [|digits|]. + replace ([|i|]) with (([|i|] - [|digits|]) + [|digits|])%Z; try ring. + rewrite Zpower_exp, Zmult_assoc, Z_mod_mult; auto with arith. + apply Z.le_ge; auto with zarith. + case (to_Z_bounded digits); auto with zarith. +Qed. + +Lemma lsr_0_l i: 0 >> i = 0%int. +Proof. + apply to_Z_inj. + generalize (lsr_spec 0 i). + rewrite to_Z_0, Zdiv_0_l; auto. +Qed. + +Lemma lsr_0_r i: i >> 0 = i. +Proof. + apply to_Z_inj. + rewrite lsr_spec, to_Z_0, Zdiv_1_r; auto. +Qed. + +Lemma lsr_M_r x i (H: (digits <= i = true)%int) : x >> i = 0%int. +Proof. + apply to_Z_inj. + rewrite lsr_spec, to_Z_0. + case (to_Z_bounded x); intros H1x H2x. + case (to_Z_bounded digits); intros H1d H2d. + rewrite leb_spec in H. + apply Zdiv_small; split; auto. + apply Z.lt_le_trans with (1 := H2x). + unfold wB; change (Z_of_nat size) with [|digits|]. + apply Zpower_le_monotone; auto with zarith. +Qed. + +Lemma add_le_r m n: + if (n <= m + n)%int then ([|m|] + [|n|] < wB)%Z else (wB <= [|m|] + [|n|])%Z. +Proof. + case (to_Z_bounded m); intros H1m H2m. + case (to_Z_bounded n); intros H1n H2n. + case (Zle_or_lt wB ([|m|] + [|n|])); intros H. + assert (H1: ([| m + n |] = [|m|] + [|n|] - wB)%Z). + rewrite add_spec. + replace (([|m|] + [|n|]) mod wB)%Z with (((([|m|] + [|n|]) - wB) + wB) mod wB)%Z. + rewrite Zplus_mod, Z_mod_same_full, Zplus_0_r, !Zmod_small; auto with zarith. + rewrite !Zmod_small; auto with zarith. + apply f_equal2 with (f := Zmod); auto with zarith. + case_eq (n <= m + n)%int; auto. + rewrite leb_spec, H1; auto with zarith. + assert (H1: ([| m + n |] = [|m|] + [|n|])%Z). + rewrite add_spec, Zmod_small; auto with zarith. + replace (n <= m + n)%int with true; auto. + apply sym_equal; rewrite leb_spec, H1; auto with zarith. +Qed. + +Lemma lsr_add i m n: ((i >> m) >> n = if n <= m + n then i >> (m + n) else 0)%int. +Proof. + case (to_Z_bounded m); intros H1m H2m. + case (to_Z_bounded n); intros H1n H2n. + case (to_Z_bounded i); intros H1i H2i. + generalize (add_le_r m n); case (n <= m + n)%int; intros H. + apply to_Z_inj; rewrite !lsr_spec, Zdiv_Zdiv, <- Zpower_exp; auto with zarith. + rewrite add_spec, Zmod_small; auto with zarith. + apply to_Z_inj; rewrite !lsr_spec, Zdiv_Zdiv, <- Zpower_exp; auto with zarith. + apply Zdiv_small; split; auto with zarith. + apply Z.lt_le_trans with (1 := H2i). + apply Z.le_trans with (1 := H). + apply Zpower2_le_lin; auto with zarith. +Qed. + +Lemma lsl_add i m n: ((i << m) << n = if n <= m + n then i << (m + n) else 0)%int. +Proof. + case (to_Z_bounded m); intros H1m H2m. + case (to_Z_bounded n); intros H1n H2n. + case (to_Z_bounded i); intros H1i H2i. + generalize (add_le_r m n); case (n <= m + n)%int; intros H. + apply to_Z_inj; rewrite !lsl_spec, Zmult_mod, Zmod_mod, <- Zmult_mod. + rewrite <-Zmult_assoc, <- Zpower_exp; auto with zarith. + apply f_equal2 with (f := Zmod); auto. + rewrite add_spec, Zmod_small; auto with zarith. + apply to_Z_inj; rewrite !lsl_spec, Zmult_mod, Zmod_mod, <- Zmult_mod. + rewrite <-Zmult_assoc, <- Zpower_exp; auto with zarith. + unfold wB. + replace ([|m|] + [|n|])%Z with + ((([|m|] + [|n|]) - Z_of_nat size) + Z_of_nat size)%Z. + 2: ring. + rewrite Zpower_exp, Zmult_assoc, Z_mod_mult; auto with zarith. + assert (Z_of_nat size < wB)%Z; auto with zarith. + apply Zpower2_lt_lin; auto with zarith. +Qed. + + +Coercion b2i (b: bool) : int := if b then 1%int else 0%int. + +Lemma bit_0 n : bit 0 n = false. +Proof. unfold bit; rewrite lsr_0_l; auto. Qed. + +Lemma lsr_1 n : 1 >> n = (n == 0). +Proof. + case_eq (n == 0). + rewrite eqb_spec; intros H; rewrite H, lsr_0_r. + apply refl_equal. + intros Hn. + assert (H1n : (1 >> n = 0)%int); auto. + apply to_Z_inj; rewrite lsr_spec. + apply Zdiv_small; rewrite to_Z_1; split; auto with zarith. + change 1%Z with (2^0)%Z. + apply Zpower_lt_monotone; split; auto with zarith. + case (Zle_lt_or_eq 0 [|n|]); auto. + case (to_Z_bounded n); auto. + intros H1. + assert ((n == 0) = true). + rewrite eqb_spec; apply to_Z_inj; rewrite <-H1, to_Z_0; auto. + generalize H; rewrite Hn; discriminate. +Qed. + +Lemma bit_1 n : bit 1 n = (n == 0). +Proof. + unfold bit; rewrite lsr_1. + case (n == 0). + apply refl_equal. + rewrite lsl_0_l; apply refl_equal. +Qed. + +Lemma bit_M i n (H: (digits <= n = true)%int): bit i n = false. +Proof. unfold bit; rewrite lsr_M_r; auto. Qed. + +Lemma bit_half i n (H: (n < digits = true)%int) : bit (i>>1) n = bit i (n+1). +Proof. + unfold bit. + rewrite lsr_add. + case_eq (n <= (1 + n))%int. + replace (1+n)%int with (n+1)%int; [auto|idtac]. + apply to_Z_inj; rewrite !add_spec, Zplus_comm; auto. + intros H1; assert (H2: n = max_int). + 2: generalize H; rewrite H2; discriminate. + case (to_Z_bounded n); intros H1n H2n. + case (Zle_lt_or_eq [|n|] (wB - 1)); auto with zarith; + intros H2; apply to_Z_inj; auto. + generalize (add_le_r 1 n); rewrite H1. + change [|max_int|] with (wB - 1)%Z. + replace [|1|] with 1%Z; auto with zarith. +Qed. + +Lemma bit_0_spec i: [|bit i 0|] = [|i|] mod 2. +Proof. + unfold bit, is_zero; rewrite lsr_0_r. + assert (Hbi: ([|i|] mod 2 < 2)%Z). + apply Z_mod_lt; auto with zarith. + case (to_Z_bounded i); intros H1i H2i. + case (Zmod_le_first [|i|] 2); auto with zarith; intros H3i H4i. + assert (H2b: (0 < 2 ^ [|digits - 1|])%Z). + apply Zpower_gt_0; auto with zarith. + case (to_Z_bounded (digits -1)); auto with zarith. + assert (H: [|i << (digits -1)|] = ([|i|] mod 2 * 2^ [|digits -1|])%Z). + rewrite lsl_spec. + rewrite (Z_div_mod_eq [|i|] 2) at 1; auto with zarith. + rewrite Zmult_plus_distr_l, <-Zplus_mod_idemp_l. + rewrite (Zmult_comm 2), <-Zmult_assoc. + replace (2 * 2 ^ [|digits - 1|])%Z with wB; auto. + rewrite Z_mod_mult, Zplus_0_l; apply Zmod_small. + split; auto with zarith. + replace wB with (2 * 2 ^ [|digits -1|])%Z; auto. + apply Zmult_lt_compat_r; auto with zarith. + case (Zle_lt_or_eq 0 ([|i|] mod 2)); auto with zarith; intros Hi. + 2: generalize H; rewrite <-Hi, Zmult_0_l. + 2: replace 0%Z with [|0|]; auto. + 2: rewrite to_Z_eq, <-eqb_spec; intros H1; rewrite H1; auto. + generalize H; replace ([|i|] mod 2) with 1%Z; auto with zarith. + rewrite Zmult_1_l. + intros H1. + assert (H2: [|i << (digits - 1)|] <> [|0|]). + replace [|0|] with 0%Z; auto with zarith. + generalize (eqb_spec (i << (digits - 1)) 0). + case (i << (digits - 1) == 0); auto. + intros (H3,_); case H2. + rewrite to_Z_eq; auto. +Qed. + +Lemma bit_split i : (i = (i>>1)<<1 + bit i 0)%int. +Proof. + apply to_Z_inj. + rewrite add_spec, lsl_spec, lsr_spec, bit_0_spec, Zplus_mod_idemp_l. + replace (2 ^ [|1|]) with 2%Z; auto with zarith. + rewrite Zmult_comm, <-Z_div_mod_eq; auto with zarith. + rewrite Zmod_small; auto; case (to_Z_bounded i); auto. +Qed. + + +Lemma bit_eq i1 i2: + i1 = i2 <-> forall i, bit i1 i = bit i2 i. +Admitted. (* Too slow *) +(* Proof. *) +(* split; try (intros; subst; auto; fail). *) +(* case (to_Z_bounded i2); case (to_Z_bounded i1). *) +(* unfold wB; generalize i1 i2; elim size; clear i1 i2. *) +(* replace (2^Z_of_nat 0) with 1%Z; auto with zarith. *) +(* intros; apply to_Z_inj; auto with zarith. *) +(* intros n IH i1 i2 H1i1 H2i1 H1i2 H2i2 H. *) +(* rewrite (bit_split i1), (bit_split i2). *) +(* rewrite H. *) +(* apply f_equal2 with (f := add31); auto. *) +(* apply f_equal2 with (f := lsl); auto. *) +(* apply IH; try rewrite lsr_spec; *) +(* replace (2^[|1|]) with 2%Z; auto with zarith. *) +(* apply Zdiv_lt_upper_bound; auto with zarith. *) +(* generalize H2i1; rewrite inj_S. *) +(* unfold Z.succ; rewrite Zpower_exp; auto with zarith. *) +(* apply Zdiv_lt_upper_bound; auto with zarith. *) +(* generalize H2i2; rewrite inj_S. *) +(* unfold Z.succ; rewrite Zpower_exp; auto with zarith. *) +(* intros i. *) +(* case (Zle_or_lt [|digits|] [|i|]); intros Hi. *) +(* rewrite !bit_M; auto; rewrite leb_spec; auto. *) +(* rewrite !bit_half; auto; rewrite ltb_spec; auto with zarith. *) +(* Qed. *) + +Lemma bit_lsr x i j : + (bit (x >> i) j = if j <= i + j then bit x (i + j) else false)%int. +Proof. + unfold bit; rewrite lsr_add; case leb; auto. +Qed. + +Lemma bit_lsl x i j : bit (x << i) j = +(if (j < i) || (digits <= j) then false else bit x (j - i))%int. +Proof. + assert (F1: 1 >= 0) by discriminate. + case_eq (digits <= j)%int; intros H. + rewrite orb_true_r, bit_M; auto. + set (d := [|digits|]). + case (Zle_or_lt d [|j|]); intros H1. + case (leb_spec digits j); rewrite H; auto with zarith. + intros _ HH; generalize (HH H1); discriminate. + clear H. + generalize (ltb_spec j i); case ltb; intros H2; unfold bit; [change (if true || false then false else negb (is_zero ((x >> (j - i)) << (digits - 1)))) with false | change (if false || false then false else negb (is_zero ((x >> (j - i)) << (digits - 1)))) with (negb (is_zero ((x >> (j - i)) << (digits - 1))))]. + assert (F2: ([|j|] < [|i|])%Z) by (case H2; auto); clear H2. + replace (is_zero (((x << i) >> j) << (digits - 1))) with true; auto. + case (to_Z_bounded j); intros H1j H2j. + apply sym_equal; rewrite is_zero_spec; apply to_Z_inj. + rewrite lsl_spec, lsr_spec, lsl_spec. + replace wB with (2^d); auto. + pattern d at 1; replace d with ((d - ([|j|] + 1)) + ([|j|] + 1))%Z. + 2: ring. + rewrite Zpower_exp; auto with zarith. + replace [|i|] with (([|i|] - ([|j|] + 1)) + ([|j|] + 1))%Z. + 2: ring. + rewrite Zpower_exp, Zmult_assoc; auto with zarith. + rewrite Zmult_mod_distr_r. + rewrite Zplus_comm, Zpower_exp, !Zmult_assoc; auto with zarith. + rewrite Z_div_mult_full; auto with zarith. + 2: assert (0 < 2 ^ [|j|])%Z; auto with zarith. + rewrite <-Zmult_assoc, <-Zpower_exp; auto with zarith. + replace (1 + [|digits - 1|])%Z with d; auto with zarith. + rewrite Z_mod_mult; auto. + case H2; intros _ H3; case (Zle_or_lt [|i|] [|j|]); intros F2. + 2: generalize (H3 F2); discriminate. + clear H2 H3. + apply f_equal with (f := negb). + apply f_equal with (f := is_zero). + apply to_Z_inj. + rewrite !lsl_spec, !lsr_spec, !lsl_spec. + pattern wB at 2 3; replace wB with (2^(1+ [|digits - 1|])); auto. + rewrite Zpower_exp, Zpower_1_r; auto with zarith. + rewrite !Zmult_mod_distr_r. + apply f_equal2 with (f := Zmult); auto. + replace wB with (2^ d); auto with zarith. + replace d with ((d - [|i|]) + [|i|])%Z. + 2: ring. + case (to_Z_bounded i); intros H1i H2i. + rewrite Zpower_exp; [ |apply Z.le_ge; lia|apply Z.le_ge; assumption]. + rewrite Zmult_mod_distr_r. + case (to_Z_bounded j); intros H1j H2j. + replace [|j - i|] with ([|j|] - [|i|])%Z. + 2: rewrite sub_spec, Zmod_small; auto with zarith. + set (d1 := (d - [|i|])%Z). + set (d2 := ([|j|] - [|i|])%Z). + pattern [|j|] at 1; + replace [|j|] with (d2 + [|i|])%Z. + 2: unfold d2; ring. + rewrite Zpower_exp; auto with zarith. + rewrite Zdiv_mult_cancel_r. + 2: (apply Zlt0_not_eq; apply Z.pow_pos_nonneg; [apply Pos2Z.is_pos|assumption]). + rewrite (Z_div_mod_eq [|x|] (2^d1)) at 2; auto with zarith. + 2: apply Z.lt_gt; apply Zpower_gt_0; unfold d1; lia. + pattern d1 at 2; + replace d1 with (d2 + (1+ (d - [|j|] - 1)))%Z. + 2: unfold d1, d2; ring. + rewrite Zpower_exp; auto with zarith. + rewrite <-Zmult_assoc, Zmult_comm. + rewrite Z_div_plus_l; auto with zarith. + rewrite Zpower_exp, Zpower_1_r; auto with zarith. + rewrite <-Zplus_mod_idemp_l. + rewrite <-!Zmult_assoc, Zmult_comm, Z_mod_mult, Zplus_0_l; auto. +Qed. + + +Lemma bit_b2i (b: bool) i : bit b i = (i == 0) && b. +Proof. + case b; unfold bit; simpl b2i. + 2: rewrite lsr_0_l, lsl_0_l, andb_false_r; auto. + rewrite lsr_1; case (i == 0); auto. +Qed. + +Lemma bit_or_split i : (i = (i>>1)<<1 lor bit i 0)%int. +Proof. + rewrite bit_eq. + intros n; rewrite lor_spec. + rewrite bit_lsl, bit_lsr, bit_b2i. + case (to_Z_bounded n); intros Hi _. + case (Zle_lt_or_eq _ _ Hi). + 2: replace 0%Z with [|0|]; auto; rewrite to_Z_eq. + 2: intros H; rewrite <-H. + 2: replace (0 < 1)%int with true; auto. + intros H; clear Hi. + case_eq (n == 0). + rewrite eqb_spec; intros H1; generalize H; rewrite H1; discriminate. + intros _; rewrite orb_false_r. + case_eq (n < 1)%int. + rewrite ltb_spec, to_Z_1; intros HH; contradict HH; auto with zarith. + intros _. + generalize (@bit_M i n); case leb. + intros H1; rewrite H1; auto. + intros _. + case (to_Z_bounded n); intros H1n H2n. + assert (F1: [|n - 1|] = ([|n|] - 1)%Z). + rewrite sub_spec, Zmod_small; rewrite to_Z_1; auto with zarith. + generalize (add_le_r 1 (n - 1)); case leb; rewrite F1, to_Z_1; intros HH. + replace (1 + (n -1))%int with n. change (bit i n = bit i n). reflexivity. + apply to_Z_inj; rewrite add_spec, F1, Zmod_small; rewrite to_Z_1; + auto with zarith. + rewrite bit_M; auto; rewrite leb_spec. + replace [|n|] with wB; try discriminate; auto with zarith. +Qed. + +(* is_zero *) +Lemma is_zero_0: is_zero 0 = true. +Proof. apply refl_equal. Qed. + +(* is_even *) +Lemma is_even_bit i : is_even i = negb (bit i 0). +Proof. + unfold is_even. + replace (i land 1) with (b2i (bit i 0)). + case bit; auto. + apply bit_eq; intros n. + rewrite bit_b2i, land_spec, bit_1. + generalize (eqb_spec n 0). + case (n == 0); auto. + intros(H,_); rewrite andb_true_r, H; auto. + rewrite andb_false_r; auto. +Qed. + +Lemma is_even_0: is_even 0 = true. +Proof. apply refl_equal. Qed. + +Lemma is_even_lsl_1 i: is_even (i << 1) = true. +Proof. + rewrite is_even_bit, bit_lsl; auto. +Qed. + +Lemma is_even_spec : forall x, + if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. +Proof. +intros x; rewrite is_even_bit. +generalize (bit_0_spec x); case bit; simpl; auto. +Qed. + +(* More land *) + +Lemma land_0_l i: 0 land i = 0%int. +Proof. + apply bit_eq; intros n. + rewrite land_spec, bit_0; auto. +Qed. + +Lemma land_0_r i: i land 0 = 0%int. +Proof. + apply bit_eq; intros n. + rewrite land_spec, bit_0, andb_false_r; auto. +Qed. + +Lemma land_assoc i1 i2 i3 : + i1 land (i2 land i3) = i1 land i2 land i3. +Proof. + apply bit_eq; intros n. + rewrite !land_spec, andb_assoc; auto. +Qed. + + +Lemma land_comm i j : i land j = j land i. +Proof. + apply bit_eq; intros n. + rewrite !land_spec, andb_comm; auto. +Qed. + +Lemma lor_comm i1 i2 : i1 lor i2 = i2 lor i1. +Proof. + apply bit_eq; intros n. + rewrite !lor_spec, orb_comm; auto. +Qed. + +Lemma lor_assoc i1 i2 i3 : + i1 lor (i2 lor i3) = i1 lor i2 lor i3. +Proof. + apply bit_eq; intros n. + rewrite !lor_spec, orb_assoc; auto. +Qed. + +Lemma land_lor_distrib_r i1 i2 i3 : + i1 land (i2 lor i3) = (i1 land i2) lor (i1 land i3). +Proof. + apply bit_eq; intros n. + rewrite !land_spec, !lor_spec, !land_spec, andb_orb_distrib_r; auto. +Qed. + +Lemma land_lor_distrib_l i1 i2 i3 : + (i1 lor i2) land i3 = (i1 land i3) lor (i2 land i3). +Proof. + apply bit_eq; intros n. + rewrite !land_spec, !lor_spec, !land_spec, andb_orb_distrib_l; auto. +Qed. + +Lemma lor_land_distrib_r i1 i2 i3: + i1 lor (i2 land i3) = (i1 lor i2) land (i1 lor i3). +Proof. + apply bit_eq; intros n. + rewrite !land_spec, !lor_spec, !land_spec, orb_andb_distrib_r; auto. +Qed. + +Lemma lor_land_distrib_l i1 i2 i3: + (i1 land i2) lor i3 = (i1 lor i3) land (i2 lor i3). +Proof. + apply bit_eq; intros n. + rewrite !land_spec, !lor_spec, !land_spec, orb_andb_distrib_l; auto. +Qed. + +Lemma absoption_land i1 i2 : i1 land (i1 lor i2) = i1. +Proof. + apply bit_eq; intros n. + rewrite land_spec, lor_spec, absoption_andb; auto. +Qed. + +Lemma absoption_lor i1 i2: i1 lor (i1 land i2) = i1. +Proof. + apply bit_eq; intros n. + rewrite lor_spec, land_spec, absoption_orb; auto. +Qed. + +Lemma land_lsl i1 i2 i: (i1 land i2) << i = (i1 << i) land (i2 << i). +Proof. + apply bit_eq; intros n. + rewrite land_spec, !bit_lsl, land_spec. + case (_ || _); auto. +Qed. + +Lemma lor_lsl i1 i2 i: (i1 lor i2) << i = (i1 << i) lor (i2 << i). +Proof. + apply bit_eq; intros n. + rewrite lor_spec, !bit_lsl, lor_spec. + case (_ || _); auto. +Qed. + +Lemma lxor_lsl i1 i2 i: (i1 lxor i2) << i = (i1 << i) lxor (i2 << i). +Proof. + apply bit_eq; intros n. + rewrite lxor_spec, !bit_lsl, lxor_spec. + case (_ || _); auto. +Qed. + +Lemma land_lsr i1 i2 i: (i1 land i2) >> i = (i1 >> i) land (i2 >> i). +Proof. + apply bit_eq; intros n. + rewrite land_spec, !bit_lsr, land_spec. + case (_ <= _)%int; auto. +Qed. + +Lemma lor_lsr i1 i2 i: (i1 lor i2) >> i = (i1 >> i) lor (i2 >> i). +Proof. + apply bit_eq; intros n. + rewrite lor_spec, !bit_lsr, lor_spec. + case (_ <= _)%int; auto. +Qed. + +Lemma lxor_lsr i1 i2 i: (i1 lxor i2) >> i = (i1 >> i) lxor (i2 >> i). +Proof. + apply bit_eq; intros n. + rewrite lxor_spec, !bit_lsr, lxor_spec. + case (_ <= _)%int; auto. +Qed. + +Lemma is_even_and i j : is_even (i land j) = is_even i || is_even j. +Proof. + rewrite !is_even_bit, land_spec; case bit; auto. +Qed. + +Lemma is_even_or i j : is_even (i lor j) = is_even i && is_even j. +Proof. + rewrite !is_even_bit, lor_spec; case bit; auto. +Qed. + +Lemma is_even_xor i j : is_even (i lxor j) = negb (xorb (is_even i) (is_even j)). +Proof. + rewrite !is_even_bit, lxor_spec; do 2 case bit; auto. +Qed. + +Lemma lsl_add_distr x y n: (x + y) << n = ((x << n) + (y << n))%int. +Proof. + apply to_Z_inj; rewrite !lsl_spec, !add_spec, Zmult_mod_idemp_l. + rewrite !lsl_spec, <-Zplus_mod. + apply f_equal2 with (f := Zmod); auto with zarith. +Qed. + +Lemma add_assoc x y z: (x + (y + z) = (x + y) + z)%int. +Proof. + apply to_Z_inj; rewrite !add_spec. + rewrite Zplus_mod_idemp_l, Zplus_mod_idemp_r, Zplus_assoc; auto. +Qed. + +Lemma add_comm x y: (x + y = y + x)%int. +Proof. + apply to_Z_inj; rewrite !add_spec, Zplus_comm; auto. +Qed. + +Lemma lsr_add_distr x y n: (x + y) << n = ((x << n) + (y << n))%int. +Proof. + apply to_Z_inj. + rewrite add_spec, !lsl_spec, add_spec. + rewrite Zmult_mod_idemp_l, <-Zplus_mod. + apply f_equal2 with (f := Zmod); auto with zarith. +Qed. + +Lemma is_even_add x y : + is_even (x + y) = negb (xorb (negb (is_even x)) (negb (is_even y))). +Proof. + assert (F : [|x + y|] mod 2 = ([|x|] mod 2 + [|y|] mod 2) mod 2). + assert (F1: (2 | wB)) by (apply Zpower_divide; apply refl_equal). + assert (F2: 0 < wB) by (apply refl_equal). + case (to_Z_bounded x); intros H1x H2x. + case (to_Z_bounded y); intros H1y H2y. + rewrite add_spec, <-Zmod_div_mod; auto with zarith. + rewrite (Z_div_mod_eq [|x|] 2) at 1; auto with zarith. + rewrite (Z_div_mod_eq [|y|] 2) at 1; auto with zarith. + rewrite Zplus_mod. + rewrite Zmult_comm, (fun x => Zplus_comm (x * 2)), Z_mod_plus; auto with zarith. + rewrite Zmult_comm, (fun x => Zplus_comm (x * 2)), Z_mod_plus; auto with zarith. + rewrite !Zmod_mod, <-Zplus_mod; auto. + generalize (is_even_spec (x + y)) (is_even_spec x) (is_even_spec y). + do 3 case is_even; auto; rewrite F; intros H1 H2 H3; + generalize H1; rewrite H2, H3; try discriminate. +Qed. + +Lemma bit_add_0 x y: bit (x + y) 0 = xorb (bit x 0) (bit y 0). +Proof. + rewrite <-(fun x => (negb_involutive (bit x 0))). + rewrite <-is_even_bit, is_even_add, !is_even_bit. + do 2 case bit; auto. +Qed. + +Lemma add_cancel_l x y z : (x + y = x + z)%int -> y = z. +Proof. + intros H; case (to_Z_bounded x); case (to_Z_bounded y); case (to_Z_bounded z); + intros H1z H2z H1y H2y H1x H2x. + generalize (add_le_r y x) (add_le_r z x); rewrite (add_comm y x), H, (add_comm z x). + case_eq (x <= x + z)%int; intros H1 H2 H3. + apply to_Z_inj; generalize H; rewrite <-to_Z_eq, !add_spec, !Zmod_small; auto with zarith. + apply to_Z_inj; assert ([|x|] + [|y|] = [|x|] + [|z|]); auto with zarith. + assert (F1: wB > 0) by apply refl_equal. + rewrite (Z_div_mod_eq ([|x|] + [|y|]) wB), (Z_div_mod_eq ([|x|] + [|z|]) wB); auto. + rewrite <-to_Z_eq, !add_spec in H; rewrite H. + replace (([|x|] + [|y|])/wB) with 1. + replace (([|x|] + [|z|])/wB) with 1; auto with zarith. + apply Zle_antisym. + apply Zdiv_le_lower_bound; auto with zarith. + assert (F2: [|x|] + [|z|] < 2 * wB); auto with zarith. + generalize (Zdiv_lt_upper_bound _ _ _ (Z.gt_lt _ _ F1) F2); auto with zarith. + apply Zle_antisym. + apply Zdiv_le_lower_bound; auto with zarith. + assert (F2: [|x|] + [|y|] < 2 * wB); auto with zarith. + generalize (Zdiv_lt_upper_bound _ _ _ (Z.gt_lt _ _ F1) F2); auto with zarith. +Qed. + +Lemma add_cancel_r x y z : (y + x = z + x)%int -> y = z. +Proof. + rewrite !(fun t => add_comm t x); intros Hl; apply (add_cancel_l x); auto. +Qed. + +Lemma to_Z_split x : [|x|] = [|(x >> 1)|] * 2 + [|bit x 0|]. +Proof. + case (to_Z_bounded x); intros H1x H2x. + case (to_Z_bounded (bit x 0)); intros H1b H2b. + assert (F1: 0 <= [|x >> 1|] < wB/2). + rewrite lsr_spec, to_Z_1, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - assumption. + } + apply Zdiv_lt_upper_bound; auto with zarith. + rewrite (bit_split x) at 1. + rewrite add_spec, Zmod_small, lsl_spec, to_Z_1, Zpower_1_r, Zmod_small; + split; auto with zarith. + change wB with ((wB/2)*2); auto with zarith. + rewrite lsl_spec, to_Z_1, Zpower_1_r, Zmod_small; auto with zarith. + change wB with ((wB/2)*2); auto with zarith. + rewrite lsl_spec, to_Z_1, Zpower_1_r, Zmod_small; auto with zarith. + 2: change wB with ((wB/2)*2); auto with zarith. + change wB with (((wB/2 - 1) * 2 + 1) + 1). + assert ([|bit x 0|] <= 1); auto with zarith. + case bit; discriminate. +Qed. + +Lemma lor_le x y : (y <= x lor y)%int = true. +Proof. + generalize x y (to_Z_bounded x) (to_Z_bounded y); clear x y. + unfold wB; elim size. + replace (2^Z_of_nat 0) with 1%Z; auto with zarith. + intros x y Hx Hy; replace x with 0%int. + replace y with 0%int; auto. + apply to_Z_inj; rewrite to_Z_0; auto with zarith. + apply to_Z_inj; rewrite to_Z_0; auto with zarith. + intros n IH x y; rewrite inj_S. + unfold Z.succ; rewrite Zpower_exp, Zpower_1_r; auto with zarith. + intros Hx Hy. + rewrite leb_spec. + rewrite (to_Z_split y) at 1; rewrite (to_Z_split (x lor y)). + assert ([|y>>1|] <= [|(x lor y) >> 1|]). + rewrite lor_lsr, <-leb_spec; apply IH. + rewrite lsr_spec, to_Z_1, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + rewrite lsr_spec, to_Z_1, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + assert ([|bit y 0|] <= [|bit (x lor y) 0|]); auto with zarith. + rewrite lor_spec; do 2 case bit; try discriminate. +Qed. + + +Lemma bit_add_or x y: + (forall n, bit x n = true -> bit y n = true -> False) <-> (x + y)%int= x lor y. +Proof. + generalize x y (to_Z_bounded x) (to_Z_bounded y); clear x y. + unfold wB; elim size. + replace (2^Z_of_nat 0) with 1%Z; auto with zarith. + intros x y Hx Hy; replace x with 0%int. + replace y with 0%int. + split; auto; intros _ n; rewrite !bit_0; discriminate. + apply to_Z_inj; rewrite to_Z_0; auto with zarith. + apply to_Z_inj; rewrite to_Z_0; auto with zarith. + intros n IH x y; rewrite inj_S. + unfold Z.succ; rewrite Zpower_exp, Zpower_1_r; auto with zarith. + intros Hx Hy. + split. + intros Hn. + assert (F1: ((x >> 1) + (y >> 1))%int = (x >> 1) lor (y >> 1)). + apply IH. + rewrite lsr_spec, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + rewrite lsr_spec, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + intros m H1 H2. + case_eq (digits <= m)%int; [idtac | rewrite <- not_true_iff_false]; + intros Heq. + rewrite bit_M in H1; auto; discriminate. + rewrite leb_spec in Heq. + apply (Hn (m + 1)%int); + rewrite <-bit_half; auto; rewrite ltb_spec; auto with zarith. + rewrite (bit_split (x lor y)), lor_lsr, <- F1, lor_spec. + replace (b2i (bit x 0 || bit y 0)) with (bit x 0 + bit y 0)%int. + 2: generalize (Hn 0%int); do 2 case bit; auto; intros [ ]; auto. + rewrite lsl_add_distr. + rewrite (bit_split x) at 1; rewrite (bit_split y) at 1. + rewrite <-!add_assoc; apply f_equal2 with (f := add31); auto. + rewrite add_comm, <-!add_assoc; apply f_equal2 with (f := add31); auto. + rewrite add_comm; auto. + intros Heq. + generalize (add_le_r x y); rewrite Heq, lor_le; intro Hb. + generalize Heq; rewrite (bit_split x) at 1; rewrite (bit_split y )at 1; clear Heq. + rewrite (fun y => add_comm y (bit x 0)), <-!add_assoc, add_comm, + <-!add_assoc, (add_comm (bit y 0)), add_assoc, <-lsr_add_distr. + rewrite (bit_split (x lor y)), lor_spec. + intros Heq. + assert (F: (bit x 0 + bit y 0)%int = (bit x 0 || bit y 0)). + assert (F1: (2 | wB)) by (apply Zpower_divide; apply refl_equal). + assert (F2: 0 < wB) by (apply refl_equal). + assert (F3: [|bit x 0 + bit y 0|] mod 2 = [|bit x 0 || bit y 0|] mod 2). + apply trans_equal with (([|(x>>1 + y>>1) << 1|] + [|bit x 0 + bit y 0|]) mod 2). + rewrite lsl_spec, Zplus_mod, <-Zmod_div_mod; auto with zarith. + rewrite Zpower_1_r, Z_mod_mult, Zplus_0_l, Zmod_mod; auto with zarith. + rewrite (Zmod_div_mod 2 wB), <-add_spec, Heq; auto with zarith. + rewrite add_spec, <-Zmod_div_mod; auto with zarith. + rewrite lsl_spec, Zplus_mod, <-Zmod_div_mod; auto with zarith. + rewrite Zpower_1_r, Z_mod_mult, Zplus_0_l, Zmod_mod; auto with zarith. + generalize F3; do 2 case bit; try discriminate; auto. + case (IH (x >> 1) (y >> 1)). + rewrite lsr_spec, to_Z_1, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + rewrite lsr_spec, to_Z_1, Zpower_1_r; split. + { + apply Z_div_pos. + - apply Zgt_pos_0. + - abstract omega. + } + apply Zdiv_lt_upper_bound; auto with zarith. + intros _ HH m; case (to_Z_bounded m); intros H1m H2m. + case_eq (digits <= m)%int. + intros Hlm; rewrite bit_M; auto; discriminate. + rewrite <- not_true_iff_false, leb_spec; intros Hlm. + case (Zle_lt_or_eq 0 [|m|]); auto; intros Hm. + replace m with ((m -1) + 1)%int. + rewrite <-(bit_half x), <-(bit_half y); auto with zarith. + apply HH. + rewrite <-lor_lsr. + assert (0 <= [|bit (x lor y) 0|] <= 1) by (case bit; split; discriminate). + rewrite F in Heq; generalize (add_cancel_r _ _ _ Heq). + intros Heq1; apply to_Z_inj. + generalize Heq1; rewrite <-to_Z_eq, lsl_spec, to_Z_1, Zpower_1_r, Zmod_small. + rewrite lsl_spec, to_Z_1, Zpower_1_r, Zmod_small; auto with zarith. + case (to_Z_bounded (x lor y)); intros H1xy H2xy. + rewrite lsr_spec, to_Z_1, Zpower_1_r; auto with zarith. + change wB with ((wB/2)*2); split. + { + apply Z.mul_nonneg_nonneg. + - apply Z_div_pos. + + apply Zgt_pos_0. + + assumption. + - apply Pos2Z.is_nonneg. + } + assert ([|x lor y|] / 2 < wB / 2); auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + split. + case (to_Z_bounded (x >> 1 + y >> 1)); auto with zarith. + rewrite add_spec. + apply Z.le_lt_trans with (([|x >> 1|] + [|y >> 1|]) * 2); auto with zarith. + case (Zmod_le_first ([|x >> 1|] + [|y >> 1|]) wB); auto with zarith. + case (to_Z_bounded (x >> 1)); case (to_Z_bounded (y >> 1)); auto with zarith. + generalize Hb; rewrite (to_Z_split x) at 1; rewrite (to_Z_split y) at 1. + case (to_Z_bounded (bit x 0)); case (to_Z_bounded (bit y 0)); auto with zarith. + rewrite ltb_spec, sub_spec, to_Z_1, Zmod_small; auto with zarith. + rewrite ltb_spec, sub_spec, to_Z_1, Zmod_small; auto with zarith. + apply to_Z_inj. + rewrite add_spec, sub_spec, Zplus_mod_idemp_l, to_Z_1, Zmod_small; auto with zarith. + replace m with 0%int. + intros Hbx Hby; generalize F; rewrite <-to_Z_eq, Hbx, Hby; discriminate. + apply to_Z_inj; auto. +Qed. + +Lemma addmuldiv_spec : forall x y p, [|p|] <= [|digits|] -> + [| addmuldiv p x y |] = + ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ([|digits|] - [|p|]))) mod wB. +Proof. + intros x y p H. + assert (Fp := to_Z_bounded p); assert (Fd := to_Z_bounded digits). + rewrite addmuldiv_def_spec; unfold addmuldiv_def. + case (bit_add_or (x << p) (y >> (digits - p))); intros HH _. + rewrite <-HH, add_spec, lsl_spec, lsr_spec, Zplus_mod_idemp_l, sub_spec. + rewrite (fun x y => Zmod_small (x - y)); auto with zarith. + intros n; rewrite bit_lsl, bit_lsr. + generalize (add_le_r (digits - p) n). + case leb; try discriminate. + rewrite sub_spec, Zmod_small; auto with zarith; intros H1. + case_eq (n < p)%int; try discriminate. + rewrite <- not_true_iff_false, ltb_spec; intros H2. + case leb; try discriminate. + intros _; rewrite bit_M; try discriminate. + rewrite leb_spec, add_spec, Zmod_small, sub_spec, Zmod_small; auto with zarith. + rewrite sub_spec, Zmod_small; auto with zarith. +Qed. + +Lemma lxor_comm: forall i1 i2 : int, i1 lxor i2 = i2 lxor i1. +Proof. + intros;apply bit_eq;intros. + rewrite !lxor_spec;apply xorb_comm. +Qed. + +Lemma lxor_assoc: forall i1 i2 i3 : int, i1 lxor (i2 lxor i3) = i1 lxor i2 lxor i3. +Proof. + intros;apply bit_eq;intros. + rewrite !lxor_spec, xorb_assoc;trivial. +Qed. + +Lemma lxor_0_l : forall i, 0 lxor i = i. +Proof. + intros;apply bit_eq;intros. + rewrite lxor_spec, bit_0, xorb_false_l;trivial. +Qed. + +Lemma lxor_0_r : forall i, i lxor 0 = i. +Proof. + intros;rewrite lxor_comm;apply lxor_0_l. +Qed. + +Lemma lxor_nilpotent: forall i, i lxor i = 0%int. +Proof. + intros;apply bit_eq;intros. + rewrite lxor_spec, xorb_nilpotent, bit_0;trivial. +Qed. + +Lemma lor_0_l : forall i, 0 lor i = i. +Proof. + intros;apply bit_eq;intros. + rewrite lor_spec, bit_0, orb_false_l;trivial. +Qed. + +Lemma lor_0_r : forall i, i lor 0 = i. +Proof. + intros;rewrite lor_comm;apply lor_0_l. +Qed. + +Lemma reflect_leb : forall i j, reflect ([|i|] <= [|j|])%Z (i <= j)%int. +Proof. + intros; apply iff_reflect. + symmetry;apply leb_spec. +Qed. + +Lemma reflect_eqb : forall i j, reflect (i = j)%Z (i == j). +Proof. + intros; apply iff_reflect. + symmetry;apply eqb_spec. +Qed. + +Lemma reflect_ltb : forall i j, reflect ([|i|] < [|j|])%Z (i < j)%int. +Proof. + intros; apply iff_reflect. + symmetry;apply ltb_spec. +Qed. + +Lemma lsr_is_even_eq : forall i j, + i >> 1 = j >> 1 -> + is_even i = is_even j -> + i = j. +Proof. + intros;apply bit_eq. + intros n;destruct (reflect_eqb n 0). + rewrite <- (negb_involutive (bit i n)), <- (negb_involutive (bit j n)). + rewrite e, <- !is_even_bit, H0;trivial. + assert (W1 : [|n|] <> 0) by (intros Heq;apply n0;apply to_Z_inj;trivial). + assert (W2 := to_Z_bounded n);clear n0. + assert (W3 : [|n-1|] = [|n|] - 1). + rewrite sub_spec, to_Z_1, Zmod_small;trivial;omega. + assert (H1 : n = ((n-1)+1)%int). + apply to_Z_inj;rewrite add_spec, W3. + rewrite Zmod_small;rewrite to_Z_1; omega. + destruct (reflect_ltb (n-1) digits). + rewrite <- ltb_spec in l. + rewrite H1, <- !bit_half, H;trivial. + assert ((digits <= n)%int = true). + rewrite leb_spec;omega. + rewrite !bit_M;trivial. +Qed. + +Lemma lsr1_bit : forall i k, (bit i k >> 1 = 0)%int. +Proof. + intros;destruct (bit i k);trivial. +Qed. + +Lemma bit_xor_split: forall i : int, i = (i >> 1) << 1 lxor bit i 0. +Proof. + intros. + rewrite bit_or_split at 1. + apply lsr_is_even_eq. + rewrite lxor_lsr, lor_lsr, lsr1_bit, lxor_0_r, lor_0_r;trivial. + rewrite is_even_or, is_even_xor. + rewrite is_even_lsl_1;trivial. + rewrite (xorb_true_l (is_even (bit i 0))), negb_involutive;trivial. +Qed. + +(** Order *) +Local Open Scope int63_scope. + +Lemma succ_max_int : forall x, + (x < max_int)%int = true -> (0 < x + 1)%int = true. +Proof. + intros x;rewrite ltb_spec, ltb_spec, add_spec. + intros; assert (W:= to_Z_bounded x); assert (W1:= to_Z_bounded max_int). + change [|0|] with 0%Z;change [|1|] with 1%Z. + rewrite Zmod_small;omega. +Qed. + +Lemma leb_max_int : forall x, (x <= max_int)%int = true. +Proof. + intros x;rewrite leb_spec;assert (W:= to_Z_bounded x). + change [|max_int|] with (wB - 1)%Z;omega. +Qed. + +Lemma leb_0 : forall x, 0 <= x = true. +Proof. + intros x;rewrite leb_spec;destruct (to_Z_bounded x);trivial. +Qed. + +Lemma ltb_0 : forall x, ~ (x < 0 = true). +Proof. + intros x;rewrite ltb_spec, to_Z_0;destruct (to_Z_bounded x);omega. +Qed. + +Lemma leb_trans : forall x y z, x <= y = true -> y <= z = true -> x <= z = true. +Proof. + intros x y z;rewrite !leb_spec;apply Z.le_trans. +Qed. + +Lemma ltb_trans : forall x y z, x < y = true -> y < z = true -> x < z = true. +Proof. + intros x y z;rewrite !ltb_spec;apply Z.lt_trans. +Qed. + +Lemma ltb_leb_trans : forall x y z, x < y = true -> y <= z = true -> x < z = true. +Proof. + intros x y z;rewrite leb_spec, !ltb_spec;apply Z.lt_le_trans. +Qed. + +Lemma leb_ltb_trans : forall x y z, x <= y = true -> y < z = true -> x < z = true. +Proof. + intros x y z;rewrite leb_spec, !ltb_spec;apply Z.le_lt_trans. +Qed. + +Lemma gtb_not_leb : forall n m, m < n = true -> ~(n <= m = true). +Proof. + intros n m; rewrite ltb_spec, leb_spec;omega. +Qed. + +Lemma leb_not_gtb : forall n m, m <= n = true -> ~(n < m = true). +Proof. + intros n m; rewrite ltb_spec, leb_spec;omega. +Qed. + +Lemma leb_refl : forall n, n <= n = true. +Proof. + intros n;rewrite leb_spec;apply Z.le_refl. +Qed. + +Lemma leb_negb_gtb : forall x y, x <= y = negb (y < x). +Proof. + intros x y;apply Bool.eq_true_iff_eq;split;intros. + apply Bool.eq_true_not_negb;apply leb_not_gtb;trivial. + rewrite Bool.negb_true_iff, <- Bool.not_true_iff_false in H. + rewrite leb_spec; rewrite ltb_spec in H;omega. +Qed. + +Lemma ltb_negb_geb : forall x y, x < y = negb (y <= x). +Proof. + intros;rewrite leb_negb_gtb, Bool.negb_involutive;trivial. +Qed. + +Lemma to_Z_sub_gt : forall x y, y <= x = true -> [|x - y|] = ([|x|] - [|y|])%Z. +Proof. + intros x y;assert (W:= to_Z_bounded x);assert (W0:= to_Z_bounded y); + rewrite leb_spec;intros;rewrite sub_spec, Zmod_small;omega. +Qed. + +Lemma not_0_ltb : forall x, x <> 0 <-> 0 < x = true. +Proof. + intros x;rewrite ltb_spec, to_Z_0;assert (W:=to_Z_bounded x);split. + intros Hd;assert ([|x|] <> 0)%Z;[ | omega]. + intros Heq;elim Hd;apply to_Z_inj;trivial. + intros Hlt Heq;elimtype False. + assert ([|x|] = 0)%Z;[ rewrite Heq, to_Z_0;trivial | omega]. +Qed. + +Lemma not_ltb_refl : forall i, ~(i < i = true). +Proof. + intros;rewrite ltb_spec;omega. +Qed. + +Lemma to_Z_sub_1 : forall x y, y < x = true -> ([| x - 1|] = [|x|] - 1)%Z. +Proof. + intros;apply to_Z_sub_gt. + generalize (leb_ltb_trans _ _ _ (leb_0 y) H). + rewrite ltb_spec, leb_spec, to_Z_0, to_Z_1;auto with zarith. +Qed. + +Lemma to_Z_sub_1_diff : forall x, x <> 0 -> ([| x - 1|] = [|x|] - 1)%Z. +Proof. + intros x;rewrite not_0_ltb;apply to_Z_sub_1. +Qed. + +Lemma to_Z_add_1 : forall x y, x < y = true -> [|x+1|] = ([|x|] + 1)%Z. +Proof. + intros x y;assert (W:= to_Z_bounded x);assert (W0:= to_Z_bounded y); + rewrite ltb_spec;intros;rewrite add_spec, to_Z_1, Zmod_small;omega. +Qed. + +Lemma ltb_leb_sub1 : forall x i, x <> 0 -> (i < x = true <-> i <= x - 1 = true). +Proof. + intros x i Hdiff. + rewrite ltb_spec, leb_spec, to_Z_sub_1_diff;trivial. + split;auto with zarith. +Qed. + +Lemma ltb_leb_add1 : forall x y i, i < y = true -> (i < x = true <-> i + 1 <= x = true). +Proof. + intros x y i Hlt. + rewrite ltb_spec, leb_spec. + rewrite (to_Z_add_1 i y);trivial. + split;auto with zarith. +Qed. + +(** Iterators *) + +Lemma foldi_gt : forall A f from to (a:A), + (to < from)%int = true -> foldi f from to a = a. +Proof. + intros;unfold foldi;rewrite foldi_cont_gt;trivial. +Qed. + +Lemma foldi_eq : forall A f from to (a:A), + from = to -> foldi f from to a = f from a. +Proof. + intros;unfold foldi;rewrite foldi_cont_eq;trivial. +Qed. + +Lemma foldi_lt : forall A f from to (a:A), + (from < to)%int = true -> foldi f from to a = foldi f (from + 1) to (f from a). +Proof. + intros;unfold foldi;rewrite foldi_cont_lt;trivial. +Qed. + +Lemma fold_gt : forall A f from to (a:A), + (to < from)%int = true -> fold f from to a = a. +Proof. + intros;apply foldi_gt;trivial. +Qed. + +Lemma fold_eq : forall A f from to (a:A), + from = to -> fold f from to a = f a. +Proof. + intros;apply foldi_eq;trivial. +Qed. + +Lemma fold_lt : forall A f from to (a:A), + (from < to)%int = true -> fold f from to a = fold f (from + 1) to (f a). +Proof. + intros;apply foldi_lt;trivial. +Qed. + +Lemma foldi_down_lt : forall A f from downto (a:A), + (from < downto)%int = true -> foldi_down f from downto a = a. +Proof. + intros;unfold foldi_down;rewrite foldi_down_cont_lt;trivial. +Qed. + +Lemma foldi_down_eq : forall A f from downto (a:A), + from = downto -> foldi_down f from downto a = f from a. +Proof. + intros;unfold foldi_down;rewrite foldi_down_cont_eq;trivial. +Qed. + +Lemma foldi_down_gt : forall A f from downto (a:A), + (downto < from)%int = true-> + foldi_down f from downto a = + foldi_down f (from-1) downto (f from a). +Proof. + intros;unfold foldi_down;rewrite foldi_down_cont_gt;trivial. +Qed. + +Lemma fold_down_lt : forall A f from downto (a:A), + (from < downto)%int = true -> fold_down f from downto a = a. +Proof. + intros;apply foldi_down_lt;trivial. +Qed. + +Lemma fold_down_eq : forall A f from downto (a:A), + from = downto -> fold_down f from downto a = f a. +Proof. + intros;apply foldi_down_eq;trivial. +Qed. + +Lemma fold_down_gt : forall A f from downto (a:A), + (downto < from)%int = true-> + fold_down f from downto a = + fold_down f (from-1) downto (f a). +Proof. + intros;apply foldi_down_gt;trivial. +Qed. + +Require Import Wf_Z. + +Lemma int_ind : forall (P:int -> Type), + P 0%int -> + (forall i, (i < max_int)%int = true -> P i -> P (i + 1)%int) -> + forall i, P i. +Proof. + intros P HP0 Hrec. + assert (forall z, (0 <= z)%Z -> forall i, z = [|i|] -> P i). + intros z H;pattern z;apply natlike_rec2;intros;trivial. + rewrite <- (of_to_Z i), <- H0;exact HP0. + assert (W:= to_Z_bounded i). + assert ([|i - 1|] = [|i|] - 1)%Z. + rewrite sub_spec, Zmod_small;rewrite to_Z_1;auto with zarith. + assert (i = i - 1 + 1)%int. + apply to_Z_inj. + rewrite add_spec, H2. + rewrite Zmod_small;rewrite to_Z_1;auto with zarith. + rewrite H3;apply Hrec. + rewrite ltb_spec, H2;change [|max_int|] with (wB - 1)%Z;auto with zarith. + apply X;auto with zarith. + intros;apply (X [|i|]);trivial. + destruct (to_Z_bounded i);trivial. +Qed. + +Lemma int_ind_bounded : forall (P:int-> Type) min max, + min <= max =true -> + P max -> + (forall i, min <= i + 1 = true-> i < max =true-> P (i + 1) -> P i) -> + P min. +Proof. + intros P min max Hle. + intros Hmax Hrec. + assert (W1:= to_Z_bounded max);assert (W2:= to_Z_bounded min). + assert (forall z, (0 <= z)%Z -> (z <= [|max|] - [|min|])%Z -> forall i, z = [|i|] -> P (max - i)%int). + intros z H1;pattern z;apply natlike_rec2;intros;trivial. + assert (max - i = max)%int. + apply to_Z_inj;rewrite sub_spec, <- H0, Zminus_0_r, Zmod_small;auto using to_Z_bounded. + rewrite H2;trivial. + assert (W3:= to_Z_bounded i);apply Hrec. + rewrite leb_spec,add_spec, sub_spec, to_Z_1, (Zmod_small ([|max|] - [|i|])), Zmod_small;auto with zarith. + rewrite ltb_spec, sub_spec, Zmod_small;auto with zarith. + assert (max - i + 1 = max - (i - 1))%int. + apply to_Z_inj;rewrite add_spec, !sub_spec, to_Z_1. + rewrite (Zmod_small ([|max|] - [|i|]));auto with zarith. + rewrite (Zmod_small ([|i|] - 1));auto with zarith. + apply f_equal2;auto with zarith. + rewrite H3;apply X;auto with zarith. + rewrite sub_spec, to_Z_1, <- H2, Zmod_small;auto with zarith. + rewrite leb_spec in Hle;assert (min = max - (max - min))%int. + apply to_Z_inj. + rewrite !sub_spec, !Zmod_small;auto with zarith. + rewrite Zmod_small;auto with zarith. + rewrite H;apply (X [| max - min |]);trivial;rewrite sub_spec, Zmod_small;auto with zarith. +Qed. + +Lemma foldi_cont_ZInd : forall A B (P: Z -> (A -> B) -> Prop) (f:int -> (A -> B) -> (A -> B)) min max cont, + (forall z, ([|max|] < z)%Z -> P z cont) -> + (forall i cont, min <= i = true -> i <= max = true -> P ([|i|] + 1)%Z cont -> P [|i|] (f i cont)) -> + P [|min|] (foldi_cont f min max cont). +Proof. + intros A B P f min max cont Ha Hf. + assert (Bmax:= to_Z_bounded max);assert (Bmin:= to_Z_bounded min). + case_eq (min <= max);intros Heq. + generalize (leb_refl min). + assert (P ([|max|] + 1)%Z cont) by (apply Ha;auto with zarith). + clear Ha;revert cont H. + pattern min at 2 3 4;apply int_ind_bounded with max;trivial. + intros;rewrite foldi_cont_eq;auto using leb_refl. + intros i Hle Hlt Hr cont Hcont Hle'. + rewrite foldi_cont_lt;[ | trivial]. + apply Hf;trivial. rewrite leb_spec;rewrite ltb_spec in Hlt;auto with zarith. + assert ([|i|] + 1 = [|i + 1|])%Z. + rewrite ltb_spec in Hlt;assert (W:= to_Z_bounded i);rewrite add_spec, to_Z_1, Zmod_small;omega. + rewrite H;apply Hr;trivial. + assert (max < min = true) by (rewrite ltb_negb_geb,Heq;trivial). + rewrite foldi_cont_gt;trivial;apply Ha;rewrite <- ltb_spec;trivial. +Qed. + + +(* Lemma of_pos_spec : forall p, [|of_pos p|] = Zpos p mod wB. *) +(* Proof. *) +(* unfold of_pos. *) +(* unfold wB. *) +(* assert (forall k, (k <= size)%nat -> *) +(* forall p : positive, [|of_pos_rec k p|] = Zpos p mod 2 ^ Z_of_nat k). *) +(* induction k. *) +(* simpl;intros;rewrite to_Z_0,Zmod_1_r;trivial. *) +(* Opaque Z_of_nat. *) +(* destruct p;simpl. *) +(* destruct (bit_add_or (of_pos_rec k p << 1) 1) as (H1, _). *) +(* rewrite <- H1;clear H1. *) +(* change (Zpos p~1) with (2*(Zpos p) + 1)%Z. *) +(* rewrite add_spec,lsl_spec, IHk, to_Z_1. *) +(* rewrite Zmult_comm, Zplus_mod_idemp_l, Zmod_small. *) +(* change 2%Z with (2^1)%Z. *) +(* rewrite Zmod_distr. *) +(* rewrite inj_S, Zpower_Zsucc;[ | apply Zle_0_nat]. *) +(* repeat change (2^1)%Z with 2%Z. *) +(* rewrite Zmult_mod_distr_l;trivial. *) +(* Transparent Z_of_nat. *) +(* rewrite inj_S;omega. *) +(* discriminate. *) +(* split;[discriminate | trivial]. *) +(* compute;trivial. *) +(* assert (W:0 <= Zpos p mod 2 ^ Z_of_nat k < 2 ^ Z_of_nat k). *) +(* apply Z.mod_pos_bound;auto with zarith. *) +(* change (2^1)%Z with 2%Z;split;try omega. *) +(* apply Z.lt_le_trans with (2 ^ Z_of_nat (S k)). *) +(* rewrite inj_S, Zpower_Zsucc;omega. *) +(* unfold wB;apply Zpower_le_monotone;auto with zarith. *) +(* split;auto using inj_le with zarith. *) +(* auto with zarith. *) +(* intros n H1 H2. *) +(* rewrite bit_1, eqb_spec in H2;subst. *) +(* rewrite bit_lsl in H1;discriminate H1. *) + +(* change (Zpos p~0) with (2*(Zpos p))%Z. *) +(* rewrite lsl_spec, IHk, to_Z_1. *) +(* rewrite Zmult_comm, Zmod_small. *) +(* rewrite inj_S, Zpower_Zsucc;[ | apply Zle_0_nat]. *) +(* rewrite Zmult_mod_distr_l;trivial. *) +(* assert (W:0 <= Zpos p mod 2 ^ Z_of_nat k < 2 ^ Z_of_nat k). *) +(* apply Z.mod_pos_bound;auto with zarith. *) +(* change (2^1)%Z with 2%Z;split;try omega. *) +(* apply Z.lt_le_trans with (2 ^ Z_of_nat (S k)). *) +(* rewrite inj_S, Zpower_Zsucc;omega. *) +(* unfold wB;apply Zpower_le_monotone;auto with zarith. *) +(* split;auto using inj_le with zarith. *) +(* auto with zarith. *) + +(* rewrite to_Z_1, Zmod_small;trivial. *) +(* split;auto with zarith. *) +(* apply Zpower_gt_1;auto with zarith. *) +(* rewrite inj_S;auto with zarith. *) + +(* apply H;auto with zarith. *) +(* Qed. *) + +Lemma of_Z_spec : forall z, [|of_Z z|] = z mod wB. +Admitted. (* no more of_pos *) +(* Proof. *) +(* unfold of_Z;destruct z. *) +(* assert (W:= to_Z_bounded 0);rewrite Zmod_small;trivial. *) +(* apply of_pos_spec. *) +(* rewrite opp_spec, of_pos_spec. *) +(* rewrite <- Zmod_opp_opp. *) +(* change (- Zpos p)%Z with (Zneg p). *) +(* destruct (Z_eq_dec (Zneg p mod wB) 0). *) +(* rewrite e, Z_mod_zero_opp_r;trivial. *) +(* rewrite Z_mod_nz_opp_r, Zminus_mod, Z_mod_same_full, Zmod_mod, Zminus_0_r, Zmod_mod;trivial. *) +(* Qed. *) + +Lemma foldi_cont_Ind : forall A B (P: int -> (A -> B) -> Prop) (f:int -> (A -> B) -> (A -> B)) min max cont, + max < max_int = true -> + (forall z, max < z = true -> P z cont) -> + (forall i cont, min <= i = true -> i <= max = true -> P (i + 1) cont -> P i (f i cont)) -> + P min (foldi_cont f min max cont). +Proof. + intros. + set (P' z cont := (0 <= z < wB)%Z -> P (of_Z z) cont). + assert (P' [|min|] (foldi_cont f min max cont)). + apply foldi_cont_ZInd;unfold P';intros. + assert ([|(of_Z z)|] = z). + rewrite of_Z_spec, Zmod_small;trivial. + apply H0;rewrite ltb_spec, H4;trivial. + rewrite of_to_Z;apply H1;trivial. + assert (i < max_int = true). + apply leb_ltb_trans with max;trivial. + rewrite <- (to_Z_add_1 _ _ H6), of_to_Z in H4;apply H4. + apply to_Z_bounded. + unfold P' in H2;rewrite of_to_Z in H2;apply H2;apply to_Z_bounded. +Qed. + +Lemma foldi_cont_ind : forall A B (P: (A -> B) -> Prop) (f:int -> (A -> B) -> (A -> B)) min max cont, + P cont -> + (forall i cont, min <= i = true -> i <= max = true -> P cont -> P (f i cont)) -> + P (foldi_cont f min max cont). +Proof. + intros A B P f min max cont Ha Hf. + set (P2 := fun (z:Z) b => P b);change (P2 [|min|] (foldi_cont f min max cont)). + apply foldi_cont_ZInd;trivial. +Qed. + +Lemma foldi_ZInd : forall A (P : Z -> A -> Prop) f min max a, + (max < min = true -> P ([|max|] + 1)%Z a) -> + P [|min|] a -> + (forall i a, min <= i = true -> i <= max = true -> + P [|i|] a -> P ([|i|] + 1)%Z (f i a)) -> + P ([|max|]+1)%Z (foldi f min max a). +Proof. + unfold foldi;intros A P f min max a Hlt;intros. + set (P' z cont := + if Zlt_bool [|max|] z then cont = (fun a0 : A => a0) + else forall a, P z a -> P ([|max|]+1)%Z (cont a)). + assert (P' [|min|] (foldi_cont (fun (i : int) (cont : A -> A) (a0 : A) => cont (f i a0)) min + max (fun a0 : A => a0))). + apply foldi_cont_ZInd;intros;red. + rewrite Zlt_is_lt_bool in H1;rewrite H1;trivial. + case_eq (Zlt_bool [|max|] [|i|]);intros. + rewrite <- Zlt_is_lt_bool in H4;rewrite leb_spec in H2;elimtype False;omega. + clear H4; revert H3;unfold P'. + case_eq (Zlt_bool [|max|] ([|i|] + 1));intros;auto. + rewrite <- Zlt_is_lt_bool in H3; assert ([|i|] = [|max|]) by (rewrite leb_spec in H2;omega). + rewrite H4, <- H6;apply H0;trivial. + revert H1;unfold P'. + case_eq (Zlt_bool [|max|] [|min|]);auto. + rewrite <- Zlt_is_lt_bool, <- ltb_spec;intros;rewrite foldi_cont_gt;auto. +Qed. + +Lemma foldi_Ind : forall A (P : int -> A -> Prop) f min max a, + (max < max_int = true) -> + (max < min = true -> P (max + 1) a) -> + P min a -> + (forall i a, min <= i = true -> i <= max = true -> + P i a -> P (i + 1) (f i a)) -> + P (max+1) (foldi f min max a). +Proof. + intros. + set (P' z a := (0 <= z < wB)%Z -> P (of_Z z) a). + assert (W:= to_Z_add_1 _ _ H). + assert (P' ([|max|]+1)%Z (foldi f min max a)). + apply foldi_ZInd;unfold P';intros. + rewrite <- W, of_to_Z;auto. + rewrite of_to_Z;trivial. + assert (i < max_int = true). + apply leb_ltb_trans with max;trivial. + rewrite <- (to_Z_add_1 _ _ H7), of_to_Z;apply H2;trivial. + rewrite of_to_Z in H5;apply H5;apply to_Z_bounded. + unfold P' in H3;rewrite <- W, of_to_Z in H3;apply H3;apply to_Z_bounded. +Qed. + +Lemma foldi_ind : forall A (P: A -> Prop) (f:int -> A -> A) min max a, + P a -> + (forall i a, min <= i = true -> i <= max = true -> P a -> P (f i a)) -> + P (foldi f min max a). +Proof. + unfold foldi;intros A P f min max a Ha Hr;revert a Ha. + apply foldi_cont_ind;auto. +Qed. + +Lemma fold_ind : forall A (P: A -> Prop) (f: A -> A) min max a, + P a -> (forall a, P a -> P (f a)) -> P (fold f min max a). +Proof. + unfold fold;intros A P f min max a Ha Hr;revert a Ha. + apply foldi_cont_ind;auto. +Qed. + +Lemma foldi_down_cont_ZInd : + forall A B (P: Z -> (A -> B) -> Prop) (f:int -> (A -> B) -> (A -> B)) max min cont, + (forall z, (z < [|min|])%Z -> P z cont) -> + (forall i cont, min <= i = true -> i <= max = true -> P ([|i|] - 1)%Z cont -> P [|i|] (f i cont)) -> + P [|max|] (foldi_down_cont f max min cont). +Proof. + intros A B P f max min cont Ha Hf. + assert (Bmax:= to_Z_bounded max);assert (Bmin:= to_Z_bounded min). + case_eq (min <= max);intros Heq. + generalize (leb_refl max). + assert (P ([|min|] -1)%Z cont) by (apply Ha;auto with zarith). + clear Ha;revert cont H Heq. + pattern max at 1 2 4 5;apply int_ind;trivial. + intros; assert (0 = min). + apply to_Z_inj;revert Heq;rewrite leb_spec, to_Z_0;omega. + rewrite foldi_down_cont_eq;subst;auto. + intros i Hmaxi Hr cont Hcont Hmin Hmax. + generalize Hmin;rewrite leb_ltb_eqb;case_eq (min < i+1);simpl;intros Hlt Hmin'. + rewrite foldi_down_cont_gt;[ | trivial]. + apply Hf;trivial. + assert ([|i|] + 1 = [|i + 1|])%Z. + assert (W:= to_Z_bounded i);rewrite ltb_spec in Hmaxi; + assert (W2 := to_Z_bounded max_int);rewrite add_spec, to_Z_1, Zmod_small;auto with zarith. + assert (i + 1 - 1 = i). + rewrite leb_spec in *;rewrite ltb_spec in *. + assert (W1:= to_Z_bounded i); apply to_Z_inj;rewrite sub_spec,to_Z_1, Zmod_small;try omega. + assert ([|i|] = [|i+1|]-1)%Z. + rewrite <- H;ring. + rewrite <- H1, H0;apply Hr;trivial. + rewrite ltb_spec in Hlt;rewrite leb_spec;omega. + rewrite leb_spec in Hmax |- *;omega. + rewrite eqb_spec in Hmin';subst;rewrite foldi_down_cont_eq;auto. + assert (max < min = true) by (rewrite ltb_negb_geb,Heq;trivial). + rewrite foldi_down_cont_lt;trivial. + apply Ha;rewrite <- ltb_spec;trivial. +Qed. + +Lemma foldi_down_cont_ind : forall A B (P: (A -> B) -> Prop) (f:int -> (A -> B) -> (A -> B)) max min cont, + P cont -> + (forall i cont, min <= i = true -> i <= max = true -> P cont -> P (f i cont)) -> + P (foldi_down_cont f max min cont). +Proof. + intros A B P f max min cont Ha Hf. + set (P2 := fun (z:Z) b => P b);change (P2 [|max|] (foldi_down_cont f max min cont)). + apply foldi_down_cont_ZInd;trivial. +Qed. + +Lemma foldi_down_ZInd : + forall A (P: Z -> A -> Prop) (f:int -> A -> A) max min a, + (max < min = true -> P ([|min|] - 1)%Z a) -> + (P [|max|] a) -> + (forall i a, min <= i = true -> i <= max = true -> P [|i|]%Z a -> P ([|i|]-1)%Z (f i a)) -> + P ([|min|] - 1)%Z (foldi_down f max min a). +Proof. + unfold foldi_down;intros A P f max min a Hlt;intros. + set (P' z cont := + if Zlt_bool z [|min|] then cont = (fun a0 : A => a0) + else forall a, P z a -> P ([|min|] - 1)%Z (cont a)). + assert (P' [|max|] (foldi_down_cont (fun (i : int) (cont : A -> A) (a0 : A) => cont (f i a0)) max + min (fun a0 : A => a0))). + apply foldi_down_cont_ZInd;intros;red. + rewrite Zlt_is_lt_bool in H1;rewrite H1;trivial. + case_eq (Zlt_bool [|i|] [|min|]);intros. + rewrite <- Zlt_is_lt_bool in H4;rewrite leb_spec in H1;elimtype False;omega. + clear H4;revert H3;unfold P'. + case_eq (Zlt_bool ([|i|] - 1) [|min|]);intros;auto. + rewrite <- Zlt_is_lt_bool in H3; assert ([|i|] = [|min|]) by (rewrite leb_spec in H1;omega). + rewrite H4, <- H6. apply H0;trivial. + revert H1;unfold P'. + case_eq (Zlt_bool [|max|] [|min|]);auto. + rewrite <- Zlt_is_lt_bool, <- ltb_spec;intros;rewrite foldi_down_cont_lt;auto. +Qed. + +Lemma foldi_down_ind : forall A (P: A -> Prop) (f:int -> A -> A) max min a, + P a -> + (forall i a, min <= i = true -> i <= max = true -> P a -> P (f i a)) -> + P (foldi_down f max min a). +Proof. + unfold foldi_down;intros A P f max min a Ha Hr;revert a Ha. + apply foldi_down_cont_ind;auto. +Qed. + +Lemma fold_down_ind : forall A (P: A -> Prop) (f: A -> A) max min a, + P a -> (forall a, P a -> P (f a)) -> P (fold_down f max min a). +Proof. + unfold fold_down;intros A P f max min a Ha Hr;revert a Ha. + apply foldi_down_cont_ind;auto. +Qed. + +Lemma foldi_down_Ind : + forall A (P: int -> A -> Prop) (f:int -> A -> A) max min a, + 0 < min = true -> + (max < min = true -> P (min - 1) a) -> + (P max a) -> + (forall i a, min <= i = true -> i <= max = true -> P i a -> P (i - 1) (f i a)) -> + P (min - 1) (foldi_down f max min a). +Proof. + intros. + set (P' z a := (0 <= z < wB)%Z -> P (of_Z z) a). + assert (W:= to_Z_sub_1 _ _ H). + assert (P' ([|min|]-1)%Z (foldi_down f max min a)). + apply foldi_down_ZInd;unfold P';intros. + rewrite <- W, of_to_Z;auto. + rewrite of_to_Z;trivial. + assert (0 < i = true). + apply ltb_leb_trans with min;trivial. + rewrite <- (to_Z_sub_1 _ _ H7), of_to_Z;apply H2;trivial. + rewrite of_to_Z in H5;apply H5;apply to_Z_bounded. + unfold P' in H3;rewrite <- W, of_to_Z in H3;apply H3;apply to_Z_bounded. +Qed. + +Lemma foldi_down_min : + forall A f min max (a:A), + min < max_int = true-> + (min <= max) = true -> + foldi_down f max min a = f min (foldi_down f max (min + 1) a). +Proof. + intros. + set (P:= fun i => i <= max - min = true -> + forall a, foldi_down f (min + i) min a = f min (foldi_down f (min + i) (min + 1) a)). + assert (min < min + 1 = true). + rewrite ltb_leb_add1 with (y:=max_int), leb_refl;trivial. + assert (P (max - min)). + apply int_ind;unfold P. + replace (min + 0) with min. + intros _ a'; rewrite foldi_down_eq, foldi_down_lt;trivial. + apply to_Z_inj;rewrite add_spec, to_Z_0, Zplus_0_r, Zmod_small;auto using to_Z_bounded. + intros i Hi Hrec Hi1 a'. + rewrite add_assoc. + assert (Wi:= to_Z_add_1 _ _ Hi). + assert (Wmin:= to_Z_add_1 _ _ H). + assert ((min + 1) <= (min + i + 1) = true). + assert (W1 := to_Z_bounded min); assert (W2:= to_Z_bounded max); assert (W3:= to_Z_bounded i). + replace (min + i + 1) with (min + 1 + i). + rewrite leb_spec, (add_spec (min+1)). + unfold is_true in Hi1;rewrite leb_spec in *; rewrite ltb_spec in *. + rewrite sub_spec in Hi1;rewrite Zmod_small in Hi1;[ | omega]. + rewrite Zmod_small;omega. + rewrite <- !add_assoc, (add_comm 1 i);trivial. + rewrite leb_ltb_eqb in H2;revert H2. + case_eq (min + 1 < min + i + 1). + intros Hlt _;rewrite foldi_down_gt. + rewrite foldi_down_gt with (from := min + i + 1);trivial. + replace (min + i + 1 - 1) with (min + i). + apply Hrec. + apply leb_trans with (i+1);[rewrite leb_spec;omega | trivial]. + apply to_Z_inj;rewrite sub_spec, (add_spec (min + i)), to_Z_1, Zminus_mod_idemp_l. + assert (H100: forall (x:Z), (x + 1 - 1)%Z = x) by (intros; ring). rewrite H100. + rewrite Zmod_small;auto using to_Z_bounded. + apply leb_ltb_trans with (2:= Hlt). + rewrite leb_spec;omega. + simpl;rewrite eqb_spec;intros _ Heq. + rewrite <- Heq. + rewrite foldi_down_gt. + replace (min + 1 - 1) with min. + rewrite !foldi_down_eq;trivial. + apply to_Z_inj;rewrite sub_spec, add_spec, to_Z_1, Zminus_mod_idemp_l. + replace ([|min|] + 1 - 1)%Z with [|min|] by ring. + rewrite Zmod_small;auto using to_Z_bounded. + rewrite ltb_spec;omega. + generalize (H2 (leb_refl _) a). + replace (min + (max - min)) with max;trivial. + apply to_Z_inj;rewrite add_spec, sub_spec, Zplus_mod_idemp_r. + ring_simplify ([|min|] + ([|max|] - [|min|]))%Z. + rewrite Zmod_small;auto using to_Z_bounded. +Qed. + +Definition foldi_ntr A f min max (a:A) := + foldi_cont (fun i cont _ => f i (cont tt)) min max (fun _ => a) tt. + +Lemma foldi_ntr_foldi_down : forall A f min max (a:A), + max < max_int = true -> + foldi_down f max min a = foldi_ntr _ f min max a. +Proof. + intros;unfold foldi_ntr. + apply foldi_cont_Ind;trivial. + intros;apply foldi_down_lt;trivial. + intros i cont Hmin Hmax Heq;rewrite <- Heq;clear Heq. + apply foldi_down_min;trivial. + apply leb_ltb_trans with (1:= Hmax);trivial. +Qed. + + +(** Two iterators *) + +Lemma foldi_cont_ZInd2 : forall A B C D (P: Z -> (A -> B) -> (C -> D) -> Prop) (f1 : int -> (A -> B) -> (A -> B)) (f2 : int -> (C -> D) -> (C -> D)) min max cont1 cont2, + (forall z, ([|max|] < z)%Z -> P z cont1 cont2) -> + (forall i cont1 cont2, min <= i = true -> i <= max = true -> P ([|i|] + 1)%Z cont1 cont2 -> + P [|i|] (f1 i cont1) (f2 i cont2)) -> + P [|min|] (foldi_cont f1 min max cont1) (foldi_cont f2 min max cont2). +Proof. + intros. + set (P' z cont := + if Zlt_bool [|max|] z then cont = cont1 + else P z cont (foldi_cont f2 (of_Z z) max cont2)). + assert (P' [|min|] (foldi_cont f1 min max cont1)). + apply foldi_cont_ZInd;unfold P';intros. + rewrite Zlt_is_lt_bool in H1;rewrite H1;trivial. + case_eq (Zlt_bool [|max|] [|i|]);intros. + rewrite <- Zlt_is_lt_bool, <- ltb_spec in H4. + elim (not_ltb_refl max);apply ltb_leb_trans with i;trivial. + rewrite of_to_Z;generalize H2;rewrite leb_ltb_eqb, orb_true_iff;intros [Hlt | Heq]. + rewrite foldi_cont_lt;[apply H0 | ];trivial. + revert H3;case_eq (Zlt_bool [|max|] ([|i|] + 1)). + rewrite <- Zlt_is_lt_bool;rewrite ltb_spec in Hlt;intros;elimtype False;omega. + rewrite <- (to_Z_add_1 _ _ Hlt), of_to_Z; intros _ W;exact W. + rewrite eqb_spec in Heq;subst. + rewrite foldi_cont_eq;[apply H0 | ];trivial. + assert ([|max|] < [|max|] + 1)%Z by auto with zarith. + rewrite Zlt_is_lt_bool in H5;rewrite H5 in H3;rewrite H3. + apply H;rewrite Zlt_is_lt_bool;trivial. + revert H1;unfold P';case_eq (Zlt_bool [|max|] [|min|]). + rewrite <- Zlt_is_lt_bool;intros. + rewrite H2;rewrite foldi_cont_gt;[ | rewrite ltb_spec];auto. + rewrite of_to_Z;auto. +Qed. + + +Lemma foldi_cont_ind2 : forall A B C D (P: (A -> B) -> (C -> D) -> Prop) (f:int -> (A -> B) -> (A -> B)) (g:int -> (C -> D) -> (C -> D)) min max cont1 cont2, + P cont1 cont2 -> + (forall i cont1 cont2, min <= i = true -> i <= max = true -> P cont1 cont2 -> P (f i cont1) (g i cont2)) -> + P (foldi_cont f min max cont1) (foldi_cont g min max cont2). +Proof. + intros A B C D P f g min max cont1 cont2 Ha Hf. + set (P2 := fun (z:Z) b c => P b c);change (P2 [|min|] (foldi_cont f min max cont1) (foldi_cont g min max cont2)). + apply foldi_cont_ZInd2;trivial. +Qed. + + +Lemma foldi_ZInd2 : forall A B (P : Z -> A -> B -> Prop) f g min max a b, + (max < min = true -> P ([|max|] + 1)%Z a b) -> + P [|min|] a b -> + (forall i a b, min <= i = true -> i <= max = true -> + P [|i|] a b -> P ([|i|] + 1)%Z (f i a) (g i b)) -> + P ([|max|]+1)%Z (foldi f min max a) (foldi g min max b). +Proof. + unfold foldi;intros A B P f g min max a b Hlt;intros. + set (P' z cont1 cont2 := + if Zlt_bool [|max|] z then cont1 = (fun a : A => a) /\ cont2 = (fun b : B => b) + else forall a b, P z a b -> P ([|max|]+1)%Z (cont1 a) (cont2 b)). + assert (P' [|min|] (foldi_cont (fun (i : int) (cont : A -> A) (a : A) => cont (f i a)) min + max (fun a : A => a)) + (foldi_cont (fun (i : int) (cont : B -> B) (b : B) => cont (g i b)) min + max (fun b : B => b))). + apply foldi_cont_ZInd2;intros;red. + rewrite Zlt_is_lt_bool in H1;rewrite H1;auto. + case_eq (Zlt_bool [|max|] [|i|]);intros. + rewrite <- Zlt_is_lt_bool in H4;rewrite leb_spec in H2;elimtype False;omega. + clear H4; revert H3;unfold P'. + case_eq (Zlt_bool [|max|] ([|i|] + 1));intros;auto. + rewrite <- Zlt_is_lt_bool in H3; assert ([|i|] = [|max|]) by (rewrite leb_spec in H2;omega). + destruct H4;subst;rewrite <- H6;apply H0;trivial. + revert H1;unfold P'. + case_eq (Zlt_bool [|max|] [|min|]);auto. + rewrite <- Zlt_is_lt_bool, <- ltb_spec;intros;rewrite !foldi_cont_gt;auto. +Qed. + + +Lemma foldi_Ind2 : forall A B (P : int -> A -> B -> Prop) f g min max a b, + (max < max_int = true) -> + (max < min = true -> P (max + 1) a b) -> + P min a b -> + (forall i a b, min <= i = true -> i <= max = true -> + P i a b -> P (i + 1) (f i a) (g i b)) -> + P (max+1) (foldi f min max a) (foldi g min max b). +Proof. + intros. + set (P' z a b := (0 <= z < wB)%Z -> P (of_Z z) a b). + assert (W:= to_Z_add_1 _ _ H). + assert (P' ([|max|]+1)%Z (foldi f min max a) (foldi g min max b)). + apply foldi_ZInd2;unfold P';intros. + rewrite <- W, of_to_Z;auto. + rewrite of_to_Z;trivial. + assert (i < max_int = true). + apply leb_ltb_trans with max;trivial. + rewrite <- (to_Z_add_1 _ _ H7), of_to_Z;apply H2;trivial. + rewrite of_to_Z in H5;apply H5;apply to_Z_bounded. + unfold P' in H3;rewrite <- W, of_to_Z in H3;apply H3;apply to_Z_bounded. +Qed. + + +Lemma foldi_ind2 : forall A B (P: A -> B -> Prop) (f:int -> A -> A) (g:int -> B -> B) min max a b, + P a b -> + (forall i a b, min <= i = true -> i <= max = true -> P a b -> P (f i a) (g i b)) -> + P (foldi f min max a) (foldi g min max b). +Proof. + unfold foldi;intros A B P f g min max a b Ha Hr; revert a b Ha. + apply (foldi_cont_ind2 _ _ _ _ (fun cont1 cont2 => forall a b, P a b -> P (cont1 a) (cont2 b))); auto. +Qed. + + +Lemma fold_ind2 : forall A B (P: A -> B -> Prop) (f: A -> A) (g: B -> B) min max a b, + P a b -> (forall a b, P a b -> P (f a) (g b)) -> P (fold f min max a) (fold g min max b). +Proof. + unfold fold;intros A B P f g min max a b Ha Hr;revert a b Ha. + apply (foldi_cont_ind2 _ _ _ _ (fun cont1 cont2 => forall a b, P a b -> P (cont1 a) (cont2 b)));auto. +Qed. + +Lemma foldi_eq_compat : forall A (f1 f2:int -> A -> A) min max a, + (forall i a, min <= i = true -> i <= max = true -> f1 i a = f2 i a) -> + foldi f1 min max a = foldi f2 min max a. +Proof. + intros; set (P' (z:Z) (a1 a2:A) := a1 = a2). + assert (P' ([|max|] + 1)%Z (foldi f1 min max a) (foldi f2 min max a)). + apply foldi_ZInd2;unfold P';intros;subst;auto. + apply H0. +Qed. + +Lemma foldi_down_cont_ZInd2 : + forall A B C D (P: Z -> (A -> B) -> (C -> D) -> Prop) (f1:int -> (A -> B) -> (A -> B)) (f2:int -> (C -> D) -> (C -> D)) max min cont1 cont2, + (forall z, (z < [|min|])%Z -> P z cont1 cont2) -> + (forall i cont1 cont2, min <= i = true -> i <= max = true -> P ([|i|] - 1)%Z cont1 cont2 -> + P [|i|] (f1 i cont1) (f2 i cont2)) -> + P [|max|] (foldi_down_cont f1 max min cont1) (foldi_down_cont f2 max min cont2). +Proof. + intros. + set (P' z cont := + if Zlt_bool z [|min|] then cont = cont1 + else P z cont (foldi_down_cont f2 (of_Z z) min cont2)). + assert (P' [|max|] (foldi_down_cont f1 max min cont1)). + apply foldi_down_cont_ZInd;unfold P';intros. + rewrite Zlt_is_lt_bool in H1;rewrite H1;trivial. + case_eq (Zlt_bool [|i|] [|min|]);intros. + rewrite <- Zlt_is_lt_bool, <- ltb_spec in H4. + elim (not_ltb_refl min);apply leb_ltb_trans with i;trivial. + rewrite of_to_Z;generalize H1;rewrite leb_ltb_eqb, orb_true_iff;intros [Hlt | Heq]. + rewrite foldi_down_cont_gt;[apply H0 | ];trivial. + revert H3;case_eq (Zlt_bool ([|i|] - 1) [|min|]). + rewrite <- Zlt_is_lt_bool;rewrite ltb_spec in Hlt;intros;elimtype False;omega. + rewrite <- (to_Z_sub_1 _ _ Hlt), of_to_Z; intros _ W;exact W. + rewrite eqb_spec in Heq;subst. + rewrite foldi_down_cont_eq;[apply H0 | ];trivial. + assert ([|i|] - 1 < [|i|])%Z by auto with zarith. + rewrite Zlt_is_lt_bool in H5;rewrite H5 in H3;rewrite H3. + apply H;rewrite Zlt_is_lt_bool;trivial. + revert H1;unfold P';case_eq (Zlt_bool [|max|] [|min|]). + rewrite <- Zlt_is_lt_bool;intros. + rewrite H2;rewrite foldi_down_cont_lt;[ | rewrite ltb_spec];auto. + rewrite of_to_Z;auto. +Qed. + + +Lemma foldi_down_cont_ind2 : forall A B C D (P: (A -> B) -> (C -> D) -> Prop) (f:int -> (A -> B) -> (A -> B)) (g:int -> (C -> D) -> (C -> D)) max min cont1 cont2, + P cont1 cont2 -> + (forall i cont1 cont2, min <= i = true -> i <= max = true -> P cont1 cont2 -> P (f i cont1) (g i cont2)) -> + P (foldi_down_cont f max min cont1) (foldi_down_cont g max min cont2). +Proof. + intros A B C D P f g max min cont1 cont2 Ha Hf. + set (P2 := fun (z:Z) b c => P b c);change (P2 [|max|] (foldi_down_cont f max min cont1) (foldi_down_cont g max min cont2)). + apply foldi_down_cont_ZInd2;trivial. +Qed. + + +Lemma foldi_down_ZInd2 : + forall A B (P: Z -> A -> B -> Prop) (f1:int -> A -> A) (f2:int -> B -> B) max min a1 a2, + (max < min = true -> P ([|min|] - 1)%Z a1 a2) -> + (P [|max|] a1 a2) -> + (forall z, (z < [|min|])%Z -> P z a1 a2) -> + (forall i a1 a2, min <= i = true -> i <= max = true -> P [|i|] a1 a2 -> + P ([|i|] - 1)%Z (f1 i a1) (f2 i a2)) -> + P ([|min|] - 1)%Z (foldi_down f1 max min a1) (foldi_down f2 max min a2). +Proof. + unfold foldi_down;intros A B P f1 f2 max min a1 a2 Hlt;intros. + set (P' z cont1 cont2 := + if Zlt_bool z [|min|] then cont1 = (fun a0 : A => a0) /\ cont2 = (fun a0 : B => a0) + else forall a1 a2, P z a1 a2 -> P ([|min|] - 1)%Z (cont1 a1) (cont2 a2)). + assert (P' [|max|] (foldi_down_cont (fun (i : int) (cont : A -> A) (a0 : A) => cont (f1 i a0)) max + min (fun a0 : A => a0)) + (foldi_down_cont (fun (i : int) (cont : B -> B) (a0 : B) => cont (f2 i a0)) max + min (fun a0 : B => a0))). + apply foldi_down_cont_ZInd2;intros;red. + rewrite Zlt_is_lt_bool in H2;rewrite H2;auto. + case_eq (Zlt_bool [|i|] [|min|]);intros. + rewrite <- Zlt_is_lt_bool in H5;rewrite leb_spec in H2;elimtype False;omega. + clear H5;revert H4;unfold P'. + case_eq (Zlt_bool ([|i|] - 1) [|min|]);intros;auto. + rewrite <- Zlt_is_lt_bool in H4; assert ([|i|] = [|min|]) by (rewrite leb_spec in H2;omega). + destruct H5;subst;rewrite <- H7;apply H1;trivial. + revert H2;unfold P'. + case_eq (Zlt_bool [|max|] [|min|]);auto. + rewrite <- Zlt_is_lt_bool, <- ltb_spec;intros;rewrite foldi_down_cont_lt;auto. + destruct H3. rewrite H4;auto. +Qed. + + +Lemma foldi_down_ind2 : forall A B (P: A -> B -> Prop) (f:int -> A -> A) (g:int -> B -> B) max min a b, + P a b -> + (forall i a b, min <= i = true -> i <= max = true -> P a b -> P (f i a) (g i b)) -> + P (foldi_down f max min a) (foldi_down g max min b). +Proof. + unfold foldi_down;intros A B P f g max min a b Ha Hr;revert a b Ha. + apply (foldi_down_cont_ind2 _ _ _ _ (fun cont1 cont2 => forall a b, P a b -> P (cont1 a) (cont2 b)));auto. +Qed. + + +Lemma fold_down_ind2 : forall A B (P: A -> B -> Prop) (f: A -> A) (g: B -> B) max min a b, + P a b -> (forall a b, P a b -> P (f a) (g b)) -> P (fold_down f max min a) (fold_down g max min b). +Proof. + unfold fold_down;intros A B P f g max min a b Ha Hr;revert a b Ha. + apply (foldi_down_cont_ind2 _ _ _ _ (fun cont1 cont2 => forall a b, P a b -> P (cont1 a) (cont2 b)));auto. +Qed. + +Lemma foldi_down_eq_compat : forall A (f1 f2:int -> A -> A) max min a, + (forall i a, min <= i = true -> i <= max = true -> f1 i a = f2 i a) -> + foldi_down f1 max min a = foldi_down f2 max min a. +Proof. + intros; set (P' (z:Z) (a1 a2:A) := a1 = a2). + assert (P' ([|min|] - 1)%Z (foldi_down f1 max min a) (foldi_down f2 max min a)). + apply foldi_down_ZInd2;unfold P';intros;subst;auto. + apply H0. +Qed. + + +Lemma forallb_spec : forall f from to, + forallb f from to = true <-> + forall i, from <= i = true -> i <= to = true -> f i = true. +Proof. + unfold forallb;intros f from to. + setoid_rewrite leb_spec. + apply foldi_cont_ZInd. + intros;split;[intros;elimtype False;omega | trivial]. + intros i cont Hfr Hto Hcont. + case_eq (f i);intros Heq. + rewrite Hcont;clear Hcont;split;auto with zarith;intros. + assert (H2 : ([|i0|] = [|i|] \/ [|i|] + 1 <= [|i0|])%Z) by omega; destruct H2;auto with zarith. + apply to_Z_inj in H2;rewrite H2;trivial. + split;[discriminate | intros]. + rewrite leb_spec in Hto;rewrite <- Heq;auto with zarith. +Qed. + +Lemma forallb_eq_compat : forall f1 f2 from to, + (forall i, from <= i = true -> i <= to = true -> f1 i = f2 i) -> + forallb f1 from to = forallb f2 from to. +Proof. + unfold forallb;intros. + set (P' (z:Z) (cont1 cont2:unit -> bool) := cont1 tt = cont2 tt). + refine (foldi_cont_ZInd2 _ _ _ _ P' _ _ from to _ _ _ _);unfold P';intros;trivial. + rewrite H2, H;trivial. +Qed. + +Lemma existsb_spec : forall f from to, + existsb f from to = true <-> + exists i, ((from <= i) && (i <= to) && (f i)) = true . +Proof. + unfold existsb;intros. + repeat setoid_rewrite andb_true_iff;setoid_rewrite leb_spec. + apply foldi_cont_ZInd. + intros;split;[discriminate | intros [i [W1 W2]];elimtype False;omega]. + intros i cont Hfr Hto Hcont. + case_eq (f i);intros Heq. + split;trivial. + exists i;rewrite leb_spec in Hto;auto with zarith. + rewrite Hcont;clear Hcont;split;intros [i0 [W1 W2]]; + exists i0;split;auto with zarith. + assert (~ [|i|] = [|i0|]);[ | auto with zarith]. + intros W;apply to_Z_inj in W;rewrite W in Heq;rewrite Heq in W2;discriminate. +Qed. + +Lemma existsb_eq_compat : forall f1 f2 from to, + (forall i, from <= i = true -> i <= to = true -> f1 i = f2 i) -> + existsb f1 from to = existsb f2 from to. +Proof. + unfold existsb;intros. + set (P' (z:Z) (cont1 cont2:unit -> bool) := cont1 tt = cont2 tt). + refine (foldi_cont_ZInd2 _ _ _ _ P' _ _ from to _ _ _ _);unfold P';intros;trivial. + rewrite H2, H;trivial. +Qed. + + +Lemma bit_max_int : forall i, (i < digits)%int = true -> bit max_int i = true. +Proof. + intros;apply (forallb_spec (bit max_int) 0 (digits - 1)). + vm_compute;trivial. + apply leb_0. + rewrite ltb_spec in H. + destruct (to_Z_bounded i);rewrite leb_spec. + change [|digits - 1 |] with ([|digits|] - 1)%Z;omega. +Qed. + +Lemma land_max_int_l : forall i, max_int land i = i. +Proof. + intros;apply bit_eq;intros. + rewrite land_spec. + destruct (reflect_leb digits i0). + rewrite <- leb_spec in l. + rewrite !bit_M;trivial. + rewrite bit_max_int;trivial. + rewrite ltb_spec;omega. +Qed. + +Lemma land_max_int_r : forall i, i land max_int = i. +Proof. + intros;rewrite land_comm;apply land_max_int_l. +Qed. + + +(* int is an OrderedType *) + +Require Import OrderedType. + +Module IntOrderedType <: OrderedType. + + Definition t := int. + + Definition eq x y := (x == y) = true. + + Definition lt x y := (x < y) = true. + + Lemma eq_refl x : eq x x. + Proof. unfold eq. rewrite eqb_spec. reflexivity. Qed. + + Lemma eq_sym x y : eq x y -> eq y x. + Proof. unfold eq. rewrite !eqb_spec. intros ->. reflexivity. Qed. + + Lemma eq_trans x y z : eq x y -> eq y z -> eq x z. + Proof. unfold eq. rewrite !eqb_spec. intros -> ->. reflexivity. Qed. + + Lemma lt_trans x y z : lt x y -> lt y z -> lt x z. + Proof. apply ltb_trans. Qed. + + Lemma lt_not_eq x y : lt x y -> ~ eq x y. + Proof. unfold lt, eq. rewrite ltb_negb_geb, eqb_spec. intros H1 H2. rewrite H2, leb_refl in H1. discriminate. Qed. + + Definition compare x y : Compare lt eq x y. + Proof. + case_eq (x < y); intro e. + exact (LT e). + case_eq (x == y); intro e2. + exact (EQ e2). apply GT. unfold lt. rewrite ltb_negb_geb, leb_ltb_eqb, e, e2. reflexivity. + Defined. + + Definition eq_dec x y : { eq x y } + { ~ eq x y }. + Proof. + case_eq (x == y); intro e. + left; exact e. + right. intro H. rewrite H in e. discriminate. + Defined. + +End IntOrderedType. + + +(* + Local Variables: + coq-load-path: ((rec "../../.." "SMTCoq")) + End: +*) -- cgit