From 5311b1fa064949089b8d17e34eb31a62426f71fd Mon Sep 17 00:00:00 2001 From: Chantal Keller Date: Tue, 10 Feb 2015 11:48:19 +0100 Subject: Frontend for the standard version of Coq (still bad computational behavior) --- src/versions/standard/Int63/Cyclic63_standard.v | 2491 +++++++++++++++++++++++ 1 file changed, 2491 insertions(+) create mode 100644 src/versions/standard/Int63/Cyclic63_standard.v (limited to 'src/versions/standard/Int63/Cyclic63_standard.v') diff --git a/src/versions/standard/Int63/Cyclic63_standard.v b/src/versions/standard/Int63/Cyclic63_standard.v new file mode 100644 index 0000000..2c24655 --- /dev/null +++ b/src/versions/standard/Int63/Cyclic63_standard.v @@ -0,0 +1,2491 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* x=0. + Proof. + destruct x; simpl; intros. + repeat + match goal with H:(if ?d then _ else _) = true |- _ => + destruct d; try discriminate + end. + reflexivity. + Qed. + + Lemma iszero_not_eq0 : forall x, iszero x = false -> x<>0. + Proof. + intros x H Eq; rewrite Eq in H; simpl in *; discriminate. + Qed. + + Lemma sneakl_shiftr : forall x, + x = sneakl (firstr x) (shiftr x). + Proof. + destruct x; simpl; auto. + Qed. + + Lemma sneakr_shiftl : forall x, + x = sneakr (firstl x) (shiftl x). + Proof. + destruct x; simpl; auto. + Qed. + + Lemma twice_zero : forall x, + twice x = 0 <-> twice_plus_one x = 1. + Proof. + destruct x; simpl in *; split; + intro H; injection H; intros; subst; auto. + Qed. + + Lemma twice_or_twice_plus_one : forall x, + x = twice (shiftr x) \/ x = twice_plus_one (shiftr x). + Proof. + intros; case_eq (firstr x); intros. + destruct x; simpl in *; rewrite H; auto. + destruct x; simpl in *; rewrite H; auto. + Qed. + + + + (** * Iterated shift to the right *) + + Definition nshiftr n x := iter_nat n _ shiftr x. + + Lemma nshiftr_S : + forall n x, nshiftr (S n) x = shiftr (nshiftr n x). + Proof. + reflexivity. + Qed. + + Lemma nshiftr_S_tail : + forall n x, nshiftr (S n) x = nshiftr n (shiftr x). + Proof. + induction n; simpl; auto. + intros; rewrite nshiftr_S, IHn, nshiftr_S; auto. + Qed. + + Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0. + Proof. + induction n; simpl; auto. + rewrite nshiftr_S, IHn; auto. + Qed. + + Lemma nshiftr_size : forall x, nshiftr size x = 0. + Proof. + destruct x; simpl; auto. + Qed. + + Lemma nshiftr_above_size : forall k x, size<=k -> + nshiftr k x = 0. + Proof. + intros. + replace k with ((k-size)+size)%nat by omega. + induction (k-size)%nat; auto. + rewrite nshiftr_size; auto. + simpl; rewrite nshiftr_S, IHn; auto. + Qed. + + (** * Iterated shift to the left *) + + Definition nshiftl n x := iter_nat n _ shiftl x. + + Lemma nshiftl_S : + forall n x, nshiftl (S n) x = shiftl (nshiftl n x). + Proof. + reflexivity. + Qed. + + Lemma nshiftl_S_tail : + forall n x, nshiftl (S n) x = nshiftl n (shiftl x). + Proof. + induction n; simpl; auto. + intros; rewrite nshiftl_S, IHn, nshiftl_S; auto. + Qed. + + Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0. + Proof. + induction n; simpl; auto. + rewrite nshiftl_S, IHn; auto. + Qed. + + Lemma nshiftl_size : forall x, nshiftl size x = 0. + Proof. + destruct x; simpl; auto. + Qed. + + Lemma nshiftl_above_size : forall k x, size<=k -> + nshiftl k x = 0. + Proof. + intros. + replace k with ((k-size)+size)%nat by omega. + induction (k-size)%nat; auto. + rewrite nshiftl_size; auto. + simpl; rewrite nshiftl_S, IHn; auto. + Qed. + + Lemma firstr_firstl : + forall x, firstr x = firstl (nshiftl (pred size) x). + Proof. + destruct x; simpl; auto. + Qed. + + Lemma firstl_firstr : + forall x, firstl x = firstr (nshiftr (pred size) x). + Proof. + destruct x; simpl; auto. + Qed. + + (** More advanced results about [nshiftr] *) + + Lemma nshiftr_predsize_0_firstl : forall x, + nshiftr (pred size) x = 0 -> firstl x = D0. + Proof. + destruct x; compute; intros H; injection H; intros; subst; auto. + Qed. + + Lemma nshiftr_0_propagates : forall n p x, n <= p -> + nshiftr n x = 0 -> nshiftr p x = 0. + Proof. + intros. + replace p with ((p-n)+n)%nat by omega. + induction (p-n)%nat. + simpl; auto. + simpl; rewrite nshiftr_S; rewrite IHn0; auto. + Qed. + + Lemma nshiftr_0_firstl : forall n x, n < size -> + nshiftr n x = 0 -> firstl x = D0. + Proof. + intros. + apply nshiftr_predsize_0_firstl. + apply nshiftr_0_propagates with n; auto; omega. + Qed. + + (** * Some induction principles over [int63] *) + + (** Not used for the moment. Are they really useful ? *) + + Lemma int63_ind_sneakl : forall P : int63->Prop, + P 0 -> + (forall x d, P x -> P (sneakl d x)) -> + forall x, P x. + Proof. + intros. + assert (forall n, n<=size -> P (nshiftr (size - n) x)). + induction n; intros. + rewrite nshiftr_size; auto. + rewrite sneakl_shiftr. + apply H0. + change (P (nshiftr (S (size - S n)) x)). + replace (S (size - S n))%nat with (size - n)%nat by omega. + apply IHn; omega. + change x with (nshiftr (size-size) x); auto. + Qed. + + Lemma int63_ind_twice : forall P : int63->Prop, + P 0 -> + (forall x, P x -> P (twice x)) -> + (forall x, P x -> P (twice_plus_one x)) -> + forall x, P x. + Proof. + induction x using int63_ind_sneakl; auto. + destruct d; auto. + Qed. + + + (** * Some generic results about [recr] *) + + Section Recr. + + (** [recr] satisfies the fixpoint equation used for its definition. *) + + Variable (A:Type)(case0:A)(caserec:digits->int63->A->A). + + Lemma recr_aux_eqn : forall n x, iszero x = false -> + recr_aux (S n) A case0 caserec x = + caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)). + Proof. + intros; simpl; rewrite H; auto. + Qed. + + Lemma recr_aux_converges : + forall n p x, n <= size -> n <= p -> + recr_aux n A case0 caserec (nshiftr (size - n) x) = + recr_aux p A case0 caserec (nshiftr (size - n) x). + Proof. + induction n. + simpl; intros. + rewrite nshiftr_size; destruct p; simpl; auto. + intros. + destruct p. + inversion H0. + unfold recr_aux; fold recr_aux. + destruct (iszero (nshiftr (size - S n) x)); auto. + f_equal. + change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x). + replace (S (size - S n))%nat with (size - n)%nat by omega. + apply IHn; auto with arith. + Qed. + + Lemma recr_eqn : forall x, iszero x = false -> + recr A case0 caserec x = + caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)). + Proof. + intros. + unfold recr. + change x with (nshiftr (size - size) x). + rewrite (recr_aux_converges size (S size)); auto with arith. + rewrite recr_aux_eqn; auto. + Qed. + + (** [recr] is usually equivalent to a variant [recrbis] + written without [iszero] check. *) + + Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int63->A->A) + (i:int63) : A := + match n with + | O => case0 + | S next => + let si := shiftr i in + caserec (firstr i) si (recrbis_aux next A case0 caserec si) + end. + + Definition recrbis := recrbis_aux size. + + (* Useless [iszero] check, to stop simplification (did not manage to + restrict it using Arguments) *) + Fixpoint recrter_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int63->A->A) + (i:int63) : A := + match n with + | O => case0 + | S next => + if iszero i then + let si := shiftr i in + caserec (firstr i) si (recrter_aux next A case0 caserec si) + else + let si := shiftr i in + caserec (firstr i) si (recrter_aux next A case0 caserec si) + end. + + Definition recrter := recrter_aux size. + + Lemma recrbis_ter_aux n: + forall i, recrbis_aux n A case0 caserec i = recrter_aux n A case0 caserec i. + Proof. + induction n as [|n IHn]; simpl; auto. + intros; case (iszero _); rewrite IHn; auto. + Qed. + + Lemma recrbis_ter i : recrbis A case0 caserec i = recrter A case0 caserec i. + Proof. apply recrbis_ter_aux. Qed. + + Hypothesis case0_caserec : caserec D0 0 case0 = case0. + + Lemma recrbis_aux_equiv : forall n x, + recrbis_aux n A case0 caserec x = recr_aux n A case0 caserec x. + Proof. + induction n; simpl; auto; intros. + case_eq (iszero x); intros; [ | f_equal; auto ]. + rewrite (iszero_eq0 _ H); simpl; auto. + fold On. + replace (recrbis_aux n A case0 caserec 0) with case0; auto. + clear H IHn; induction n; simpl; fold On; congruence. + Qed. + + Lemma recrbis_equiv : forall x, + recrbis A case0 caserec x = recr A case0 caserec x. + Proof. + intros; apply recrbis_aux_equiv; auto. + Qed. + + End Recr. + + (** * Incrementation *) + + Section Incr. + + (** Variant of [incr] via [recrbis] *) + + Let Incr (b : digits) (si rec : int63) := + match b with + | D0 => sneakl D1 si + | D1 => sneakl D0 rec + end. + + Definition incrbis_aux n x := recrbis_aux n _ In Incr x. + + Lemma incrbis_aux_equiv : forall x, incrbis_aux size x = incr x. + Proof. + unfold incr, recr, incrbis_aux; fold Incr; intros. + apply recrbis_aux_equiv; auto. + Qed. + + (** Recursive equations satisfied by [incr] *) + + Lemma incr_eqn1 : + forall x, firstr x = D0 -> incr x = twice_plus_one (shiftr x). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H0); simpl; auto. + unfold incr; rewrite recr_eqn; fold incr; auto. + rewrite H; auto. + Qed. + + Lemma incr_eqn2 : + forall x, firstr x = D1 -> incr x = twice (incr (shiftr x)). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate. + unfold incr; rewrite recr_eqn; fold incr; auto. + rewrite H; auto. + Qed. + + Lemma incr_twice : forall x, incr (twice x) = twice_plus_one x. + Proof. + intros. + rewrite incr_eqn1; destruct x; simpl; auto. + Qed. + + Lemma incr_twice_plus_one_firstl : + forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x). + Proof. + intros. + rewrite incr_eqn2; [ | destruct x; simpl; auto ]. + f_equal; f_equal. + destruct x; simpl in *; rewrite H; auto. + Qed. + + (** The previous result is actually true even without the + constraint on [firstl], but this is harder to prove + (see later). *) + + End Incr. + + (** * Conversion to [Z] : the [phi] function *) + + Section Phi. + + (** Variant of [phi] via [recrbis] *) + + Let Phi := fun b (_:int63) => + match b with D0 => Z.double | D1 => Z.succ_double end. + + Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x. + + Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x. + Proof. + unfold phi, recr, phibis_aux; fold Phi; intros. + apply recrbis_aux_equiv; auto. + Qed. + + (** Recursive equations satisfied by [phi] *) + + Lemma phi_eqn1 : forall x, firstr x = D0 -> + phi x = Z.double (phi (shiftr x)). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H0); simpl; auto. + intros; unfold phi; rewrite recr_eqn; fold phi; auto. + rewrite H; auto. + Qed. + + Lemma phi_eqn2 : forall x, firstr x = D1 -> + phi x = Z.succ_double (phi (shiftr x)). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate. + intros; unfold phi; rewrite recr_eqn; fold phi; auto. + rewrite H; auto. + Qed. + + Lemma phi_twice_firstl : forall x, firstl x = D0 -> + phi (twice x) = Z.double (phi x). + Proof. + intros. + rewrite phi_eqn1; auto; [ | destruct x; auto ]. + f_equal; f_equal. + destruct x; simpl in *; rewrite H; auto. + Qed. + + Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 -> + phi (twice_plus_one x) = Z.succ_double (phi x). + Proof. + intros. + rewrite phi_eqn2; auto; [ | destruct x; auto ]. + f_equal; f_equal. + destruct x; simpl in *; rewrite H; auto. + Qed. + + End Phi. + + (** [phi x] is positive and lower than [2^63] *) + + Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z. + Proof. + induction n. + simpl; unfold phibis_aux; simpl; auto with zarith. + intros. + unfold phibis_aux, recrbis_aux; fold recrbis_aux; + fold (phibis_aux n (shiftr x)). + destruct (firstr x). + specialize IHn with (shiftr x); rewrite Z.double_spec; omega. + specialize IHn with (shiftr x); rewrite Z.succ_double_spec; omega. + Qed. + + Lemma phibis_aux_bounded : + forall n x, n <= size -> + (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z.of_nat n))%Z. + Proof. + induction n. + simpl; unfold phibis_aux; simpl; auto with zarith. + intros. + unfold phibis_aux, recrbis_aux; fold recrbis_aux; + fold (phibis_aux n (shiftr (nshiftr (size - S n) x))). + assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x). + replace (size - n)%nat with (S (size - (S n))) by omega. + simpl; auto. + rewrite H0. + assert (H1 : n <= size) by omega. + specialize (IHn x H1). + set (y:=phibis_aux n (nshiftr (size - n) x)) in *. + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. + case_eq (firstr (nshiftr (size - S n) x)); intros. + rewrite Z.double_spec; auto with zarith. + rewrite Z.succ_double_spec; auto with zarith. + Qed. + + Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z. + Proof. + intros. + rewrite <- phibis_aux_equiv. + split. + apply phibis_aux_pos. + change x with (nshiftr (size-size) x). + apply phibis_aux_bounded; auto. + Qed. + + Lemma phibis_aux_lowerbound : + forall n x, firstr (nshiftr n x) = D1 -> + (2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z. + Proof. + induction n. + intros. + unfold nshiftr in H; simpl in *. + unfold phibis_aux, recrbis_aux. + rewrite H, Z.succ_double_spec; omega. + + intros. + remember (S n) as m. + unfold phibis_aux, recrbis_aux; fold recrbis_aux; + fold (phibis_aux m (shiftr x)). + subst m. + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. + assert (2^(Z.of_nat n) <= phibis_aux (S n) (shiftr x))%Z. + apply IHn. + rewrite <- nshiftr_S_tail; auto. + destruct (firstr x). + change (Z.double (phibis_aux (S n) (shiftr x))) with + (2*(phibis_aux (S n) (shiftr x)))%Z. + omega. + rewrite Z.succ_double_spec; omega. + Qed. + + Lemma phi_lowerbound : + forall x, firstl x = D1 -> (2^(Z.of_nat (pred size)) <= phi x)%Z. + Proof. + intros. + generalize (phibis_aux_lowerbound (pred size) x). + rewrite <- firstl_firstr. + change (S (pred size)) with size; auto. + rewrite phibis_aux_equiv; auto. + Qed. + + (** * Equivalence modulo [2^n] *) + + Section EqShiftL. + + (** After killing [n] bits at the left, are the numbers equal ?*) + + Definition EqShiftL n x y := + nshiftl n x = nshiftl n y. + + Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y. + Proof. + unfold EqShiftL; intros; unfold nshiftl; simpl; split; auto. + Qed. + + Lemma EqShiftL_size : forall k x y, size<=k -> EqShiftL k x y. + Proof. + red; intros; rewrite 2 nshiftl_above_size; auto. + Qed. + + Lemma EqShiftL_le : forall k k' x y, k <= k' -> + EqShiftL k x y -> EqShiftL k' x y. + Proof. + unfold EqShiftL; intros. + replace k' with ((k'-k)+k)%nat by omega. + remember (k'-k)%nat as n. + clear Heqn H k'. + induction n; simpl; auto. + rewrite 2 nshiftl_S; f_equal; auto. + Qed. + + Lemma EqShiftL_firstr : forall k x y, k < size -> + EqShiftL k x y -> firstr x = firstr y. + Proof. + intros. + rewrite 2 firstr_firstl. + f_equal. + apply EqShiftL_le with k; auto. + unfold size. + auto with arith. + Qed. + + Lemma EqShiftL_twice : forall k x y, + EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y. + Proof. + intros; unfold EqShiftL. + rewrite 2 nshiftl_S_tail; split; auto. + Qed. + + (** * From int63 to list of digits. *) + + (** Lower (=rightmost) bits comes first. *) + + Definition i2l := recrbis _ nil (fun d _ rec => d::rec). + + Lemma i2l_length : forall x, length (i2l x) = size. + Proof. + intros; reflexivity. + Qed. + + Fixpoint lshiftl l x := + match l with + | nil => x + | d::l => sneakl d (lshiftl l x) + end. + + Definition l2i l := lshiftl l On. + + Lemma l2i_i2l : forall x, l2i (i2l x) = x. + Proof. + destruct x; compute; auto. + Qed. + + Lemma i2l_sneakr : forall x d, + i2l (sneakr d x) = tail (i2l x) ++ d::nil. + Proof. + destruct x; compute; auto. + Qed. + + Lemma i2l_sneakl : forall x d, + i2l (sneakl d x) = d :: removelast (i2l x). + Proof. + destruct x; compute; auto. + Qed. + + Lemma i2l_l2i : forall l, length l = size -> + i2l (l2i l) = l. + Proof. + repeat (destruct l as [ |? l]; [intros; discriminate | ]). + destruct l; [ | intros; discriminate]. + intros _; compute; auto. + Qed. + + Fixpoint cstlist (A:Type)(a:A) n := + match n with + | O => nil + | S n => a::cstlist _ a n + end. + + Lemma i2l_nshiftl : forall n x, n<=size -> + i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x). + Proof. + induction n. + intros. + assert (firstn (size-0) (i2l x) = i2l x). + rewrite <- minus_n_O, <- (i2l_length x). + induction (i2l x); simpl; f_equal; auto. + rewrite H0; clear H0. + reflexivity. + + intros. + rewrite nshiftl_S. + unfold shiftl; rewrite i2l_sneakl. + simpl cstlist. + rewrite <- app_comm_cons; f_equal. + rewrite IHn; [ | omega]. + rewrite removelast_app. + f_equal. + replace (size-n)%nat with (S (size - S n))%nat by omega. + rewrite removelast_firstn; auto. + rewrite i2l_length; omega. + generalize (firstn_length (size-n) (i2l x)). + rewrite i2l_length. + intros H0 H1; rewrite H1 in H0. + rewrite min_l in H0 by omega. + simpl length in H0. + omega. + Qed. + + (** [i2l] can be used to define a relation equivalent to [EqShiftL] *) + + Lemma EqShiftL_i2l : forall k x y, + EqShiftL k x y <-> firstn (size-k) (i2l x) = firstn (size-k) (i2l y). + Proof. + intros. + destruct (le_lt_dec size k). + split; intros. + replace (size-k)%nat with O by omega. + unfold firstn; auto. + apply EqShiftL_size; auto. + + unfold EqShiftL. + assert (k <= size) by omega. + split; intros. + assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto). + rewrite 2 i2l_nshiftl in H1; auto. + eapply app_inv_head; eauto. + assert (i2l (nshiftl k x) = i2l (nshiftl k y)). + rewrite 2 i2l_nshiftl; auto. + f_equal; auto. + rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)). + f_equal; auto. + Qed. + + (** This equivalence allows to prove easily the following delicate + result *) + + Lemma EqShiftL_twice_plus_one : forall k x y, + EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y. + Proof. + intros. + destruct (le_lt_dec size k). + split; intros; apply EqShiftL_size; auto. + + rewrite 2 EqShiftL_i2l. + unfold twice_plus_one. + rewrite 2 i2l_sneakl. + replace (size-k)%nat with (S (size - S k))%nat by omega. + remember (size - S k)%nat as n. + remember (i2l x) as lx. + remember (i2l y) as ly. + simpl. + rewrite 2 firstn_removelast. + split; intros. + injection H; auto. + f_equal; auto. + subst ly n; rewrite i2l_length; omega. + subst lx n; rewrite i2l_length; omega. + Qed. + + Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y -> + EqShiftL (S k) (shiftr x) (shiftr y). + Proof. + intros. + destruct (le_lt_dec size (S k)). + apply EqShiftL_size; auto. + case_eq (firstr x); intros. + rewrite <- EqShiftL_twice. + unfold twice; rewrite <- H0. + rewrite <- sneakl_shiftr. + rewrite (EqShiftL_firstr k x y); auto. + rewrite <- sneakl_shiftr; auto. + omega. + rewrite <- EqShiftL_twice_plus_one. + unfold twice_plus_one; rewrite <- H0. + rewrite <- sneakl_shiftr. + rewrite (EqShiftL_firstr k x y); auto. + rewrite <- sneakl_shiftr; auto. + omega. + Qed. + + Lemma EqShiftL_incrbis : forall n k x y, n<=size -> + (n+k=S size)%nat -> + EqShiftL k x y -> + EqShiftL k (incrbis_aux n x) (incrbis_aux n y). + Proof. + induction n; simpl; intros. + red; auto. + destruct (eq_nat_dec k size). + subst k; apply EqShiftL_size; auto. + unfold incrbis_aux; simpl; + fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)). + + rewrite (EqShiftL_firstr k x y); auto; try omega. + case_eq (firstr y); intros. + rewrite EqShiftL_twice_plus_one. + apply EqShiftL_shiftr; auto. + + rewrite EqShiftL_twice. + apply IHn; try omega. + apply EqShiftL_shiftr; auto. + Qed. + + Lemma EqShiftL_incr : forall x y, + EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y). + Proof. + intros. + rewrite <- 2 incrbis_aux_equiv. + apply EqShiftL_incrbis; auto. + Qed. + + End EqShiftL. + + (** * More equations about [incr] *) + + Lemma incr_twice_plus_one : + forall x, incr (twice_plus_one x) = twice (incr x). + Proof. + intros. + rewrite incr_eqn2; [ | destruct x; simpl; auto]. + apply EqShiftL_incr. + red; destruct x; simpl; auto. + Qed. + + Lemma incr_firstr : forall x, firstr (incr x) <> firstr x. + Proof. + intros. + case_eq (firstr x); intros. + rewrite incr_eqn1; auto. + destruct (shiftr x); simpl; discriminate. + rewrite incr_eqn2; auto. + destruct (incr (shiftr x)); simpl; discriminate. + Qed. + + Lemma incr_inv : forall x y, + incr x = twice_plus_one y -> x = twice y. + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H0) in *; simpl in *. + change (incr 0) with 1 in H. + symmetry; rewrite twice_zero; auto. + case_eq (firstr x); intros. + rewrite incr_eqn1 in H; auto. + clear H0; destruct x; destruct y; simpl in *. + injection H; intros; subst; auto. + elim (incr_firstr x). + rewrite H1, H; destruct y; simpl; auto. + Qed. + + (** * Conversion from [Z] : the [phi_inv] function *) + + (** First, recursive equations *) + + Lemma phi_inv_double_plus_one : forall z, + phi_inv (Z.succ_double z) = twice_plus_one (phi_inv z). + Proof. + destruct z; simpl; auto. + induction p; simpl. + rewrite 2 incr_twice; auto. + rewrite incr_twice, incr_twice_plus_one. + f_equal. + apply incr_inv; auto. + auto. + Qed. + + Lemma phi_inv_double : forall z, + phi_inv (Z.double z) = twice (phi_inv z). + Proof. + destruct z; simpl; auto. + rewrite incr_twice_plus_one; auto. + Qed. + + Lemma phi_inv_incr : forall z, + phi_inv (Z.succ z) = incr (phi_inv z). + Proof. + destruct z. + simpl; auto. + simpl; auto. + induction p; simpl; auto. + rewrite <- Pos.add_1_r, IHp, incr_twice_plus_one; auto. + rewrite incr_twice; auto. + simpl; auto. + destruct p; simpl; auto. + rewrite incr_twice; auto. + f_equal. + rewrite incr_twice_plus_one; auto. + induction p; simpl; auto. + rewrite incr_twice; auto. + f_equal. + rewrite incr_twice_plus_one; auto. + Qed. + + (** [phi_inv o inv], the always-exact and easy-to-prove trip : + from int63 to Z and then back to int63. *) + + Lemma phi_inv_phi_aux : + forall n x, n <= size -> + phi_inv (phibis_aux n (nshiftr (size-n) x)) = + nshiftr (size-n) x. + Proof. + induction n. + intros; simpl. + rewrite nshiftr_size; auto. + intros. + unfold phibis_aux, recrbis_aux; fold recrbis_aux; + fold (phibis_aux n (shiftr (nshiftr (size-S n) x))). + assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x). + replace (size - n)%nat with (S (size - (S n))); auto; omega. + rewrite H0. + case_eq (firstr (nshiftr (size - S n) x)); intros. + + rewrite phi_inv_double. + rewrite IHn by omega. + rewrite <- H0. + remember (nshiftr (size - S n) x) as y. + destruct y; simpl in H1; rewrite H1; auto. + + rewrite phi_inv_double_plus_one. + rewrite IHn by omega. + rewrite <- H0. + remember (nshiftr (size - S n) x) as y. + destruct y; simpl in H1; rewrite H1; auto. + Qed. + + Lemma phi_inv_phi : forall x, phi_inv (phi x) = x. + Proof. + intros. + rewrite <- phibis_aux_equiv. + replace x with (nshiftr (size - size) x) by auto. + apply phi_inv_phi_aux; auto. + Qed. + + (** The other composition [phi o phi_inv] is harder to prove correct. + In particular, an overflow can happen, so a modulo is needed. + For the moment, we proceed via several steps, the first one + being a detour to [positive_to_in63]. *) + + (** * [positive_to_int63] *) + + (** A variant of [p2i] with [twice] and [twice_plus_one] instead of + [2*i] and [2*i+1] *) + + Fixpoint p2ibis n p : (N*int63)%type := + match n with + | O => (Npos p, On) + | S n => match p with + | xO p => let (r,i) := p2ibis n p in (r, twice i) + | xI p => let (r,i) := p2ibis n p in (r, twice_plus_one i) + | xH => (N0, In) + end + end. + + Lemma p2ibis_bounded : forall n p, + nshiftr n (snd (p2ibis n p)) = 0. + Proof. + induction n. + simpl; intros; auto. + simpl; intros. + destruct p; simpl. + + specialize IHn with p. + destruct (p2ibis n p); simpl in *. + rewrite nshiftr_S_tail. + destruct (le_lt_dec size n). + rewrite nshiftr_above_size; auto. + assert (H:=nshiftr_0_firstl _ _ l IHn). + replace (shiftr (twice_plus_one i)) with i; auto. + destruct i; simpl in *; rewrite H; auto. + + specialize IHn with p. + destruct (p2ibis n p); simpl in *. + rewrite nshiftr_S_tail. + destruct (le_lt_dec size n). + rewrite nshiftr_above_size; auto. + assert (H:=nshiftr_0_firstl _ _ l IHn). + replace (shiftr (twice i)) with i; auto. + destruct i; simpl in *; rewrite H; auto. + + rewrite nshiftr_S_tail; auto. + replace (shiftr In) with 0; auto. + apply nshiftr_n_0. + Qed. + + Local Open Scope Z_scope. + + Lemma p2ibis_spec : forall n p, (n<=size)%nat -> + Zpos p = (Z.of_N (fst (p2ibis n p)))*2^(Z.of_nat n) + + phi (snd (p2ibis n p)). + Proof. + induction n; intros. + simpl; rewrite Pos.mul_1_r; auto. + replace (2^(Z.of_nat (S n)))%Z with (2*2^(Z.of_nat n))%Z by + (rewrite <- Z.pow_succ_r, <- Zpos_P_of_succ_nat; + auto with zarith). + rewrite (Z.mul_comm 2). + assert (n<=size)%nat by omega. + destruct p; simpl; [ | | auto]; + specialize (IHn p H0); + generalize (p2ibis_bounded n p); + destruct (p2ibis n p) as (r,i); simpl in *; intros. + + change (Zpos p~1) with (2*Zpos p + 1)%Z. + rewrite phi_twice_plus_one_firstl, Z.succ_double_spec. + rewrite IHn; ring. + apply (nshiftr_0_firstl n); auto; try omega. + + change (Zpos p~0) with (2*Zpos p)%Z. + rewrite phi_twice_firstl. + change (Z.double (phi i)) with (2*(phi i))%Z. + rewrite IHn; ring. + apply (nshiftr_0_firstl n); auto; try omega. + Qed. + + (** We now prove that this [p2ibis] is related to [phi_inv_positive] *) + + Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat -> + EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)). + Proof. + induction n. + intros. + apply EqShiftL_size; auto. + intros. + simpl p2ibis; destruct p; [ | | red; auto]; + specialize IHn with p; + destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive; + rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice; + replace (S (size - S n))%nat with (size - n)%nat by omega; + apply IHn; omega. + Qed. + + (** This gives the expected result about [phi o phi_inv], at least + for the positive case. *) + + Lemma phi_phi_inv_positive : forall p, + phi (phi_inv_positive p) = (Zpos p) mod (2^(Z.of_nat size)). + Proof. + intros. + replace (phi_inv_positive p) with (snd (p2ibis size p)). + rewrite (p2ibis_spec size p) by auto. + rewrite Z.add_comm, Z_mod_plus. + symmetry; apply Zmod_small. + apply phi_bounded. + auto with zarith. + symmetry. + rewrite <- EqShiftL_zero. + apply (phi_inv_positive_p2ibis size p); auto. + Qed. + + (** Moreover, [p2ibis] is also related with [p2i] and hence with + [positive_to_int63]. *) + + Lemma double_twice_firstl : forall x, firstl x = D0 -> + (Twon*x = twice x)%int. + Proof. + intros. + unfold mul63. + rewrite <- Z.double_spec, <- phi_twice_firstl, phi_inv_phi; auto. + Qed. + + Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 -> + (Twon*x+In = twice_plus_one x)%int. + Proof. + intros. + rewrite double_twice_firstl; auto. + unfold add63. + rewrite phi_twice_firstl, <- Z.succ_double_spec, + <- phi_twice_plus_one_firstl, phi_inv_phi; auto. + Qed. + + Lemma p2i_p2ibis : forall n p, (n<=size)%nat -> + p2i n p = p2ibis n p. + Proof. + induction n; simpl; auto; intros. + destruct p; auto; specialize IHn with p; + generalize (p2ibis_bounded n p); + rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros; + f_equal; auto. + apply double_twice_plus_one_firstl. + apply (nshiftr_0_firstl n); auto; omega. + apply double_twice_firstl. + apply (nshiftr_0_firstl n); auto; omega. + Qed. + + Lemma positive_to_int63_phi_inv_positive : forall p, + snd (positive_to_int63 p) = phi_inv_positive p. + Proof. + intros; unfold positive_to_int63. + rewrite p2i_p2ibis; auto. + symmetry. + rewrite <- EqShiftL_zero. + apply (phi_inv_positive_p2ibis size); auto. + Qed. + + Lemma positive_to_int63_spec : forall p, + Zpos p = (Z.of_N (fst (positive_to_int63 p)))*2^(Z.of_nat size) + + phi (snd (positive_to_int63 p)). + Proof. + unfold positive_to_int63. + intros; rewrite p2i_p2ibis; auto. + apply p2ibis_spec; auto. + Qed. + + (** Thanks to the result about [phi o phi_inv_positive], we can + now establish easily the most general results about + [phi o twice] and so one. *) + + Lemma phi_twice : forall x, + phi (twice x) = (Z.double (phi x)) mod 2^(Z.of_nat size). + Proof. + intros. + pattern x at 1; rewrite <- (phi_inv_phi x). + rewrite <- phi_inv_double. + assert (0 <= Z.double (phi x)). + rewrite Z.double_spec; generalize (phi_bounded x); omega. + destruct (Z.double (phi x)). + simpl; auto. + apply phi_phi_inv_positive. + compute in H; elim H; auto. + Qed. + + Lemma phi_twice_plus_one : forall x, + phi (twice_plus_one x) = (Z.succ_double (phi x)) mod 2^(Z.of_nat size). + Proof. + intros. + pattern x at 1; rewrite <- (phi_inv_phi x). + rewrite <- phi_inv_double_plus_one. + assert (0 <= Z.succ_double (phi x)). + rewrite Z.succ_double_spec; generalize (phi_bounded x); omega. + destruct (Z.succ_double (phi x)). + simpl; auto. + apply phi_phi_inv_positive. + compute in H; elim H; auto. + Qed. + + Lemma phi_incr : forall x, + phi (incr x) = (Z.succ (phi x)) mod 2^(Z.of_nat size). + Proof. + intros. + pattern x at 1; rewrite <- (phi_inv_phi x). + rewrite <- phi_inv_incr. + assert (0 <= Z.succ (phi x)). + change (Z.succ (phi x)) with ((phi x)+1)%Z; + generalize (phi_bounded x); omega. + destruct (Z.succ (phi x)). + simpl; auto. + apply phi_phi_inv_positive. + compute in H; elim H; auto. + Qed. + + (** With the previous results, we can deal with [phi o phi_inv] even + in the negative case *) + + Lemma phi_phi_inv_negative : + forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z.of_nat size). + Proof. + induction p. + + simpl complement_negative. + rewrite phi_incr in IHp. + rewrite incr_twice, phi_twice_plus_one. + remember (phi (complement_negative p)) as q. + rewrite Z.succ_double_spec. + replace (2*q+1) with (2*(Z.succ q)-1) by omega. + rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp. + rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith. + + simpl complement_negative. + rewrite incr_twice_plus_one, phi_twice. + remember (phi (incr (complement_negative p))) as q. + rewrite Z.double_spec, IHp, Zmult_mod_idemp_r; auto with zarith. + + simpl; auto. + Qed. + + Lemma phi_phi_inv : + forall z, phi (phi_inv z) = z mod 2 ^ (Z.of_nat size). + Proof. + destruct z. + simpl; auto. + apply phi_phi_inv_positive. + apply phi_phi_inv_negative. + Qed. + +End Basics. + +Definition zdigits := Eval vm_compute in (phi_inv 63). +Notation "63" := zdigits : int63_scope. + +Instance int63_ops : ZnZ.Ops int63 := +{ + digits := 63%positive; (* number of digits *) + zdigits := 63; (* number of digits *) + to_Z := phi; (* conversion to Z *) + of_pos := positive_to_int63; (* positive -> N*int63 : p => N,i + where p = N*2^63+phi i *) + head0 := head063; (* number of head 0 *) + tail0 := tail063; (* number of tail 0 *) + zero := 0; + one := 1; + minus_one := Tn; (* 2^63 - 1 *) + compare := compare63; + eq0 := fun i => match i ?= 0 with Eq => true | _ => false end; + opp_c := fun i => 0 -c i; + opp := opp63; + opp_carry := fun i => 0-i-1; + succ_c := fun i => i +c 1; + add_c := add63c; + add_carry_c := add63carryc; + succ := fun i => i + 1; + add := add63; + add_carry := fun i j => i + j + 1; + pred_c := fun i => i -c 1; + sub_c := sub63c; + sub_carry_c := sub63carryc; + pred := fun i => i - 1; + sub := sub63; + sub_carry := fun i j => i - j - 1; + mul_c := mul63c; + mul := mul63; + square_c := fun x => x *c x; + div21 := div6321; + div_gt := div63; (* this is supposed to be the special case of + division a/b where a > b *) + div := div63; + modulo_gt := fun i j => let (_,r) := i/j in r; + modulo := fun i j => let (_,r) := i/j in r; + gcd_gt := gcd63; + gcd := gcd63; + add_mul_div := addmuldiv63; + pos_mod := (* modulo 2^p *) + fun p i => + match p ?= 63 with + | Lt => addmuldiv63 p 0 (addmuldiv63 (63-p) i 0) + | _ => i + end; + is_even := + fun i => let (_,r) := i/2 in + match r ?= 0 with Eq => true | _ => false end; + sqrt2 := sqrt632; + sqrt := sqrt63 +}. + +Section Int63_Specs. + + Local Open Scope Z_scope. + + Notation "[| x |]" := (phi x) (at level 0, x at level 99). + + Local Notation wB := (2 ^ (Z.of_nat size)). + + Lemma wB_pos : wB > 0. + Proof. + auto with zarith. + Qed. + + Notation "[+| c |]" := + (interp_carry 1 wB phi c) (at level 0, x at level 99). + + Notation "[-| c |]" := + (interp_carry (-1) wB phi c) (at level 0, x at level 99). + + Notation "[|| x ||]" := + (zn2z_to_Z wB phi x) (at level 0, x at level 99). + + Lemma spec_zdigits : [| 63 |] = 63. + Proof. + reflexivity. + Qed. + + Lemma spec_more_than_1_digit: 1 < 63. + Proof. + auto with zarith. + Qed. + + Lemma spec_0 : [| 0 |] = 0. + Proof. + reflexivity. + Qed. + + Lemma spec_1 : [| 1 |] = 1. + Proof. + reflexivity. + Qed. + + Lemma spec_m1 : [| Tn |] = wB - 1. + Proof. + reflexivity. + Qed. + + Lemma spec_compare : forall x y, + (x ?= y)%int = ([|x|] ?= [|y|]). + Proof. reflexivity. Qed. + + (** Addition *) + + Lemma spec_add_c : forall x y, [+|add63c x y|] = [|x|] + [|y|]. + Proof. + intros; unfold add63c, add63, interp_carry; rewrite phi_phi_inv. + generalize (phi_bounded x)(phi_bounded y); intros. + set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. + + assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y). + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. + destruct (Z_lt_le_dec (X+Y) wB). + contradict H1; auto using Zmod_small with zarith. + rewrite <- (Z_mod_plus_full (X+Y) (-1) wB). + rewrite Zmod_small; romega. + + generalize (Z.compare_eq ((X+Y) mod wB) (X+Y)); intros Heq. + destruct Z.compare; intros; + [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. + Qed. + + Lemma spec_succ_c : forall x, [+|add63c x 1|] = [|x|] + 1. + Proof. + intros; apply spec_add_c. + Qed. + + Lemma spec_add_carry_c : forall x y, [+|add63carryc x y|] = [|x|] + [|y|] + 1. + Proof. + intros. + unfold add63carryc, interp_carry; rewrite phi_phi_inv. + generalize (phi_bounded x)(phi_bounded y); intros. + set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. + + assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1). + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. + destruct (Z_lt_le_dec (X+Y+1) wB). + contradict H1; auto using Zmod_small with zarith. + rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB). + rewrite Zmod_small; romega. + + generalize (Z.compare_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq. + destruct Z.compare; intros; + [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. + Qed. + + Lemma spec_add : forall x y, [|x+y|] = ([|x|] + [|y|]) mod wB. + Proof. + intros; apply phi_phi_inv. + Qed. + + Lemma spec_add_carry : + forall x y, [|x+y+1|] = ([|x|] + [|y|] + 1) mod wB. + Proof. + unfold add63; intros. + repeat rewrite phi_phi_inv. + apply Zplus_mod_idemp_l. + Qed. + + Lemma spec_succ : forall x, [|x+1|] = ([|x|] + 1) mod wB. + Proof. + intros; rewrite <- spec_1; apply spec_add. + Qed. + + (** Substraction *) + + Lemma spec_sub_c : forall x y, [-|sub63c x y|] = [|x|] - [|y|]. + Proof. + unfold sub63c, sub63, interp_carry; intros. + rewrite phi_phi_inv. + generalize (phi_bounded x)(phi_bounded y); intros. + set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. + + assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y). + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. + destruct (Z_lt_le_dec (X-Y) 0). + rewrite <- (Z_mod_plus_full (X-Y) 1 wB). + rewrite Zmod_small; romega. + contradict H1; apply Zmod_small; romega. + + generalize (Z.compare_eq ((X-Y) mod wB) (X-Y)); intros Heq. + destruct Z.compare; intros; + [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. + Qed. + + Lemma spec_sub_carry_c : forall x y, [-|sub63carryc x y|] = [|x|] - [|y|] - 1. + Proof. + unfold sub63carryc, sub63, interp_carry; intros. + rewrite phi_phi_inv. + generalize (phi_bounded x)(phi_bounded y); intros. + set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. + + assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1). + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. + destruct (Z_lt_le_dec (X-Y-1) 0). + rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB). + rewrite Zmod_small; romega. + contradict H1; apply Zmod_small; romega. + + generalize (Z.compare_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq. + destruct Z.compare; intros; + [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. + Qed. + + Lemma spec_sub : forall x y, [|x-y|] = ([|x|] - [|y|]) mod wB. + Proof. + intros; apply phi_phi_inv. + Qed. + + Lemma spec_sub_carry : + forall x y, [|x-y-1|] = ([|x|] - [|y|] - 1) mod wB. + Proof. + unfold sub63; intros. + repeat rewrite phi_phi_inv. + apply Zminus_mod_idemp_l. + Qed. + + Lemma spec_opp_c : forall x, [-|sub63c 0 x|] = -[|x|]. + Proof. + intros; apply spec_sub_c. + Qed. + + Lemma spec_opp : forall x, [|0 - x|] = (-[|x|]) mod wB. + Proof. + intros; apply phi_phi_inv. + Qed. + + Lemma spec_opp_carry : forall x, [|0 - x - 1|] = wB - [|x|] - 1. + Proof. + unfold sub63; intros. + repeat rewrite phi_phi_inv. + change [|1|] with 1; change [|0|] with 0. + rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB). + rewrite Zminus_mod_idemp_l. + rewrite Zmod_small; generalize (phi_bounded x); romega. + Qed. + + Lemma spec_pred_c : forall x, [-|sub63c x 1|] = [|x|] - 1. + Proof. + intros; apply spec_sub_c. + Qed. + + Lemma spec_pred : forall x, [|x-1|] = ([|x|] - 1) mod wB. + Proof. + intros; apply spec_sub. + Qed. + + (** Multiplication *) + + Lemma phi2_phi_inv2 : forall x, [||phi_inv2 x||] = x mod (wB^2). + Proof. + assert (forall z, (z / wB) mod wB * wB + z mod wB = z mod wB ^ 2). + intros. + assert ((z/wB) mod wB = z/wB - (z/wB/wB)*wB). + rewrite (Z_div_mod_eq (z/wB) wB wB_pos) at 2; ring. + assert (z mod wB = z - (z/wB)*wB). + rewrite (Z_div_mod_eq z wB wB_pos) at 2; ring. + rewrite H. + rewrite H0 at 1. + ring_simplify. + rewrite Zdiv_Zdiv; auto with zarith. + rewrite (Z_div_mod_eq z (wB*wB)) at 2; auto with zarith. + change (wB*wB) with (wB^2); ring. + + unfold phi_inv2. + destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv; + change base with wB; auto. + Qed. + + Lemma spec_mul_c : forall x y, [|| mul63c x y ||] = [|x|] * [|y|]. + Proof. + unfold mul63c; intros. + rewrite phi2_phi_inv2. + apply Zmod_small. + generalize (phi_bounded x)(phi_bounded y); intros. + change (wB^2) with (wB * wB). + auto using Z.mul_lt_mono_nonneg with zarith. + Qed. + + Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB. + Proof. + intros; apply phi_phi_inv. + Qed. + + Lemma spec_square_c : forall x, [|| mul63c x x ||] = [|x|] * [|x|]. + Proof. + intros; apply spec_mul_c. + Qed. + + (** Division *) + + Lemma spec_div21 : forall a1 a2 b, + wB/2 <= [|b|] -> + [|a1|] < [|b|] -> + let (q,r) := div6321 a1 a2 b in + [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ + 0 <= [|r|] < [|b|]. + Proof. + unfold div6321; intros. + generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros. + assert ([|b|]>0) by (auto with zarith). + generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4). + unfold Z.div; destruct (Z.div_eucl (phi2 a1 a2) [|b|]); simpl. + rewrite ?phi_phi_inv. + destruct 1; intros. + unfold phi2 in *. + change base with wB; change base with wB in H5. + change (Z.pow_pos 2 63) with wB; change (Z.pow_pos 2 63) with wB in H. + rewrite H5, Z.mul_comm. + replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega). + replace (z mod wB) with z; auto with zarith. + symmetry; apply Zmod_small. + split. + apply H7; change base with wB; auto with zarith. + apply Z.mul_lt_mono_pos_r with [|b|]; [omega| ]. + rewrite Z.mul_comm. + apply Z.le_lt_trans with ([|b|]*z+z0); [omega| ]. + rewrite <- H5. + apply Z.le_lt_trans with ([|a1|]*wB+(wB-1)); [omega | ]. + replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring. + assert (wB*([|a1|]+1) <= wB*[|b|]); try omega. + apply Z.mul_le_mono_nonneg; omega. + Qed. + + Lemma spec_div : forall a b, 0 < [|b|] -> + let (q,r) := div63 a b in + [|a|] = [|q|] * [|b|] + [|r|] /\ + 0 <= [|r|] < [|b|]. + Proof. + unfold div63; intros. + assert ([|b|]>0) by (auto with zarith). + generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0). + unfold Z.div; destruct (Z.div_eucl [|a|] [|b|]); simpl. + rewrite ?phi_phi_inv. + destruct 1; intros. + rewrite H1, Z.mul_comm. + generalize (phi_bounded a)(phi_bounded b); intros. + replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega). + replace (z mod wB) with z; auto with zarith. + symmetry; apply Zmod_small. + split; auto with zarith. + apply Z.le_lt_trans with [|a|]; auto with zarith. + rewrite H1. + apply Z.le_trans with ([|b|]*z); try omega. + rewrite <- (Z.mul_1_l z) at 1. + apply Z.mul_le_mono_nonneg; auto with zarith. + Qed. + + Lemma spec_mod : forall a b, 0 < [|b|] -> + [|let (_,r) := (a/b)%int in r|] = [|a|] mod [|b|]. + Proof. + unfold div63; intros. + assert ([|b|]>0) by (auto with zarith). + unfold Z.modulo. + generalize (Z_div_mod [|a|] [|b|] H0). + destruct (Z.div_eucl [|a|] [|b|]); simpl. + rewrite ?phi_phi_inv. + destruct 1; intros. + generalize (phi_bounded b); intros. + apply Zmod_small; omega. + Qed. + + Lemma phi_gcd : forall i j, + [|gcd63 i j|] = Zgcdn (2*size) [|j|] [|i|]. + Proof. + unfold gcd63. + induction (2*size)%nat; intros. + reflexivity. + simpl. + unfold compare63. + change [|On|] with 0. + generalize (phi_bounded j)(phi_bounded i); intros. + case_eq [|j|]; intros. + simpl; intros. + generalize (Zabs_spec [|i|]); omega. + simpl. + rewrite IHn, H1; f_equal. + rewrite spec_mod, H1; auto. + rewrite H1; compute; auto. + rewrite H1 in H; destruct H as [H _]; compute in H; elim H; auto. + Qed. + + Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd63 a b|]. + Proof. + intros. + rewrite phi_gcd. + apply Zis_gcd_sym. + apply Zgcdn_is_gcd. + unfold Zgcd_bound. + generalize (phi_bounded b). + destruct [|b|]. + unfold size; auto with zarith. + intros (_,H). + cut (Pos.size_nat p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto]. + intros (H,_); compute in H; elim H; auto. + Qed. + + Lemma iter_int63_iter_nat : forall A f i a, + iter_int63 i A f a = iter_nat (Z.abs_nat [|i|]) A f a. + Proof. + intros. + unfold iter_int63. + rewrite <- recrbis_equiv; auto; unfold recrbis. + rewrite <- phibis_aux_equiv. + + revert i a; induction size. + simpl; auto. + simpl; intros. + case_eq (firstr i); intros H; rewrite 2 IHn; + unfold phibis_aux; simpl; rewrite H; fold (phibis_aux n (shiftr i)); + generalize (phibis_aux_pos n (shiftr i)); intros; + set (z := phibis_aux n (shiftr i)) in *; clearbody z; + rewrite <- iter_nat_plus. + + f_equal. + rewrite Z.double_spec, <- Z.add_diag. + symmetry; apply Zabs2Nat.inj_add; auto with zarith. + + change (iter_nat (S (Z.abs_nat z + Z.abs_nat z)) A f a = + iter_nat (Z.abs_nat (Z.succ_double z)) A f a); f_equal. + rewrite Z.succ_double_spec, <- Z.add_diag. + rewrite Zabs2Nat.inj_add; auto with zarith. + rewrite Zabs2Nat.inj_add; auto with zarith. + change (Z.abs_nat 1) with 1%nat; omega. + Qed. + + Fixpoint addmuldiv63_alt n i j := + match n with + | O => i + | S n => addmuldiv63_alt n (sneakl (firstl j) i) (shiftl j) + end. + + Lemma addmuldiv63_equiv : forall p x y, + addmuldiv63 p x y = addmuldiv63_alt (Z.abs_nat [|p|]) x y. + Proof. + intros. + unfold addmuldiv63. + rewrite iter_int63_iter_nat. + set (n:=Z.abs_nat [|p|]); clearbody n; clear p. + revert x y; induction n. + simpl; auto. + intros. + simpl addmuldiv63_alt. + replace (S n) with (n+1)%nat by (rewrite plus_comm; auto). + rewrite iter_nat_plus; simpl; auto. + Qed. + + Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 63 -> + [| addmuldiv63 p x y |] = + ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 63) - [|p|]))) mod wB. + Proof. + intros. + rewrite addmuldiv63_equiv. + assert ([|p|] = Z.of_nat (Z.abs_nat [|p|])). + rewrite Zabs2Nat.id_abs; symmetry; apply Z.abs_eq. + destruct (phi_bounded p); auto. + rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs2Nat.id. + set (n := Z.abs_nat [|p|]) in *; clearbody n. + assert (n <= 63)%nat. + rewrite Nat2Z.inj_le; auto with zarith. + clear p H; revert x y. + + induction n. + simpl; intros. + change (Z.pow_pos 2 63) with (2^63). + rewrite Z.mul_1_r. + replace ([|y|] / 2^63) with 0. + rewrite Z.add_0_r. + symmetry; apply Zmod_small; apply phi_bounded. + symmetry; apply Zdiv_small; apply phi_bounded. + + simpl addmuldiv63_alt; intros. + rewrite IHn; [ | omega ]. + case_eq (firstl y); intros. + + rewrite phi_twice, Z.double_spec. + rewrite phi_twice_firstl; auto. + change (Z.double [|y|]) with (2*[|y|]). + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. + rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod. + f_equal. + f_equal. + ring. + replace (63-Z.of_nat n) with (Z.succ(63-Z.succ(Z.of_nat n))) by ring. + rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith. + rewrite Z.mul_comm, Z_div_mult; auto with zarith. + + rewrite phi_twice_plus_one, Z.succ_double_spec. + rewrite phi_twice; auto. + change (Z.double [|y|]) with (2*[|y|]). + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. + rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod. + rewrite Z.mul_add_distr_r, Z.mul_1_l, <- Z.add_assoc. + f_equal. + f_equal. + ring. + assert ((2*[|y|]) mod wB = 2*[|y|] - wB). + clear - H. symmetry. apply Zmod_unique with 1; [ | ring ]. + generalize (phi_lowerbound _ H) (phi_bounded y). + set (wB' := 2^Z.of_nat (pred size)). + replace wB with (2*wB'); [ omega | ]. + unfold wB'. rewrite <- Z.pow_succ_r, <- Nat2Z.inj_succ by (auto with zarith). + f_equal. + rewrite H1. + replace wB with (2^(Z.of_nat n)*2^(63-Z.of_nat n)) by + (rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring). + unfold Z.sub; rewrite <- Z.mul_opp_l. + rewrite Z_div_plus; auto with zarith. + ring_simplify. + replace (63+-Z.of_nat n) with (Z.succ(63-Z.succ(Z.of_nat n))) by ring. + rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith. + rewrite Z.mul_comm, Z_div_mult; auto with zarith. + Qed. + + Lemma spec_pos_mod : forall w p, + [|ZnZ.pos_mod p w|] = [|w|] mod (2 ^ [|p|]). + Proof. + unfold ZnZ.pos_mod, int63_ops, compare63. + change [|63|] with 63%Z. + assert (forall w p, 63<=p -> [|w|] = [|w|] mod 2^p). + intros. + generalize (phi_bounded w). + symmetry; apply Zmod_small. + split; auto with zarith. + apply Z.lt_le_trans with wB; auto with zarith. + apply Zpower_le_monotone; auto with zarith. + intros. + case_eq ([|p|] ?= 63); intros; + [ apply H; rewrite (Z.compare_eq _ _ H0); auto with zarith | | + apply H; change ([|p|]>63)%Z in H0; auto with zarith ]. + change ([|p|]<63) in H0. + rewrite spec_add_mul_div by auto with zarith. + change [|0|] with 0%Z; rewrite Z.mul_0_l, Z.add_0_l. + generalize (phi_bounded p)(phi_bounded w); intros. + assert (63-[|p|] [|head063 x|] = Zpos 63. + Proof. + intros. + generalize (phi_inv_phi x). + rewrite H; simpl. + intros H'; rewrite <- H'. + simpl; auto. + Qed. + + Fixpoint head063_alt n x := + match n with + | O => 0%nat + | S n => match firstl x with + | D0 => S (head063_alt n (shiftl x)) + | D1 => 0%nat + end + end. + + Lemma head063_equiv : + forall x, [|head063 x|] = Z.of_nat (head063_alt size x). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H). + simpl; auto. + + unfold head063, recl. + change On with (phi_inv (Z.of_nat (63-size))). + replace (head063_alt size x) with + (head063_alt size x + (63 - size))%nat by auto. + assert (size <= 63)%nat by auto with arith. + + revert x H; induction size; intros. + simpl; auto. + unfold recl_aux; fold recl_aux. + unfold head063_alt; fold head063_alt. + rewrite H. + assert ([|phi_inv (Z.of_nat (63-S n))|] = Z.of_nat (63 - S n)). + rewrite phi_phi_inv. + apply Zmod_small. + split. + change 0 with (Z.of_nat O); apply inj_le; omega. + apply Z.le_lt_trans with (Z.of_nat 63). + apply inj_le; omega. + compute; auto. + case_eq (firstl x); intros; auto. + rewrite plus_Sn_m, plus_n_Sm. + replace (S (63 - S n)) with (63 - n)%nat by omega. + rewrite <- IHn; [ | omega | ]. + f_equal; f_equal. + unfold add63. + rewrite H1. + f_equal. + change [|In|] with 1. + replace (63-n)%nat with (S (63 - S n))%nat by omega. + rewrite Nat2Z.inj_succ; ring. + + clear - H H2. + rewrite (sneakr_shiftl x) in H. + rewrite H2 in H. + case_eq (iszero (shiftl x)); intros; auto. + rewrite (iszero_eq0 _ H0) in H; discriminate. + Qed. + + Lemma phi_nz : forall x, 0 < [|x|] <-> x <> 0%int. + Proof. + split; intros. + red; intro; subst x; discriminate. + assert ([|x|]<>0%Z). + contradict H. + rewrite <- (phi_inv_phi x); rewrite H; auto. + generalize (phi_bounded x); auto with zarith. + Qed. + + Lemma spec_head0 : forall x, 0 < [|x|] -> + wB/ 2 <= 2 ^ ([|head063 x|]) * [|x|] < wB. + Proof. + intros. + rewrite head063_equiv. + assert (nshiftl size x = 0%int). + apply nshiftl_size. + revert x H H0. + unfold size at 2 5. + induction size. + simpl Z.of_nat. + intros. + compute in H0; rewrite H0 in H; discriminate. + + intros. + simpl head063_alt. + case_eq (firstl x); intros. + rewrite (Nat2Z.inj_succ (head063_alt n (shiftl x))), Z.pow_succ_r; auto with zarith. + rewrite <- Z.mul_assoc, Z.mul_comm, <- Z.mul_assoc, <-(Z.mul_comm 2). + rewrite <- Z.double_spec, <- (phi_twice_firstl _ H1). + apply IHn. + + rewrite phi_nz; rewrite phi_nz in H; contradict H. + change twice with shiftl in H. + rewrite (sneakr_shiftl x), H1, H; auto. + + rewrite <- nshiftl_S_tail; auto. + + change (2^(Z.of_nat 0)) with 1; rewrite Z.mul_1_l. + generalize (phi_bounded x); unfold size; split; auto with zarith. + change (2^(Z.of_nat 63)/2) with (2^(Z.of_nat (pred size))). + apply phi_lowerbound; auto. + Qed. + + Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail063 x|] = Zpos 63. + Proof. + intros. + generalize (phi_inv_phi x). + rewrite H; simpl. + intros H'; rewrite <- H'. + simpl; auto. + Qed. + + Fixpoint tail063_alt n x := + match n with + | O => 0%nat + | S n => match firstr x with + | D0 => S (tail063_alt n (shiftr x)) + | D1 => 0%nat + end + end. + + Lemma tail063_equiv : + forall x, [|tail063 x|] = Z.of_nat (tail063_alt size x). + Proof. + intros. + case_eq (iszero x); intros. + rewrite (iszero_eq0 _ H). + simpl; auto. + + unfold tail063, recr. + change On with (phi_inv (Z.of_nat (63-size))). + replace (tail063_alt size x) with + (tail063_alt size x + (63 - size))%nat by auto. + assert (size <= 63)%nat by auto with arith. + + revert x H; induction size; intros. + simpl; auto. + unfold recr_aux; fold recr_aux. + unfold tail063_alt; fold tail063_alt. + rewrite H. + assert ([|phi_inv (Z.of_nat (63-S n))|] = Z.of_nat (63 - S n)). + rewrite phi_phi_inv. + apply Zmod_small. + split. + change 0 with (Z.of_nat O); apply inj_le; omega. + apply Z.le_lt_trans with (Z.of_nat 63). + apply inj_le; omega. + compute; auto. + case_eq (firstr x); intros; auto. + rewrite plus_Sn_m, plus_n_Sm. + replace (S (63 - S n)) with (63 - n)%nat by omega. + rewrite <- IHn; [ | omega | ]. + f_equal; f_equal. + unfold add63. + rewrite H1. + f_equal. + change [|In|] with 1. + replace (63-n)%nat with (S (63 - S n))%nat by omega. + rewrite Nat2Z.inj_succ; ring. + + clear - H H2. + rewrite (sneakl_shiftr x) in H. + rewrite H2 in H. + case_eq (iszero (shiftr x)); intros; auto. + rewrite (iszero_eq0 _ H0) in H; discriminate. + Qed. + + Lemma spec_tail0 : forall x, 0 < [|x|] -> + exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail063 x|]). + Proof. + intros. + rewrite tail063_equiv. + assert (nshiftr size x = 0%int). + apply nshiftr_size. + revert x H H0. + induction size. + simpl Z.of_nat. + intros. + compute in H0; rewrite H0 in H; discriminate. + + intros. + simpl tail063_alt. + case_eq (firstr x); intros. + rewrite (Nat2Z.inj_succ (tail063_alt n (shiftr x))), Z.pow_succ_r; auto with zarith. + destruct (IHn (shiftr x)) as (y & Hy1 & Hy2). + + rewrite phi_nz; rewrite phi_nz in H; contradict H. + rewrite (sneakl_shiftr x), H1, H; auto. + + rewrite <- nshiftr_S_tail; auto. + + exists y; split; auto. + rewrite phi_eqn1; auto. + rewrite Z.double_spec, Hy2; ring. + + exists [|shiftr x|]. + split. + generalize (phi_bounded (shiftr x)); auto with zarith. + rewrite phi_eqn2; auto. + rewrite Z.succ_double_spec; simpl; ring. + Qed. + + (* Sqrt *) + + (* Direct transcription of an old proof + of a fortran program in boyer-moore *) + + Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2). + Proof. + case (Z_mod_lt a 2); auto with zarith. + intros H1; rewrite Zmod_eq_full; auto with zarith. + Qed. + + Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k -> + (j * k) + j <= ((j + k)/2 + 1) ^ 2. + Proof. + intros Hj; generalize Hj k; pattern j; apply natlike_ind; + auto; clear k j Hj. + intros _ k Hk; repeat rewrite Z.add_0_l. + apply Z.mul_nonneg_nonneg; generalize (Z_div_pos k 2); auto with zarith. + intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk. + rewrite Z.mul_0_r, Z.add_0_r, Z.add_0_l. + generalize (sqr_pos (Z.succ j / 2)) (quotient_by_2 (Z.succ j)); + unfold Z.succ. + rewrite Z.pow_2_r, Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l. + auto with zarith. + intros k Hk _. + replace ((Z.succ j + Z.succ k) / 2) with ((j + k)/2 + 1). + generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)). + unfold Z.succ; repeat rewrite Z.pow_2_r; + repeat rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l. + repeat rewrite Z.mul_1_l; repeat rewrite Z.mul_1_r. + auto with zarith. + rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith. + apply f_equal2 with (f := Z.div); auto with zarith. + Qed. + + Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2. + Proof. + intros Hi Hj. + assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith). + apply Z.lt_le_trans with (2 := sqrt_main_trick _ _ (Z.lt_le_incl _ _ Hj) Hij). + pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith. + Qed. + + Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2. + Proof. + intros Hi. + assert (H1: 0 <= i - 2) by auto with zarith. + assert (H2: 1 <= (i / 2) ^ 2); auto with zarith. + replace i with (1* 2 + (i - 2)); auto with zarith. + rewrite Z.pow_2_r, Z_div_plus_full_l; auto with zarith. + generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2). + rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l. + auto with zarith. + generalize (quotient_by_2 i). + rewrite Z.pow_2_r in H2 |- *; + repeat (rewrite Z.mul_add_distr_r || + rewrite Z.mul_add_distr_l || + rewrite Z.mul_1_l || rewrite Z.mul_1_r). + auto with zarith. + Qed. + + Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i. + Proof. + intros Hi Hj Hd; rewrite Z.pow_2_r. + apply Z.le_trans with (j * (i/j)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. + Qed. + + Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j. + Proof. + intros Hi Hj H; case (Z.le_gt_cases j ((j + (i/j))/2)); auto. + intros H1; contradict H; apply Z.le_ngt. + assert (2 * j <= j + (i/j)); auto with zarith. + apply Z.le_trans with (2 * ((j + (i/j))/2)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. + Qed. + + Lemma sqrt63_step_def rec i j: + sqrt63_step rec i j = + match (fst (i/j) ?= j)%int with + Lt => rec i (fst ((j + fst(i/j))/2))%int + | _ => j + end. + Proof. + unfold sqrt63_step; case div63; intros. + simpl; case compare63; auto. + Qed. + + Lemma div63_phi i j: 0 < [|j|] -> [|fst (i/j)%int|] = [|i|]/[|j|]. + intros Hj; generalize (spec_div i j Hj). + case div63; intros q r; simpl fst. + intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith. + rewrite H1; ring. + Qed. + + Lemma sqrt63_step_correct rec i j: + 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 -> + 2 * [|j|] < wB -> + (forall j1 : int63, + 0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 -> + [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> + [|sqrt63_step rec i j|] ^ 2 <= [|i|] < ([|sqrt63_step rec i j|] + 1) ^ 2. + Proof. + assert (Hp2: 0 < [|2|]) by exact (eq_refl Lt). + intros Hi Hj Hij H63 Hrec; rewrite sqrt63_step_def. + rewrite spec_compare, div63_phi; auto. + case Z.compare_spec; auto; intros Hc; + try (split; auto; apply sqrt_test_true; auto with zarith; fail). + apply Hrec; repeat rewrite div63_phi; auto with zarith. + replace [|(j + fst (i / j)%int)|] with ([|j|] + [|i|] / [|j|]). + split. + apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. + Z.le_elim Hj. + replace ([|j|] + [|i|]/[|j|]) with + (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith). + assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith. + rewrite <- Hj, Zdiv_1_r. + replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith). + change ([|2|]) with 2%Z; auto with zarith. + apply sqrt_test_false; auto with zarith. + rewrite spec_add, div63_phi; auto. + symmetry; apply Zmod_small. + split; auto with zarith. + replace [|j + fst (i / j)%int|] with ([|j|] + [|i|] / [|j|]). + apply sqrt_main; auto with zarith. + rewrite spec_add, div63_phi; auto. + symmetry; apply Zmod_small. + split; auto with zarith. + Qed. + + Lemma iter63_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] -> + [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z.of_nat size) -> + (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] -> + [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z.of_nat size) -> + [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> + [|iter63_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter63_sqrt n rec i j|] + 1) ^ 2. + Proof. + revert rec i j; elim n; unfold iter63_sqrt; fold iter63_sqrt; clear n. + intros rec i j Hi Hj Hij H63 Hrec; apply sqrt63_step_correct; auto with zarith. + intros; apply Hrec; auto with zarith. + rewrite Z.pow_0_r; auto with zarith. + intros n Hrec rec i j Hi Hj Hij H63 HHrec. + apply sqrt63_step_correct; auto. + intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. + intros j2 Hj2 H2j2 Hjp2 Hj63; apply Hrec; auto with zarith. + intros j3 Hj3 Hpj3. + apply HHrec; auto. + rewrite Nat2Z.inj_succ, Z.pow_succ_r. + apply Z.le_trans with (2 ^Z.of_nat n + [|j2|]); auto with zarith. + apply Nat2Z.is_nonneg. + Qed. + + Lemma spec_sqrt : forall x, + [|sqrt63 x|] ^ 2 <= [|x|] < ([|sqrt63 x|] + 1) ^ 2. + Proof. + intros i; unfold sqrt63. + fold On In Twon. + rewrite spec_compare. case Z.compare_spec; change [|1|] with 1; + intros Hi; auto with zarith. + repeat rewrite Z.pow_2_r; auto with zarith. + apply iter63_sqrt_correct; auto with zarith. + rewrite div63_phi; change ([|2|]) with 2; auto with zarith. + replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring. + assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith). + rewrite Z_div_plus_full_l; auto with zarith. + rewrite div63_phi; change ([|2|]) with 2; auto with zarith. + apply sqrt_init; auto. + rewrite div63_phi; change ([|2|]) with 2; auto with zarith. + apply Z.le_lt_trans with ([|i|]). + apply Z_mult_div_ge; auto with zarith. + case (phi_bounded i); auto. + intros j2 H1 H2; contradict H2; apply Z.lt_nge. + rewrite div63_phi; change ([|2|]) with 2; auto with zarith. + apply Z.le_lt_trans with ([|i|]); auto with zarith. + assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith). + apply Z.le_trans with (2 * ([|i|]/2)); auto with zarith. + apply Z_mult_div_ge; auto with zarith. + case (phi_bounded i); unfold size; auto with zarith. + change [|0|] with 0; auto with zarith. + case (phi_bounded i); repeat rewrite Z.pow_2_r; auto with zarith. + Qed. + + Lemma sqrt632_step_def rec ih il j: + sqrt632_step rec ih il j = + match (ih ?= j)%int with + Eq => j + | Gt => j + | _ => + match (fst (div6321 ih il j) ?= j)%int with + Lt => let m := match j +c fst (div6321 ih il j) with + C0 m1 => fst (m1/2)%int + | C1 m1 => (fst (m1/2) + v30)%int + end in rec ih il m + | _ => j + end + end. + Proof. + unfold sqrt632_step; case div6321; intros. + simpl; case compare63; auto. + Qed. + + Lemma sqrt632_lower_bound ih il j: + phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|]. + Proof. + intros H1. + case (phi_bounded j); intros Hbj _. + case (phi_bounded il); intros Hbil _. + case (phi_bounded ih); intros Hbih Hbih1. + assert (([|ih|] < [|j|] + 1)%Z); auto with zarith. + apply Z.square_lt_simpl_nonneg; auto with zarith. + repeat rewrite <-Z.pow_2_r; apply Z.le_lt_trans with (2 := H1). + apply Z.le_trans with ([|ih|] * base)%Z; unfold phi2, base; + try rewrite Z.pow_2_r; auto with zarith. + Qed. + + Lemma div632_phi ih il j: (2^62 <= [|j|] -> [|ih|] < [|j|] -> + [|fst (div6321 ih il j)|] = phi2 ih il/[|j|])%Z. + Proof. + intros Hj Hj1. + generalize (spec_div21 ih il j Hj Hj1). + case div6321; intros q r (Hq, Hr). + apply Zdiv_unique with (phi r); auto with zarith. + simpl fst; apply eq_trans with (1 := Hq); ring. + Qed. + + Lemma sqrt632_step_correct rec ih il j: + 2 ^ 61 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 -> + (forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 -> + [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) -> + [|sqrt632_step rec ih il j|] ^ 2 <= phi2 ih il + < ([|sqrt632_step rec ih il j|] + 1) ^ 2. + Proof. + assert (Hp2: (0 < [|2|])%Z) by exact (eq_refl Lt). + intros Hih Hj Hij Hrec; rewrite sqrt632_step_def. + assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt632_lower_bound with il; auto). + case (phi_bounded ih); intros Hih1 _. + case (phi_bounded il); intros Hil1 _. + case (phi_bounded j); intros _ Hj1. + assert (Hp3: (0 < phi2 ih il)). + unfold phi2; apply Z.lt_le_trans with ([|ih|] * base)%Z; auto with zarith. + apply Z.mul_pos_pos; auto with zarith. + apply Z.lt_le_trans with (2:= Hih); auto with zarith. + rewrite spec_compare. case Z.compare_spec; intros Hc1. + split; auto. + apply sqrt_test_true; auto. + unfold phi2, base; auto with zarith. + unfold phi2; rewrite Hc1. + assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith). + rewrite Z.mul_comm, Z_div_plus_full_l; unfold base; auto with zarith. + unfold Z.pow, Z.pow_pos in Hj1; simpl in Hj1; auto with zarith. + case (Z.le_gt_cases (2 ^ 62) [|j|]); intros Hjj. + rewrite spec_compare; case Z.compare_spec; + rewrite div632_phi; auto; intros Hc; + try (split; auto; apply sqrt_test_true; auto with zarith; fail). + apply Hrec. + assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith). + apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. + Z.le_elim Hj. + 2: contradict Hc; apply Z.le_ngt; rewrite <- Hj, Zdiv_1_r; auto with zarith. + assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2). + replace ([|j|] + phi2 ih il/ [|j|])%Z with + (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith. + assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]). + apply sqrt_test_false; auto with zarith. + generalize (spec_add_c j (fst (div6321 ih il j))). + unfold interp_carry; case add63c; intros r; + rewrite div632_phi; auto with zarith. + rewrite div63_phi; change [|2|] with 2%Z; auto with zarith. + intros HH; rewrite HH; clear HH; auto with zarith. + rewrite spec_add, div63_phi; change [|2|] with 2%Z; auto. + rewrite Z.mul_1_l; intros HH. + rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith. + change (phi v30 * 2) with (2 ^ Z.of_nat size). + rewrite HH, Zmod_small; auto with zarith. + replace (phi + match j +c fst (div6321 ih il j) with + | C0 m1 => fst (m1 / 2)%int + | C1 m1 => fst (m1 / 2)%int + v30 + end) with ((([|j|] + (phi2 ih il)/([|j|]))/2)). + apply sqrt_main; auto with zarith. + generalize (spec_add_c j (fst (div6321 ih il j))). + unfold interp_carry; case add63c; intros r; + rewrite div632_phi; auto with zarith. + rewrite div63_phi; auto with zarith. + intros HH; rewrite HH; auto with zarith. + intros HH; rewrite <- HH. + change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2). + rewrite Z_div_plus_full_l; auto with zarith. + rewrite Z.add_comm. + rewrite spec_add, Zmod_small. + rewrite div63_phi; auto. + split; auto with zarith. + case (phi_bounded (fst (r/2)%int)); + case (phi_bounded v30); auto with zarith. + rewrite div63_phi; change (phi 2) with 2%Z; auto. + change (2 ^Z.of_nat size) with (base/2 + phi v30). + assert (phi r / 2 < base/2); auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. + change (base/2 * 2) with base. + apply Z.le_lt_trans with (phi r). + rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith. + case (phi_bounded r); auto with zarith. + contradict Hij; apply Z.le_ngt. + assert ((1 + [|j|]) <= 2 ^ 62); auto with zarith. + apply Z.le_trans with ((2 ^ 62) * (2 ^ 62)); auto with zarith. + assert (0 <= 1 + [|j|]); auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + change ((2 ^ 62) * (2 ^ 62)) with ((2 ^ 61) * base). + apply Z.le_trans with ([|ih|] * base); auto with zarith. + unfold phi2, base; auto with zarith. + split; auto. + apply sqrt_test_true; auto. + unfold phi2, base; auto with zarith. + apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]). + rewrite Z.mul_comm, Z_div_mult; auto with zarith. + apply Z.ge_le; apply Z_div_ge; auto with zarith. + Qed. + + Lemma iter632_sqrt_correct n rec ih il j: + 2^61 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 -> + (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] -> + phi2 ih il < ([|j1|] + 1) ^ 2 -> + [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) -> + [|iter632_sqrt n rec ih il j|] ^ 2 <= phi2 ih il + < ([|iter632_sqrt n rec ih il j|] + 1) ^ 2. + Proof. + revert rec ih il j; elim n; unfold iter632_sqrt; fold iter632_sqrt; clear n. + intros rec ih il j Hi Hj Hij Hrec; apply sqrt632_step_correct; auto with zarith. + intros; apply Hrec; auto with zarith. + rewrite Z.pow_0_r; auto with zarith. + intros n Hrec rec ih il j Hi Hj Hij HHrec. + apply sqrt632_step_correct; auto. + intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. + intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith. + intros j3 Hj3 Hpj3. + apply HHrec; auto. + rewrite Nat2Z.inj_succ, Z.pow_succ_r. + apply Z.le_trans with (2 ^Z.of_nat n + [|j2|])%Z; auto with zarith. + apply Nat2Z.is_nonneg. + Qed. + + Lemma spec_sqrt2 : forall x y, + wB/ 4 <= [|x|] -> + let (s,r) := sqrt632 x y in + [||WW x y||] = [|s|] ^ 2 + [+|r|] /\ + [+|r|] <= 2 * [|s|]. + Proof. + intros ih il Hih; unfold sqrt632. + fold On In. + change [||WW ih il||] with (phi2 ih il). + assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by + (intros s; ring). + assert (Hb: 0 <= base) by (red; intros HH; discriminate). + assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2). + { change ((phi Tn + 1) ^ 2) with (2^126). + apply Z.le_lt_trans with ((2^63 -1) * base + (2^63 - 1)); auto with zarith. + 2: simpl; unfold Z.pow_pos; simpl; auto with zarith. + case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4. + unfold base, Z.pow, Z.pow_pos in H2,H4; simpl in H2,H4. + unfold phi2,Z.pow, Z.pow_pos. simpl Pos.iter; auto with zarith. } + case (iter632_sqrt_correct 63 (fun _ _ j => j) ih il Tn); auto with zarith. + change [|Tn|] with 9223372036854775807; auto with zarith. + intros j1 _ HH; contradict HH. + apply Z.lt_nge. + change [|Tn|] with 9223372036854775807; auto with zarith. + change (2 ^ Z.of_nat 63) with 9223372036854775808; auto with zarith. + case (phi_bounded j1); auto with zarith. + set (s := iter632_sqrt 63 (fun _ _ j : int63 => j) ih il Tn). + intros Hs1 Hs2. + generalize (spec_mul_c s s); case mul63c. + simpl zn2z_to_Z; intros HH. + assert ([|s|] = 0). + { symmetry in HH. rewrite Z.mul_eq_0 in HH. destruct HH; auto. } + contradict Hs2; apply Z.le_ngt; rewrite H. + change ((0 + 1) ^ 2) with 1. + apply Z.le_trans with (2 ^ Z.of_nat size / 4 * base). + simpl; auto with zarith. + apply Z.le_trans with ([|ih|] * base); auto with zarith. + unfold phi2; case (phi_bounded il); auto with zarith. + intros ih1 il1. + change [||WW ih1 il1||] with (phi2 ih1 il1). + intros Hihl1. + generalize (spec_sub_c il il1). + case sub63c; intros il2 Hil2. + simpl interp_carry in Hil2. + rewrite spec_compare; case Z.compare_spec. + unfold interp_carry. + intros H1; split. + rewrite Z.pow_2_r, <- Hihl1. + unfold phi2; ring[Hil2 H1]. + replace [|il2|] with (phi2 ih il - phi2 ih1 il1). + rewrite Hihl1. + rewrite <-Hbin in Hs2; auto with zarith. + unfold phi2; rewrite H1, Hil2; ring. + unfold interp_carry. + intros H1; contradict Hs1. + apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. + unfold phi2. + case (phi_bounded il); intros _ H2. + apply Z.lt_le_trans with (([|ih|] + 1) * base + 0). + rewrite Z.mul_add_distr_r, Z.add_0_r; auto with zarith. + case (phi_bounded il1); intros H3 _. + apply Z.add_le_mono; auto with zarith. + unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base. + rewrite Z.pow_2_r, <- Hihl1, Hil2. + intros H1. + rewrite <- Z.le_succ_l, <- Z.add_1_r in H1. + Z.le_elim H1. + contradict Hs2; apply Z.le_ngt. + replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1). + unfold phi2. + case (phi_bounded il); intros Hpil _. + assert (Hl1l: [|il1|] <= [|il|]). + { case (phi_bounded il2); rewrite Hil2; auto with zarith. } + assert ([|ih1|] * base + 2 * [|s|] + 1 <= [|ih|] * base); auto with zarith. + case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps. + case (phi_bounded ih1); intros Hpih1 _; auto with zarith. + apply Z.le_trans with (([|ih1|] + 2) * base); auto with zarith. + rewrite Z.mul_add_distr_r. + assert (2 * [|s|] + 1 <= 2 * base); auto with zarith. + rewrite Hihl1, Hbin; auto. + split. + unfold phi2; rewrite <- H1; ring. + replace (base + ([|il|] - [|il1|])) with (phi2 ih il - ([|s|] * [|s|])). + rewrite <-Hbin in Hs2; auto with zarith. + rewrite <- Hihl1; unfold phi2; rewrite <- H1; ring. + unfold interp_carry in Hil2 |- *. + unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base. + assert (Hsih: [|ih - 1|] = [|ih|] - 1). + { rewrite spec_sub, Zmod_small; auto; change [|1|] with 1. + case (phi_bounded ih); intros H1 H2. + generalize Hih; change (2 ^ Z.of_nat size / 4) with 2305843009213693952. + split; auto with zarith. } + rewrite spec_compare; case Z.compare_spec. + rewrite Hsih. + intros H1; split. + rewrite Z.pow_2_r, <- Hihl1. + unfold phi2; rewrite <-H1. + transitivity ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])). + ring. + rewrite <-Hil2. + change (2 ^ Z.of_nat size) with base; ring. + replace [|il2|] with (phi2 ih il - phi2 ih1 il1). + rewrite Hihl1. + rewrite <-Hbin in Hs2; auto with zarith. + unfold phi2. + rewrite <-H1. + ring_simplify. + transitivity (base + ([|il|] - [|il1|])). + ring. + rewrite <-Hil2. + change (2 ^ Z.of_nat size) with base; ring. + rewrite Hsih; intros H1. + assert (He: [|ih|] = [|ih1|]). + { apply Z.le_antisymm; auto with zarith. + case (Z.le_gt_cases [|ih1|] [|ih|]); auto; intros H2. + contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. + unfold phi2. + case (phi_bounded il); change (2 ^ Z.of_nat size) with base; + intros _ Hpil1. + apply Z.lt_le_trans with (([|ih|] + 1) * base). + rewrite Z.mul_add_distr_r, Z.mul_1_l; auto with zarith. + case (phi_bounded il1); intros Hpil2 _. + apply Z.le_trans with (([|ih1|]) * base); auto with zarith. } + rewrite Z.pow_2_r, <-Hihl1; unfold phi2; rewrite <-He. + contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. + unfold phi2; rewrite He. + assert (phi il - phi il1 < 0); auto with zarith. + rewrite <-Hil2. + case (phi_bounded il2); auto with zarith. + intros H1. + rewrite Z.pow_2_r, <-Hihl1. + assert (H2 : [|ih1|]+2 <= [|ih|]); auto with zarith. + Z.le_elim H2. + contradict Hs2; apply Z.le_ngt. + replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1). + unfold phi2. + assert ([|ih1|] * base + 2 * phi s + 1 <= [|ih|] * base + ([|il|] - [|il1|])); + auto with zarith. + rewrite <-Hil2. + change (-1 * 2 ^ Z.of_nat size) with (-base). + case (phi_bounded il2); intros Hpil2 _. + apply Z.le_trans with ([|ih|] * base + - base); auto with zarith. + case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps. + assert (2 * [|s|] + 1 <= 2 * base); auto with zarith. + apply Z.le_trans with ([|ih1|] * base + 2 * base); auto with zarith. + assert (Hi: ([|ih1|] + 3) * base <= [|ih|] * base); auto with zarith. + rewrite Z.mul_add_distr_r in Hi; auto with zarith. + rewrite Hihl1, Hbin; auto. + unfold phi2; rewrite <-H2. + split. + replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. + rewrite <-Hil2. + change (-1 * 2 ^ Z.of_nat size) with (-base); ring. + replace (base + [|il2|]) with (phi2 ih il - phi2 ih1 il1). + rewrite Hihl1. + rewrite <-Hbin in Hs2; auto with zarith. + unfold phi2; rewrite <-H2. + replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. + rewrite <-Hil2. + change (-1 * 2 ^ Z.of_nat size) with (-base); ring. +Qed. + + (** [iszero] *) + + Lemma spec_eq0 : forall x, ZnZ.eq0 x = true -> [|x|] = 0. + Proof. + clear; unfold ZnZ.eq0; simpl. + unfold compare63; simpl; intros. + change [|0|] with 0 in H. + apply Z.compare_eq. + now destruct ([|x|] ?= 0). + Qed. + + (* Even *) + + Lemma spec_is_even : forall x, + if ZnZ.is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. + Proof. + unfold ZnZ.is_even; simpl; intros. + generalize (spec_div x 2). + destruct (x/2)%int as (q,r); intros. + unfold compare63. + change [|2|] with 2 in H. + change [|0|] with 0. + destruct H; auto with zarith. + replace ([|x|] mod 2) with [|r|]. + destruct H; auto with zarith. + case Z.compare_spec; auto with zarith. + apply Zmod_unique with [|q|]; auto with zarith. + Qed. + + Global Instance int63_specs : ZnZ.Specs int63_ops := { + spec_to_Z := phi_bounded; + spec_of_pos := positive_to_int63_spec; + spec_zdigits := spec_zdigits; + spec_more_than_1_digit := spec_more_than_1_digit; + spec_0 := spec_0; + spec_1 := spec_1; + spec_m1 := spec_m1; + spec_compare := spec_compare; + spec_eq0 := spec_eq0; + spec_opp_c := spec_opp_c; + spec_opp := spec_opp; + spec_opp_carry := spec_opp_carry; + spec_succ_c := spec_succ_c; + spec_add_c := spec_add_c; + spec_add_carry_c := spec_add_carry_c; + spec_succ := spec_succ; + spec_add := spec_add; + spec_add_carry := spec_add_carry; + spec_pred_c := spec_pred_c; + spec_sub_c := spec_sub_c; + spec_sub_carry_c := spec_sub_carry_c; + spec_pred := spec_pred; + spec_sub := spec_sub; + spec_sub_carry := spec_sub_carry; + spec_mul_c := spec_mul_c; + spec_mul := spec_mul; + spec_square_c := spec_square_c; + spec_div21 := spec_div21; + spec_div_gt := fun a b _ => spec_div a b; + spec_div := spec_div; + spec_modulo_gt := fun a b _ => spec_mod a b; + spec_modulo := spec_mod; + spec_gcd_gt := fun a b _ => spec_gcd a b; + spec_gcd := spec_gcd; + spec_head00 := spec_head00; + spec_head0 := spec_head0; + spec_tail00 := spec_tail00; + spec_tail0 := spec_tail0; + spec_add_mul_div := spec_add_mul_div; + spec_pos_mod := spec_pos_mod; + spec_is_even := spec_is_even; + spec_sqrt2 := spec_sqrt2; + spec_sqrt := spec_sqrt }. + +End Int63_Specs. + + +Module Int63Cyclic <: CyclicType. + Definition t := int63. + Definition ops := int63_ops. + Definition specs := int63_specs. +End Int63Cyclic. -- cgit