(**************************************************************************) (* *) (* SMTCoq *) (* Copyright (C) 2011 - 2019 *) (* *) (* See file "AUTHORS" for the list of authors *) (* *) (* This file is distributed under the terms of the CeCILL-C licence *) (* *) (**************************************************************************) Require Import PropToBool BoolToProp. (* Before SMTCoq.State *) Require Import Int63 List PArray Bool. Require Import SMTCoq.State SMTCoq.SMT_terms SMTCoq.Trace SMT_classes_instances. Declare ML Module "smtcoq_plugin". (** Handling quantifiers with veriT **) (* verit silently transforms an into a when instantiating a quantified theorem with *) Lemma impl_split a b: implb a b = true -> orb (negb a) b = true. Proof. intro H. destruct a; destruct b; trivial. (* alternatively we could do but it forces us to have veriT installed when we compile SMTCoq. *) Qed. Hint Resolve impl_split. (* verit silently transforms an into a or into a when instantiating such a quantified theorem *) Lemma impl_or_split_right a b c: implb (a || b) c = true -> negb b || c = true. Proof. intro H. destruct a; destruct c; intuition. Qed. Lemma impl_or_split_left a b c: implb (a || b) c = true -> negb a || c = true. Proof. intro H. destruct a; destruct c; intuition. Qed. (* verit considers equality modulo its symmetry, so we have to recover the right direction in the instances of the theorems *) Definition hidden_eq a b := a =? b. Ltac all_rew := repeat match goal with | [ |- context [ ?A =? ?B]] => change (A =? B) with (hidden_eq A B) end; repeat match goal with | [ |- context [ hidden_eq ?A ?B] ] => replace (hidden_eq A B) with (B =? A); [ | now rewrite Z.eqb_sym] end. (* An automatic tactic that takes into account all those transformations *) Ltac vauto := try (let H := fresh "H" in intro H; try (all_rew; apply H); match goal with | [ |- is_true (negb ?A || ?B) ] => try (eapply impl_or_split_right; apply H); eapply impl_or_split_left; apply H end; apply H); auto. Tactic Notation "verit_bool" constr_list(h) := verit_bool_base h; vauto. Tactic Notation "verit_bool_no_check" constr_list(h) := verit_bool_no_check_base h; vauto. (** Tactics in Prop **) Ltac zchaff := prop2bool; zchaff_bool; bool2prop. Ltac zchaff_no_check := prop2bool; zchaff_bool_no_check; bool2prop. Tactic Notation "verit" constr_list(h) := prop2bool; verit_bool h; bool2prop. Tactic Notation "verit_no_check" constr_list(h) := prop2bool; verit_bool_no_check h; bool2prop. Ltac cvc4 := prop2bool; cvc4_bool; bool2prop. Ltac cvc4_no_check := prop2bool; cvc4_bool_no_check; bool2prop. (* Ltac smt := prop2bool; *) (* repeat *) (* match goal with *) (* | [ |- context[ CompDec ?t ] ] => try assumption *) (* | [ |- _ : bool] => verit_bool *) (* | [ |- _ : bool] => try (cvc4_bool; verit_bool) *) (* end; *) (* bool2prop. *) (* Ltac smt_no_check := prop2bool; *) (* repeat *) (* match goal with *) (* | [ |- context[ CompDec ?t ] ] => try assumption *) (* | [ |- _ : bool] => verit_bool_no_check *) (* | [ |- _ : bool] => try (cvc4_bool_no_check; verit_bool_no_check) *) (* end; *) (* bool2prop. *) Tactic Notation "smt" constr_list(h) := (prop2bool; try verit_bool h; cvc4_bool; try verit_bool h; bool2prop). Tactic Notation "smt_no_check" constr_list(h) := (prop2bool; try verit_bool_no_check h; cvc4_bool_no_check; try verit_bool_no_check h; bool2prop).