(**************************************************************************) (* *) (* SMTCoq *) (* Copyright (C) 2011 - 2016 *) (* *) (* Michaël Armand *) (* Benjamin Grégoire *) (* Chantal Keller *) (* *) (* Inria - École Polytechnique - Université Paris-Sud *) (* *) (* This file is distributed under the terms of the CeCILL-C licence *) (* *) (**************************************************************************) Require Import Bool. Require Import List. Require Import Int63. Require Import PArray. Require Import RingMicromega. Require Import ZMicromega. Require Import Tauto. Require Import Psatz. Require Import Misc State. Require Import SMT_terms. Require Import SMTCoq.euf.Euf. Local Open Scope array_scope. Local Open Scope int63_scope. Section certif. Variable t_form : PArray.array Form.form. Variable t_atom : PArray.array Atom.atom. Local Notation get_atom := (PArray.get t_atom) (only parsing). Local Notation get_form := (PArray.get t_form) (only parsing). Import EnvRing Atom. (* Register option_map as PrimInline. *) Section BuildPositive. Variable build_positive : hatom -> option positive. Definition build_positive_atom_aux (a:atom) : option positive := match a with | Acop CO_xH => Some xH | Auop UO_xO a => option_map xO (build_positive a) | Auop UO_xI a => option_map xI (build_positive a) | _ => None end. End BuildPositive. Definition build_positive := foldi_down_cont (fun i cont h => build_positive_atom_aux cont (get_atom h)) (PArray.length t_atom) 0 (fun _ => None). Definition build_positive_atom := build_positive_atom_aux build_positive. (* Register build_positive_atom as PrimInline. *) Section BuildZ. Definition build_z_atom_aux a := match a with | Auop UO_Zpos a => option_map Zpos (build_positive a) | Acop CO_Z0 => Some Z0 | Auop UO_Zneg a => option_map Zneg (build_positive a) | _ => None end. End BuildZ. Definition build_z h := build_z_atom_aux (get_atom h). Definition build_z_atom := build_z_atom_aux. Definition vmap := (positive * list Atom.atom)%type. Fixpoint find_var_aux h p (l:list Atom.atom) := match l with | nil => None | h' :: l => let p := Ppred p in if Atom.eqb h h' then Some p else find_var_aux h p l end. Definition find_var (vm:vmap) h := let (count,map) := vm in match find_var_aux h count map with | Some p => (vm, p) | None => ((Psucc count,h::map), count) end. Definition empty_vmap : vmap := (1%positive, nil). Section BuildPExpr. Variable build_pexpr : vmap -> hatom -> (vmap * PExpr Z). Definition build_pexpr_atom_aux (vm:vmap) (h:atom) : vmap * PExpr Z := match h with | Abop BO_Zplus a1 a2 => let (vm, pe1) := build_pexpr vm a1 in let (vm, pe2) := build_pexpr vm a2 in (vm, PEadd pe1 pe2) | Abop BO_Zminus a1 a2 => let (vm, pe1) := build_pexpr vm a1 in let (vm, pe2) := build_pexpr vm a2 in (vm, PEsub pe1 pe2) | Abop BO_Zmult a1 a2 => let (vm, pe1) := build_pexpr vm a1 in let (vm, pe2) := build_pexpr vm a2 in (vm, PEmul pe1 pe2) | Auop UO_Zopp a => let (vm, pe) := build_pexpr vm a in (vm, PEopp pe) | _ => match build_z_atom h with | Some z => (vm, PEc z) | None => let (vm,p) := find_var vm h in (vm,PEX Z p) end end. End BuildPExpr. Definition build_pexpr := foldi_down_cont (fun i cont vm h => build_pexpr_atom_aux cont vm (get_atom h)) (PArray.length t_atom) 0 (fun vm _ => (vm,PEc 0%Z)). Definition build_pexpr_atom := build_pexpr_atom_aux build_pexpr. (* Remark: We do not use OpNeq *) Definition build_op2 op := match op with | (BO_eq Typ.TZ) => Some OpEq | BO_Zle => Some OpLe | BO_Zge => Some OpGe | BO_Zlt => Some OpLt | BO_Zgt => Some OpGt | _ => None end. Definition build_formula_atom vm (a:atom) := match a with | Abop op a1 a2 => match build_op2 op with | Some o => let (vm,pe1) := build_pexpr vm a1 in let (vm,pe2) := build_pexpr vm a2 in Some (vm, Build_Formula pe1 o pe2) | None => None end | _ => None end. Definition build_formula vm h := build_formula_atom vm (get_atom h). Section Build_form. Definition build_not2 i f := fold (fun f' => N (N (A:=Formula Z) f')) 1 i f. Variable build_var : vmap -> var -> option (vmap*BFormula (Formula Z)). Definition build_hform vm f : option (vmap*BFormula (Formula Z)) := match f with | Form.Fatom h => match build_formula vm h with | Some (vm,f) => Some (vm, A f) | None => None end | Form.Ftrue => Some (vm, TT (Formula Z)) | Form.Ffalse => Some (vm, FF (Formula Z)) | Form.Fnot2 i l => match build_var vm (Lit.blit l) with | Some (vm, f) => let f' := build_not2 i f in let f'' := if Lit.is_pos l then f' else N f' in Some (vm,f'') | None => None end | Form.Fand args => let n := length args in if n == 0 then Some (vm,TT (Formula Z)) else foldi (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,Cj f1' f2') | None => None end | None => None end) 1 (n-1) (let l := args.[0] in match build_var vm (Lit.blit l) with | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f) | None => None end) | Form.For args => let n := length args in if n == 0 then Some (vm,FF (Formula Z)) else foldi (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,D f1' f2') | None => None end | None => None end) 1 (n-1) (let l := args.[0] in match build_var vm (Lit.blit l) with | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f) | None => None end) | Form.Fxor a b => match build_var vm (Lit.blit a) with | Some (vm1, f1) => match build_var vm1 (Lit.blit b) with | Some (vm2, f2) => let f1' := if Lit.is_pos a then f1 else N f1 in let f2' := if Lit.is_pos b then f2 else N f2 in Some (vm2, Cj (D f1' f2') (D (N f1') (N f2'))) | None => None end | None => None end | Form.Fimp args => let n := length args in if n == 0 then Some (vm,TT (Formula Z)) else if n <= 1 then let l := args.[0] in match build_var vm (Lit.blit l) with | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f) | None => None end else foldi_down (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,I f2' f1') | None => None end | None => None end) (n-2) 0 (let l := args.[n-1] in match build_var vm (Lit.blit l) with | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f) | None => None end) | Form.Fiff a b => match build_var vm (Lit.blit a) with | Some (vm1, f1) => match build_var vm1 (Lit.blit b) with | Some (vm2, f2) => let f1' := if Lit.is_pos a then f1 else N f1 in let f2' := if Lit.is_pos b then f2 else N f2 in Some (vm2, Cj (D f1' (N f2')) (D (N f1') f2')) | None => None end | None => None end | Form.Fite a b c => match build_var vm (Lit.blit a) with | Some (vm1, f1) => match build_var vm1 (Lit.blit b) with | Some (vm2, f2) => match build_var vm2 (Lit.blit c) with | Some (vm3, f3) => let f1' := if Lit.is_pos a then f1 else N f1 in let f2' := if Lit.is_pos b then f2 else N f2 in let f3' := if Lit.is_pos c then f3 else N f3 in Some (vm3, D (Cj f1' f2') (Cj (N f1') f3')) | None => None end | None => None end | None => None end end. End Build_form. Definition build_var := foldi_down_cont (fun i cont vm h => build_hform cont vm (get_form h)) (PArray.length t_form) 0 (fun _ _ => None). Definition build_form := build_hform build_var. Definition build_nlit vm l := let l := Lit.neg l in match build_form vm (get_form (Lit.blit l)) with | Some (vm,f) => let f := if Lit.is_pos l then f else N f in Some (vm,f) | None => None end. Fixpoint build_clause_aux vm (cl:list _lit) {struct cl} : option (vmap * BFormula (Formula Z)) := match cl with | nil => None | l::nil => build_nlit vm l | l::cl => match build_nlit vm l with | Some (vm,bf1) => match build_clause_aux vm cl with | Some (vm,bf2) => Some (vm, Cj bf1 bf2) | _ => None end | None => None end end. Definition build_clause vm cl := match build_clause_aux vm cl with | Some (vm, bf) => Some (vm, I bf (FF _)) | None => None end. Definition get_eq (l:_lit) (f : Atom.hatom -> Atom.hatom -> C.t) := if Lit.is_pos l then match get_form (Lit.blit l) with | Form.Fatom xa => match get_atom xa with | Atom.Abop (Atom.BO_eq _) a b => f a b | _ => C._true end | _ => C._true end else C._true. (* Register get_eq as PrimInline. *) Definition get_not_le (l:_lit) (f : Atom.hatom -> Atom.hatom -> C.t) := if negb (Lit.is_pos l) then match get_form (Lit.blit l) with | Form.Fatom xa => match get_atom xa with | Atom.Abop (Atom.BO_Zle) a b => f a b | _ => C._true end | _ => C._true end else C._true. (* Register get_not_le as PrimInline. *) Definition check_micromega cl c : C.t := match build_clause empty_vmap cl with | Some (_, bf) => if ZTautoChecker bf c then cl else C._true | None => C._true end. Definition check_diseq l : C.t := match get_form (Lit.blit l) with |Form.For a => if PArray.length a == 3 then let a_eq_b := a.[0] in let not_a_le_b := a.[1] in let not_b_le_a := a.[2] in get_eq a_eq_b (fun a b => get_not_le not_a_le_b (fun a' b' => get_not_le not_b_le_a (fun b'' a'' => if (a == a') && (a == a'') && (b == b') && (b == b'') then (Lit.lit (Lit.blit l))::nil else if (a == b') && (a == b'') && (b == a') && (b == a'') then (Lit.lit (Lit.blit l))::nil else C._true))) else C._true | _ => C._true end. Section Proof. Variables (t_i : array typ_eqb) (t_func : array (Atom.tval t_i)) (ch_atom : Atom.check_atom t_atom) (ch_form : Form.check_form t_form) (wt_t_atom : Atom.wt t_i t_func t_atom). Local Notation check_atom := (check_aux t_i t_func (get_type t_i t_func t_atom)). Local Notation interp_form_hatom := (Atom.interp_form_hatom t_i t_func t_atom). Local Notation rho := (Form.interp_state_var interp_form_hatom t_form). Local Notation t_interp := (t_interp t_i t_func t_atom). Local Notation interp_atom := (interp_aux t_i t_func (get t_interp)). Let wf_t_atom : Atom.wf t_atom. Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed. Let def_t_atom : default t_atom = Atom.Acop Atom.CO_xH. Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed. Let def_t_form : default t_form = Form.Ftrue. Proof. destruct (Form.check_form_correct interp_form_hatom _ ch_form) as [H _]; destruct H; auto. Qed. Let wf_t_form : Form.wf t_form. Proof. destruct (Form.check_form_correct interp_form_hatom _ ch_form) as [H _]; destruct H; auto. Qed. Let wf_rho : Valuation.wf rho. Proof. destruct (Form.check_form_correct interp_form_hatom _ ch_form); auto. Qed. Lemma build_positive_atom_aux_correct : forall (build_positive : hatom -> option positive), (forall (h : hatom) p, build_positive h = Some p -> t_interp.[h] = Bval t_i Typ.Tpositive p) -> forall (a:atom) (p:positive), build_positive_atom_aux build_positive a = Some p -> interp_atom a = Bval t_i Typ.Tpositive p. Proof. intros build_positive Hbuild a; case a; simpl; try discriminate; auto. destruct c; simpl; try discriminate; intros p H1; inversion_clear H1; auto. destruct u; simpl; try discriminate; intros i p; case_eq (build_positive i); simpl; try discriminate; intros q H1 H2; inversion_clear H2; rewrite (Hbuild _ _ H1); auto. Qed. Lemma build_positive_correct : forall h p, build_positive h = Some p -> t_interp.[h] = Bval t_i Typ.Tpositive p. Proof. unfold build_positive. apply foldi_down_cont_ind;intros;try discriminate. rewrite t_interp_wf;trivial. apply build_positive_atom_aux_correct with cont;trivial. Qed. Lemma build_positive_atom_correct : forall (a:atom) (p:positive), build_positive_atom a = Some p -> interp_atom a = Bval t_i Typ.Tpositive p. Proof. apply build_positive_atom_aux_correct;apply build_positive_correct. Qed. Lemma build_z_atom_aux_correct : forall a z, build_z_atom_aux a = Some z -> interp_atom a = Bval t_i Typ.TZ z. Proof. intros a z. destruct a;simpl;try discriminate;auto. destruct c;[discriminate | intros Heq;inversion Heq;trivial]. destruct u;try discriminate; case_eq (build_positive i);try discriminate; intros p Hp Heq;inversion Heq;clear Heq;subst; rewrite (build_positive_correct _ _ Hp);trivial. Qed. Lemma build_z_correct : forall h z, build_z h = Some z -> t_interp.[h] = Bval t_i Typ.TZ z. Proof. unfold build_z;intros h z;rewrite t_interp_wf;trivial. apply build_z_atom_aux_correct;discriminate. Qed. Lemma build_z_atom_correct : forall a z, build_z_atom a = Some z -> interp_atom a = Bval t_i Typ.TZ z. Proof. apply build_z_atom_aux_correct. Qed. Definition wf_vmap (vm:vmap) := (List.length (snd vm) = nat_of_P (fst vm) - 1)%nat /\ List.forallb (fun h => check_atom h Typ.TZ) (snd vm). Fixpoint bounded_pexpr (p:positive) (pe:PExpr Z) := match pe with | PEc _ => true | @PEX _ x => Zlt_bool (Zpos x) (Zpos p) | PEadd pe1 pe2 | PEsub pe1 pe2 | PEmul pe1 pe2 => bounded_pexpr p pe1 && bounded_pexpr p pe2 | PEopp pe => bounded_pexpr p pe | PEpow pe _ => bounded_pexpr p pe end. Definition bounded_formula (p:positive) (f:Formula Z) := bounded_pexpr p (f.(Flhs)) && bounded_pexpr p (f.(Frhs)). Fixpoint bounded_bformula (p:positive) (bf:BFormula (Formula Z)) := match bf with | @TT _ | @FF _ | @X _ _ => true | A f => bounded_formula p f | Cj bf1 bf2 | D bf1 bf2 | I bf1 bf2 => bounded_bformula p bf1 && bounded_bformula p bf2 | N bf => bounded_bformula p bf end. Definition interp_vmap (vm:vmap) p := match nth_error (snd vm) (nat_of_P (fst vm - p) - 1)%nat with | Some a => let (t,v) := interp_atom a in match Typ.cast t Typ.TZ with | Typ.Cast k => k (Typ.interp t_i) v | _ => 0%Z end | _ => 0%Z end. Lemma find_var_aux_lt : forall h p lvm pvm, find_var_aux h pvm lvm = Some p -> Datatypes.length lvm = (nat_of_P pvm - 1)%nat -> (nat_of_P p < nat_of_P pvm)%nat. Proof. induction lvm;simpl;try discriminate. intros pvm Heq1 Heq. assert (1 < pvm)%positive. rewrite Plt_lt;change (nat_of_P 1) with 1%nat ;omega. assert (Datatypes.length lvm = nat_of_P (Ppred pvm) - 1)%nat. rewrite Ppred_minus, Pminus_minus;trivial. change (nat_of_P 1) with 1%nat ;try omega. revert Heq1. destruct (Atom.reflect_eqb h a);subst. intros Heq1;inversion Heq1;clear Heq1;subst;omega. intros Heq1;apply IHlvm in Heq1;trivial. apply lt_trans with (1:= Heq1);omega. Qed. Lemma build_pexpr_atom_aux_correct_z : forall (h : atom) (vm vm' : vmap) (pe : PExpr Z), check_atom h Typ.TZ -> match build_z_atom h with | Some z => (vm, PEc z) | None => let (vm0, p) := find_var vm h in (vm0, PEX Z p) end = (vm', pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ interp_atom h = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. intros h vm vm' pe Hh. case_eq (build_z_atom h). intros z Hb Heq;inversion Heq;clear Heq;subst. intros (Hwf1, Hwf2). repeat split;auto with zarith. rewrite (build_z_atom_correct _ _ Hb);trivial. intros _;unfold find_var;destruct vm as (pvm,lvm). case_eq (find_var_aux h pvm lvm). intros p Hf Heq;inversion Heq;clear Heq;subst. intros (Hwf1, Hwf2);repeat split;auto with zarith. simpl; unfold is_true;rewrite <- Zlt_is_lt_bool. rewrite <- !Z_of_nat_of_P; apply inj_lt;simpl in Hwf1. apply find_var_aux_lt with (1:= Hf);trivial. revert lvm pvm p Hf Hwf1 Hwf2. unfold interp_vmap;simpl. induction lvm;simpl;try discriminate. intros pvm p Heq1 Heq. assert (1 < pvm)%positive. rewrite Plt_lt;change (nat_of_P 1) with 1%nat ;omega. assert (Datatypes.length lvm = nat_of_P (Ppred pvm) - 1)%nat. rewrite Ppred_minus, Pminus_minus;trivial. change (nat_of_P 1) with 1%nat ;try omega. revert Heq1. destruct (Atom.reflect_eqb h a);subst. intros Heq1;inversion Heq1;clear Heq1;subst. unfold is_true;rewrite andb_true_iff;intros (H1,H2). assert (1 < nat_of_P pvm)%nat by (rewrite Plt_lt in H;trivial). assert (W:=nat_of_P_pos (Ppred pvm)). assert (nat_of_P (pvm - Ppred pvm) - 1 = 0)%nat. rewrite Pminus_minus;try omega. apply Plt_lt;omega. rewrite H4;simpl. destruct (check_aux_interp_aux _ _ _ wf_t_atom _ _ H1) as (z,Hz). rewrite Hz;trivial. unfold is_true;rewrite andb_true_iff;intros Heq1 (H1,H2). assert (W:= find_var_aux_lt _ _ _ _ Heq1 H0). assert (nat_of_P (pvm - p) - 1 = S (nat_of_P (Ppred pvm - p) - 1))%nat. assert (W1:= W);rewrite <- Plt_lt in W. rewrite !Pminus_minus;trivial. assert (W2:=nat_of_P_pos (Ppred pvm)). omega. rewrite Plt_lt. apply lt_trans with (1:= W1);omega. rewrite H3;simpl;apply IHlvm;trivial. intros _ Heq;inversion Heq;clear Heq;subst;unfold wf_vmap; simpl;intros (Hwf1, Hwf2);repeat split;simpl. rewrite Psucc_S; assert (W:= nat_of_P_pos pvm);omega. rewrite Hh;trivial. rewrite Psucc_S;omega. intros p Hlt; assert (nat_of_P (Psucc pvm - p) - 1 = S (nat_of_P (pvm - p) - 1))%nat. assert (W1:= Hlt);rewrite <- Plt_lt in W1. rewrite !Pminus_minus;trivial. rewrite Psucc_S;omega. rewrite Plt_lt, Psucc_S;omega. rewrite H;trivial. unfold is_true;rewrite <- Zlt_is_lt_bool. rewrite Zpos_succ_morphism;omega. destruct (check_aux_interp_aux _ _ _ wf_t_atom _ _ Hh) as (z,Hz). rewrite Hz;unfold interp_vmap;simpl. assert (nat_of_P (Psucc pvm - pvm) = 1%nat). rewrite Pplus_one_succ_l, Pminus_minus, Pplus_plus. change (nat_of_P 1) with 1%nat;omega. rewrite Plt_lt, Pplus_plus. change (nat_of_P 1) with 1%nat;omega. rewrite H;simpl;rewrite Hz;trivial. Qed. Lemma bounded_pexpr_le : forall p p', (nat_of_P p <= nat_of_P p')%nat -> forall pe, bounded_pexpr p pe -> bounded_pexpr p' pe. Proof. unfold is_true;induction pe;simpl;trivial. rewrite <- !Zlt_is_lt_bool; rewrite <- Ple_le in H. intros H1;apply Zlt_le_trans with (1:= H1);trivial. rewrite !andb_true_iff;intros (H1,H2);auto. rewrite !andb_true_iff;intros (H1,H2);auto. rewrite !andb_true_iff;intros (H1,H2);auto. Qed. Lemma interp_pexpr_le : forall vm vm', (forall (p : positive), (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm') (nat_of_P (fst vm' - p) - 1)) -> forall pe, bounded_pexpr (fst vm) pe -> Zeval_expr (interp_vmap vm) pe = Zeval_expr (interp_vmap vm') pe. Proof. intros vm vm' Hnth. unfold is_true;induction pe;simpl;trivial. unfold interp_vmap, is_true;rewrite <- Zlt_is_lt_bool. intros Hlt;rewrite Hnth;trivial. rewrite <- Plt_lt;trivial. rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial. rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial. rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial. intros H1;rewrite IHpe;trivial. intros H1;rewrite IHpe;trivial. Qed. Lemma build_pexpr_atom_aux_correct : forall (build_pexpr : vmap -> hatom -> vmap * PExpr Z) h i, (forall h' vm vm' pe, h' < h -> Typ.eqb (get_type t_i t_func t_atom h') Typ.TZ -> build_pexpr vm h' = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ t_interp.[h'] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe))-> forall a vm vm' pe, h < i -> lt_atom h a -> check_atom a Typ.TZ -> build_pexpr_atom_aux build_pexpr vm a = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. intros build_pexpr h i Hb a. Opaque build_z_atom interp_aux. case a;simpl; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). intros u; destruct u; intros j vm vm' pe _H_ Hlt Ht; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). generalize (Hb j vm vm'). destruct (build_pexpr vm j) as (vm0, pe0); intro W1. intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= W1 pe0 Hlt Ht (refl_equal _) Hwf). decompose [and] W;clear W W1. destruct H;repeat split;trivial. Transparent interp_aux. simpl;rewrite H4;trivial. intro b; destruct b; intros j k vm vm' pe HH Hlt Ht; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0). intro IH. generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2). intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH. generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2). intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH. generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2). intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. Qed. Transparent build_z_atom. Lemma build_pexpr_atom_aux_correct' : forall (build_pexpr : vmap -> hatom -> vmap * PExpr Z), (forall h' vm vm' pe, Typ.eqb (get_type t_i t_func t_atom h') Typ.TZ -> build_pexpr vm h' = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ t_interp.[h'] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe))-> forall a vm vm' pe, check_atom a Typ.TZ -> build_pexpr_atom_aux build_pexpr vm a = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. intros build_pexpr Hb a. Opaque build_z_atom interp_aux. case a;simpl; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). intro u; destruct u; intros i vm vm' pe Ht; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). generalize (Hb i vm); clear Hb. destruct (build_pexpr vm i) as (vm0,pe0); intro IH. intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH vm' pe0 Ht (refl_equal _) Hwf). decompose [and] W;clear W IH. destruct H;repeat split;trivial. Transparent interp_aux. simpl;rewrite H4;trivial. intro b; destruct b; intros j k vm vm' pe Ht; try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail). generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH. generalize (Hb k vm0); clear Hb. destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH. generalize (Hb k vm0); clear Hb. destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH. generalize (Hb k vm0); clear Hb. destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'. simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht; decompose [and] Ht;clear Ht. intros Heq Hwf;inversion Heq;clear Heq;subst. assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH. decompose [and] W;clear W. assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'. decompose [and] W;clear W. destruct H5;repeat split;trivial. apply le_trans with (1:= H3);trivial. intros p Hlt;rewrite H2, H7;trivial. apply lt_le_trans with (1:=Hlt);trivial. simpl;rewrite H9, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. simpl;rewrite H6, H11;simpl. rewrite (interp_pexpr_le _ _ H7 _ H4);trivial. Qed. Transparent build_z_atom. Lemma build_pexpr_correct_aux : forall h vm vm' pe, (to_Z h < to_Z (length t_atom))%Z -> Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ -> build_pexpr vm h = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ t_interp.[h] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. unfold build_pexpr. apply foldi_down_cont_ZInd. intros z Hz h vm vm' pe Hh. assert (W:=to_Z_bounded h);rewrite to_Z_0 in Hz. elimtype False;omega. intros i cont Hpos Hlen Hrec. intros h vm vm' pe;unfold is_true;rewrite <-ltb_spec;intros. rewrite t_interp_wf;trivial. apply build_pexpr_atom_aux_correct with cont h i;trivial. intros;apply Hrec;auto. unfold is_true in H3;rewrite ltb_spec in H, H3;omega. unfold wf, is_true in wf_t_atom. rewrite forallbi_spec in wf_t_atom. apply wf_t_atom. rewrite ltb_spec in H;rewrite leb_spec in Hlen;rewrite ltb_spec;omega. unfold wt, is_true in wt_t_atom. rewrite forallbi_spec in wt_t_atom. change (is_true(Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ)) in H0. rewrite Typ.eqb_spec in H0;rewrite <- H0. apply wt_t_atom. rewrite ltb_spec in H;rewrite leb_spec in Hlen;rewrite ltb_spec;omega. Qed. Lemma build_pexpr_correct : forall h vm vm' pe, Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ -> build_pexpr vm h = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ t_interp.[h] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. intros. case_eq (h < length t_atom);intros. apply build_pexpr_correct_aux;trivial. rewrite <- ltb_spec;trivial. revert H;unfold get_type,get_type'. rewrite PArray.get_outofbound, default_t_interp. revert H0. unfold build_pexpr. case_eq (0 < length t_atom);intros Heq. rewrite foldi_down_cont_gt;trivial. rewrite PArray.get_outofbound;trivial. Opaque build_z_atom. rewrite def_t_atom;simpl. intros HH H;revert HH H1;apply build_pexpr_atom_aux_correct_z;trivial. rewrite foldi_down_cont_eq;trivial. rewrite PArray.get_outofbound;trivial. rewrite def_t_atom;simpl. intros HH H;revert HH H1;apply build_pexpr_atom_aux_correct_z;trivial. rewrite <- not_true_iff_false, ltb_spec, to_Z_0 in Heq. assert (W:= to_Z_bounded (length t_atom)). apply to_Z_inj;rewrite to_Z_0;omega. rewrite length_t_interp;trivial. Qed. Transparent build_z_atom. Lemma build_pexpr_atom_correct : forall a vm vm' pe, check_atom a Typ.TZ -> build_pexpr_atom_aux build_pexpr vm a = (vm',pe) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_pexpr (fst vm') pe /\ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe). Proof. apply build_pexpr_atom_aux_correct';apply build_pexpr_correct. Qed. Lemma build_formula_atom_correct : forall a vm vm' f t, check_atom a t -> build_formula_atom vm a = Some (vm',f) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_formula (fst vm') f /\ (interp_bool t_i (interp_atom a) <->Zeval_formula (interp_vmap vm') f). Proof. intros a vm vm' f t. destruct a;simpl;try discriminate. case_eq (build_op2 b);try discriminate. intros o Heq Ht. assert (Typ.eqb Typ.Tbool t && Typ.eqb (get_type t_i t_func t_atom i) Typ.TZ && Typ.eqb (get_type t_i t_func t_atom i0) Typ.TZ). destruct b;try discriminate;trivial. destruct t0;try discriminate;trivial. unfold is_true in H;rewrite !andb_true_iff in H;decompose [and] H;clear H. case_eq (build_pexpr vm i);intros vm0 pe1 Heq1. case_eq (build_pexpr vm0 i0);intros vm1 pe2 Heq2. intros H Hwf;inversion H;clear H;subst. assert (W1:= build_pexpr_correct _ _ _ _ H3 Heq1 Hwf). decompose [and] W1;clear W1. assert (W1:= build_pexpr_correct _ _ _ _ H1 Heq2 H). decompose [and] W1;clear W1. split;trivial. split;[ apply le_trans with (1:= H4);trivial | ]. split. intros p Hlt;rewrite H0, H8;trivial. apply lt_le_trans with (1:= Hlt);trivial. split. unfold bounded_formula;simpl;rewrite H10, andb_true_r. apply (bounded_pexpr_le (fst vm0));auto with arith. rewrite (interp_pexpr_le _ _ H8 _ H5) in H7. rewrite H7,H12;destruct b;try discriminate;simpl in Heq |- *; inversion Heq;clear Heq;subst;simpl. symmetry;apply Zlt_is_lt_bool. rewrite Zle_is_le_bool;tauto. rewrite Zge_iff_le. unfold Zge_bool;rewrite <- Zcompare_antisym. rewrite Zle_is_le_bool;unfold Zle_bool. destruct (Zeval_expr (interp_vmap vm') pe2 ?= Zeval_expr (interp_vmap vm') pe1)%Z; simpl;tauto. symmetry;apply Zgt_is_gt_bool. destruct t0;inversion H13;clear H13;subst. simpl. symmetry;apply (Zeq_is_eq_bool (Zeval_expr (interp_vmap vm') pe1) (Zeval_expr (interp_vmap vm') pe2)). Qed. Lemma build_formula_correct : forall h' vm vm' f, build_formula vm h' = Some (vm',f) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_formula (fst vm') f /\ (interp_form_hatom h' <-> Zeval_formula (interp_vmap vm') f). Proof. unfold build_formula;intros h. unfold Atom.interp_form_hatom, Atom.interp_hatom. rewrite t_interp_wf;trivial. intros;apply build_formula_atom_correct with (get_type t_i t_func t_atom h);trivial. unfold wt, is_true in wt_t_atom;rewrite forallbi_spec in wt_t_atom. case_eq (h < length t_atom);intros Heq;unfold get_type;auto. unfold get_type'. rewrite !PArray.get_outofbound, default_t_interp, def_t_atom;trivial; try reflexivity. rewrite length_t_interp;trivial. Qed. Lemma build_not2_pos_correct : forall vm f l i, bounded_bformula (fst vm) f -> (rho (Lit.blit l) <-> eval_f (Zeval_formula (interp_vmap vm)) f) -> Lit.is_pos l -> bounded_bformula (fst vm) (build_not2 i f) /\ (Form.interp interp_form_hatom t_form (Form.Fnot2 i l) <-> eval_f (Zeval_formula (interp_vmap vm)) (build_not2 i f)). Proof. simpl; intros vm f l i H1 H2 H3; split; unfold build_not2. apply fold_ind; auto. apply (fold_ind2 _ _ (fun b f' => b = true <-> eval_f (Zeval_formula (interp_vmap vm)) f')). unfold Lit.interp; rewrite H3; auto. intros b f' H4; rewrite negb_involutive; simpl; split. intros Hb H5; apply H5; rewrite <- H4; auto. intro H5; case_eq b; auto; intro H6; elim H5; intro H7; rewrite <- H4 in H7; rewrite H7 in H6; discriminate. Qed. Lemma build_not2_neg_correct : forall vm f l i, bounded_bformula (fst vm) f -> (rho (Lit.blit l) <-> eval_f (Zeval_formula (interp_vmap vm)) f) -> Lit.is_pos l = false -> bounded_bformula (fst vm) (N (build_not2 i f)) /\ (Form.interp interp_form_hatom t_form (Form.Fnot2 i l) <-> eval_f (Zeval_formula (interp_vmap vm)) (N (build_not2 i f))). Proof. simpl; intros vm f l i H1 H2 H3; split; unfold build_not2. apply fold_ind; auto. apply (fold_ind2 _ _ (fun b f' => b = true <-> ~ eval_f (Zeval_formula (interp_vmap vm)) f')). unfold Lit.interp; rewrite H3; unfold Var.interp; split. intros H4 H5; rewrite <- H2 in H5; rewrite H5 in H4; discriminate. intro H4; case_eq (rho (Lit.blit l)); auto; intro H5; elim H4; rewrite <- H2; auto. intros b f' H4; rewrite negb_involutive; simpl; split. intros Hb H5; apply H5; rewrite <- H4; auto. intro H5; case_eq b; auto; intro H6; elim H5; intro H7; rewrite <- H4 in H7; rewrite H7 in H6; discriminate. Qed. Lemma bounded_bformula_le : forall p p', (nat_of_P p <= nat_of_P p')%nat -> forall bf, bounded_bformula p bf -> bounded_bformula p' bf. Proof. unfold is_true;induction bf;simpl;trivial. destruct a;unfold bounded_formula;simpl. rewrite andb_true_iff;intros (H1, H2). rewrite (bounded_pexpr_le _ _ H _ H1), (bounded_pexpr_le _ _ H _ H2);trivial. rewrite !andb_true_iff;intros (H1, H2);auto. rewrite !andb_true_iff;intros (H1, H2);auto. rewrite !andb_true_iff;intros (H1, H2);auto. Qed. Lemma interp_bformula_le : forall vm vm', (forall (p : positive), (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm') (nat_of_P (fst vm' - p) - 1)) -> forall bf, bounded_bformula (fst vm) bf -> (eval_f (Zeval_formula (interp_vmap vm)) bf <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. intros vm vm' Hnth. unfold is_true;induction bf;simpl;try tauto. destruct a;unfold bounded_formula;simpl. rewrite andb_true_iff;intros (H1, H2). rewrite !(interp_pexpr_le _ _ Hnth);tauto. rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto. rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto. rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto. Qed. Lemma build_hform_correct : forall (build_var : vmap -> var -> option (vmap*BFormula (Formula Z))), (forall v vm vm' bf, build_var vm v = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (Var.interp rho v <-> eval_f (Zeval_formula (interp_vmap vm')) bf)) -> forall f vm vm' bf, build_hform build_var vm f = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (Form.interp interp_form_hatom t_form f <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. unfold build_hform; intros build_var Hbv [h| | |i l|l|l|l|a b|a b|a b c] vm vm' bf; try discriminate. (* Fatom *) case_eq (build_formula vm h); try discriminate; intros [vm0 f] Heq H1 H2; inversion H1; subst vm0; subst bf; apply build_formula_correct; auto. (* Ftrue *) intros H H1; inversion H; subst vm'; subst bf; split; auto; split; [omega| ]; do 4 split; auto. (* Ffalse *) intros H H1; inversion H; subst vm'; subst bf; split; auto; split; [omega| ]; do 3 (split; auto); discriminate. (* Fnot2 *) case_eq (build_var vm (Lit.blit l)); try discriminate; intros [vm0 f] Heq H H1; inversion H; subst vm0; subst bf; destruct (Hbv _ _ _ _ Heq H1) as [H2 [H3 [H4 [H5 H6]]]]; do 3 (split; auto); case_eq (Lit.is_pos l); [apply build_not2_pos_correct|apply build_not2_neg_correct]; auto. (* Fand *) simpl; unfold afold_left; case (length l == 0). intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto). revert vm' bf; apply (foldi_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))). intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split. intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate. intro H3; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H4; elim H3; rewrite <- H14; auto. intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split. intros p H15; rewrite H7; auto; apply H12; eauto with arith. split. simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto. simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); try rewrite andb_true_r; try rewrite andb_false_r; try (intros; split; auto); try discriminate; intros [H20 H21]; auto. (* For *) simpl; unfold afold_left; case (length l == 0). intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto); discriminate. revert vm' bf; apply (foldi_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))). intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split. intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate. intro H3; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H4; elim H3; rewrite <- H14; auto. intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split. intros p H15; rewrite H7; auto; apply H12; eauto with arith. split. simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto. simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); try rewrite orb_false_r; try rewrite orb_true_r; auto; try (intros [H20|H20]; auto; discriminate); right; intro H20; discriminate. (* Fimp *) simpl; unfold afold_right; case (length l == 0). intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto). case (length l <= 1). case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H3 [H4 [H5 [H6 H7]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split. intros H8 H9; rewrite <- H7 in H9; rewrite H9 in H8; discriminate. intro H8; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H9; rewrite H7 in H9; elim H8; auto. revert vm' bf; apply (foldi_down_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))). intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ length l - 1]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ length l - 1])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split. intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate. intro H3; case_eq (Var.interp rho (Lit.blit (l .[ length l - 1]))); auto; intro H4; elim H3; rewrite <- H14; auto. intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split. intros p H15; rewrite H7; auto; apply H12; eauto with arith. split. simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto. simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); auto; try discriminate; simpl; intro H; apply H; discriminate. (* Fxor *) simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; split; auto; split; [eauto with arith| ]; split. intros p H18; rewrite H5; auto; rewrite H10; eauto with arith. split. case (Lit.is_pos a); case (Lit.is_pos b); simpl; rewrite H11; rewrite (bounded_bformula_le _ _ H9 _ H6); auto. simpl; rewrite (interp_bformula_le _ _ H10 _ H6) in H7; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; unfold Lit.interp; rewrite Ha, Hb; simpl; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); case (Var.interp rho (Lit.blit b))); split; auto; try discriminate; simpl. intros [_ [H20|H20]]; elim H20; reflexivity. intros _; split; [left; reflexivity|right; intro H20; discriminate]. intros _; split; [right; reflexivity|left; intro H20; discriminate]. intros [[H20|H20] _]; discriminate. intros [_ [H20|H20]]; elim H20; [reflexivity|discriminate]. intros [[H20|H20] _]; [discriminate|elim H20; reflexivity]. intros _; split; [right|left]; discriminate. intros [[H20|H20] _]; [elim H20; reflexivity|discriminate]. intros [_ [H20|H20]]; elim H20; [discriminate|reflexivity]. intros _; split; [left|right]; discriminate. intros [[H20|H20] _]; elim H20; reflexivity. intros _; split; [right; discriminate|left; intro H21; apply H21; reflexivity]. intros _; split; [left; discriminate|right; intro H21; apply H21; reflexivity]. intros [_ [H20|H20]]; elim H20; discriminate. (* Fiff *) simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; split; auto; split; [eauto with arith| ]; split. intros p H18; rewrite H5; auto; rewrite H10; eauto with arith. split. case (Lit.is_pos a); case (Lit.is_pos b); simpl; rewrite H11; rewrite (bounded_bformula_le _ _ H9 _ H6); auto. simpl; rewrite (interp_bformula_le _ _ H10 _ H6) in H7; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; unfold Lit.interp; rewrite Ha, Hb; simpl; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); case (Var.interp rho (Lit.blit b))); split; auto; try discriminate; simpl. intros [_ [H20|H20]]; [elim H20; reflexivity|discriminate]. intros [[H20|H20] _]; [discriminate|elim H20; reflexivity]. intros _; split; [right|left]; discriminate. intros [_ [H20|H20]]; elim H20; reflexivity. intros _; split; [left; reflexivity|right; discriminate]. intros _; split; [right; intro H20; apply H20; reflexivity|left; discriminate]. intros [[H20|H20] _]; [ |elim H20]; discriminate. intros [[H20|H20] _]; elim H20; reflexivity. intros _; split; [right; discriminate|left; intro H20; apply H20; reflexivity]. intros _; split; [left; discriminate|right; reflexivity]. intros [_ [H20|H20]]; [elim H20| ]; discriminate. intros [[H20|H20] _]; elim H20; [reflexivity|discriminate]. intros [_ [H20|H20]]; elim H20; [discriminate|reflexivity]. intros _; split; [left|right]; discriminate. (* Fite *) simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2; case_eq (build_var vm2 (Lit.blit c)); try discriminate; intros [vm3 f3] Heq3 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; destruct (Hbv _ _ _ _ Heq3 H8) as [H13 [H14 [H15 [H16 H17]]]]; split; auto; split; [eauto with arith| ]; split. intros p H18; rewrite H5; auto; rewrite H10; eauto with arith. assert (H18: (Pos.to_nat (fst vm1) <= Pos.to_nat (fst vm3))%nat) by eauto with arith. split. case (Lit.is_pos a); case (Lit.is_pos b); case (Lit.is_pos c); simpl; rewrite H16; rewrite (bounded_bformula_le _ _ H14 _ H11); rewrite (bounded_bformula_le _ _ H18 _ H6); auto. simpl; rewrite (interp_bformula_le _ _ H15 _ H11) in H12; rewrite (interp_bformula_le _ vm3) in H7; [ |intros p Hp; rewrite H10; eauto with arith|auto]; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; case_eq (Lit.is_pos c); intro Hc; unfold Lit.interp; rewrite Ha, Hb, Hc; simpl; rewrite <- H17; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); [case (Var.interp rho (Lit.blit b))|case (Var.interp rho (Lit.blit c))]); split; auto; try discriminate; try (intros [[H20 H21]|[H20 H21]]; auto); try (intros _; left; split; auto; discriminate); try (intros _; right; split; auto; discriminate); try (elim H20; discriminate); try (elim H21; discriminate); try (simpl; intro H; left; split; auto; discriminate); try (revert H; case (Var.interp rho (Lit.blit c)); discriminate); try (revert H; case (Var.interp rho (Lit.blit b)); discriminate); try (intro H20; rewrite H20 in H; discriminate); simpl. intro H; right; split; auto. intro H; right; split; auto. intro H; right; split; auto. intro H20; rewrite H20 in H; discriminate. revert H21; case (Var.interp rho (Lit.blit c)); auto. right; split; auto; intro H20; rewrite H20 in H; discriminate. revert H21; case (Var.interp rho (Lit.blit c)); auto. intro H; right; split; auto. intro H; right; split; auto. intro H; left; split; try discriminate; revert H; case (Var.interp rho (Lit.blit b)); discriminate. revert H21; case (Var.interp rho (Lit.blit b)); auto. intro H; left; split; try discriminate; revert H; case (Var.interp rho (Lit.blit b)); discriminate. revert H21; case (Var.interp rho (Lit.blit b)); auto. intro H; right; split; auto; revert H; case (Var.interp rho (Lit.blit c)); discriminate. revert H21; case (Var.interp rho (Lit.blit c)); auto. intro H; right; split; auto; revert H; case (Var.interp rho (Lit.blit c)); discriminate. revert H21; case (Var.interp rho (Lit.blit c)); auto. intro H; left; split; auto; revert H; case (Var.interp rho (Lit.blit b)); discriminate. revert H21; case (Var.interp rho (Lit.blit b)); auto. intro H; left; split; auto; revert H; case (Var.interp rho (Lit.blit b)); discriminate. revert H21; case (Var.interp rho (Lit.blit b)); auto. Qed. Lemma build_var_correct : forall v vm vm' bf, build_var vm v = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (Var.interp rho v <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. unfold build_var; apply foldi_down_cont_ind; try discriminate. intros i cont _ Hlen Hrec v vm vm' bf; unfold is_true; intros H1 H2; replace (Var.interp rho v) with (Form.interp interp_form_hatom t_form (t_form.[v])). apply (build_hform_correct cont); auto. unfold Var.interp; rewrite <- wf_interp_form; auto. Qed. Lemma build_form_correct : forall f vm vm' bf, build_form vm f = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (Form.interp interp_form_hatom t_form f <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. apply build_hform_correct; apply build_var_correct. Qed. Lemma build_nlit_correct : forall l vm vm' bf, build_nlit vm l = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (negb (Lit.interp rho l) <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. unfold build_nlit; intros l vm vm' bf; case_eq (build_form vm (t_form .[ Lit.blit (Lit.neg l)])); try discriminate. intros [vm1 f] Heq H1 H2; inversion H1; subst vm1; subst bf; case_eq (Lit.is_pos (Lit.neg l)); intro Heq2. replace (negb (Lit.interp rho l)) with (Form.interp interp_form_hatom t_form (t_form .[ Lit.blit (Lit.neg l)])). apply build_form_correct; auto. unfold Lit.interp; replace (Lit.is_pos l) with false. rewrite negb_involutive; unfold Var.interp; rewrite <- wf_interp_form; auto; rewrite Lit.blit_neg; auto. rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate. simpl; destruct (build_form_correct (t_form .[ Lit.blit (Lit.neg l)]) vm vm' f Heq H2) as [H3 [H4 [H5 [H6 [H7 H8]]]]]; do 4 (split; auto); split. intros H9 H10; pose (H11 := H8 H10); unfold Lit.interp in H9; replace (Lit.is_pos l) with true in H9. unfold Var.interp in H9; rewrite <- wf_interp_form in H11; auto; rewrite Lit.blit_neg in H11; rewrite H11 in H9; discriminate. rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate. intro H9; case_eq (Lit.interp rho l); intro Heq3; auto; elim H9; apply H7; unfold Lit.interp in Heq3; replace (Lit.is_pos l) with true in Heq3. unfold Var.interp in Heq3; rewrite <- wf_interp_form; auto; rewrite Lit.blit_neg; auto. rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate. Qed. Lemma build_clause_aux_correct : forall cl vm vm' bf, build_clause_aux vm cl = Some (vm',bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (negb (C.interp rho cl) <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. induction cl;try discriminate. case_eq cl. intros _; simpl;intros;rewrite orb_false_r;apply build_nlit_correct;trivial. intros i l Heq vm vm' bf;rewrite <- Heq at 2. change (build_clause_aux vm (a :: i :: l) ) with ( match build_nlit vm a with | Some (vm0, bf1) => match build_clause_aux vm0 (i::l) with | Some (vm1, bf2) => Some (vm1, Cj bf1 bf2) | None => None end | None => None end). case_eq (build_nlit vm a);try discriminate. intros (vm0, bf1) Heq1 Heq2 Hwf. rewrite <- Heq in Heq2. assert (W:= build_nlit_correct _ _ _ _ Heq1 Hwf). decompose [and] W;clear W. revert Heq2; case_eq (build_clause_aux vm0 cl);try discriminate. intros (vm1, fb2) Heq2 W;inversion W;clear W Heq;subst. assert (W:= IHcl _ _ _ Heq2 H);decompose [and] W;clear W. split;trivial. split. apply le_trans with (1:= H1);trivial. split. intros p Hlt;rewrite H0, H5;trivial. apply lt_le_trans with (1:= Hlt);trivial. split. simpl;rewrite H7, andb_true_r. apply bounded_bformula_le with (2:= H2);trivial. simpl. unfold is_true; rewrite <- (interp_bformula_le _ _ H5), <- H4, <- H9, negb_orb,andb_true_iff; tauto. Qed. Lemma build_clause_correct : forall cl vm vm' bf, build_clause vm cl = Some (vm',bf) -> wf_vmap vm -> wf_vmap vm' /\ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\ (forall p, (nat_of_P p < nat_of_P (fst vm))%nat -> nth_error (snd vm) (nat_of_P (fst vm - p) - 1) = nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (C.interp rho cl <-> eval_f (Zeval_formula (interp_vmap vm')) bf). Proof. unfold build_clause;intros cl vm vm' bf. case_eq (build_clause_aux vm cl);try discriminate. intros (vm1, bf1) Heq W Hwf;inversion W;clear W;subst. assert (W:= build_clause_aux_correct _ _ _ _ Heq Hwf). decompose [and] W;clear W. repeat (split;[trivial;fail | ]). split;simpl. rewrite H2;reflexivity. unfold is_true in *; destruct (C.interp rho cl);split;simpl;trivial;try discriminate; try tauto. intros _ HH;destruct H4. apply H4 in HH;discriminate. Qed. Local Notation hinterp := (Atom.interp_hatom t_i t_func t_atom). Local Notation interp := (Atom.interp t_i t_func t_atom). Lemma get_eq_interp : forall (l:_lit) (f:Atom.hatom -> Atom.hatom -> C.t), (forall xa, t_form.[Lit.blit l] = Form.Fatom xa -> forall t a b, t_atom.[xa] = Atom.Abop (Atom.BO_eq t) a b -> Lit.is_pos l -> rho (Lit.blit l) = Atom.interp_bool t_i (Atom.apply_binop t_i t t Typ.Tbool (Typ.i_eqb t_i t) (hinterp a) (hinterp b)) -> Typ.eqb (get_type t_i t_func t_atom a) t -> Typ.eqb (get_type t_i t_func t_atom b) t -> C.interp rho (f a b)) -> C.interp rho (get_eq l f). Proof. intros l f Hf;unfold get_eq. destruct (Lit.is_pos l); case_eq (t_form.[Lit.blit l]);trivial;intros; try(case_eq (t_atom.[i]);trivial;intros); try (apply valid_C_true; trivial). destruct b; try (apply valid_C_true; trivial). generalize wt_t_atom;unfold Atom.wt;unfold is_true; rewrite PArray.forallbi_spec;intros. assert (i < length t_atom). apply PArray.get_not_default_lt. rewrite H0, def_t_atom;discriminate. apply H1 in H2;clear H1;rewrite H0 in H2;simpl in H2. rewrite !andb_true_iff in H2;decompose [and] H2;clear H2. apply Hf with (2:= H0);trivial. auto. rewrite wf_interp_form, H;simpl. unfold Atom.interp_form_hatom, Atom.interp_hatom at 1;simpl. rewrite Atom.t_interp_wf, H0;simpl;trivial. trivial. Qed. Lemma get_not_le_interp : forall (l:_lit) (f:Atom.hatom -> Atom.hatom -> C.t), (forall xa, t_form.[Lit.blit l] = Form.Fatom xa -> forall a b, t_atom.[xa] = Atom.Abop Atom.BO_Zle a b -> negb (Lit.is_pos l) -> rho (Lit.blit l) = Atom.interp_bool t_i (Atom.apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Zle_bool (hinterp a) (hinterp b)) -> Typ.eqb (get_type t_i t_func t_atom a) Typ.TZ -> Typ.eqb (get_type t_i t_func t_atom b) Typ.TZ -> C.interp rho (f a b)) -> C.interp rho (get_not_le l f). Proof. intros l f Hf;unfold get_not_le. destruct (Lit.is_pos l); case_eq (t_form.[Lit.blit l]);trivial;intros; try(case_eq (t_atom.[i]);trivial;intros); try (apply valid_C_true; trivial). destruct b; try (apply valid_C_true; trivial). generalize wt_t_atom;unfold Atom.wt;unfold is_true; rewrite PArray.forallbi_spec;intros. assert (i < length t_atom). apply PArray.get_not_default_lt. rewrite H0, def_t_atom;discriminate. apply H1 in H2;clear H1;rewrite H0 in H2;simpl in H2. rewrite !andb_true_iff in H2;decompose [and] H2;clear H2. simpl; apply Hf with (2:= H0);trivial. auto. rewrite wf_interp_form, H;simpl. unfold Atom.interp_form_hatom, Atom.interp_hatom at 1;simpl. rewrite Atom.t_interp_wf, H0;simpl;trivial. trivial. Qed. Lemma interp_binop_eqb_antisym: forall a b va vb, interp_atom a = Bval t_i Typ.TZ va -> interp_atom b = Bval t_i Typ.TZ vb -> (interp_bool t_i (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool (Typ.i_eqb t_i Typ.TZ) (interp a) (interp b)) = false) -> negb (interp_bool t_i (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Z.leb (interp a) (interp b))) = false -> negb (interp_bool t_i (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Z.leb (interp b) (interp a))) = false -> False. Proof. intros a b va vb HHa HHb. unfold Atom.interp, Atom.interp_hatom. rewrite HHa, HHb; simpl. intros. case_eq (va <=? vb); intros; subst. case_eq (vb <=? va); intros; subst. apply Zle_bool_imp_le in H2. apply Zle_bool_imp_le in H3. apply Zeq_bool_neq in H. (*pour la beauté du geste!*) lia. rewrite H3 in H1; simpl in H1; elim diff_true_false; trivial. rewrite H2 in H0; simpl in H1; elim diff_true_false; trivial. Qed. Lemma valid_check_micromega : forall cl c, C.valid rho (check_micromega cl c). Proof. unfold check_micromega; intros cl c. case_eq (build_clause empty_vmap cl). intros (vm1, bf) Heq. destruct (build_clause_correct _ _ _ _ Heq). red;simpl;auto. decompose [and] H0. case_eq (ZTautoChecker bf c);intros Heq2. unfold C.valid;rewrite H5. apply ZTautoChecker_sound with c;trivial. apply C.interp_true. destruct (Form.check_form_correct interp_form_hatom _ ch_form);trivial. intros _;apply C.interp_true. destruct (Form.check_form_correct interp_form_hatom _ ch_form);trivial. Qed. Lemma valid_check_diseq : forall c, C.valid rho (check_diseq c). Proof. unfold check_diseq; intro c. case_eq (t_form.[Lit.blit c]);intros;subst; try (unfold C.valid; apply valid_C_true; trivial). case_eq ((length a) == 3); intros; try (unfold C.valid; apply valid_C_true; trivial). apply eqb_correct in H0. apply get_eq_interp; intros. apply get_not_le_interp; intros. apply get_not_le_interp; intros. case_eq ((a0 == a1) && (a0 == b1) && (b == b0) && (b == a2)); intros; subst; try (unfold C.valid; apply valid_C_true; trivial). repeat(apply andb_prop in H19; destruct H19). apply Int63Properties.eqb_spec in H19;apply Int63Properties.eqb_spec in H20;apply Int63Properties.eqb_spec in H21;apply Int63Properties.eqb_spec in H22;subst. unfold C.interp; simpl; rewrite orb_false_r. unfold Lit.interp; rewrite Lit.is_pos_lit. unfold Var.interp; rewrite Lit.blit_lit. rewrite wf_interp_form, H;simpl. case_eq (Lit.interp rho (a.[0]) || Lit.interp rho (a.[1]) || Lit.interp rho (a.[2])). intros;repeat (rewrite orb_true_iff in H19);destruct H19. destruct H19. apply (afold_left_orb_true int 0); subst; auto. apply ltb_spec;rewrite H0;compute;trivial. apply (afold_left_orb_true int 1); auto. apply ltb_spec;rewrite H0;compute;trivial. apply (afold_left_orb_true int 2); auto. apply ltb_spec;rewrite H0;compute;trivial. intros; repeat (rewrite orb_false_iff in H19);destruct H19. destruct H19. unfold Lit.interp in H19. rewrite H3 in H19; unfold Var.interp in H19; rewrite H4 in H19. unfold Lit.interp in H21. pose (H24 := H15). apply negb_true_iff in H24. rewrite H24 in H21. unfold Var.interp in H21; rewrite H16 in H21. unfold Lit.interp in H23. pose (H25 := H9). apply negb_true_iff in H25. rewrite H25 in H23. unfold Var.interp in H23; rewrite H10 in H23. assert (t = Typ.TZ). generalize H12. clear H12. destruct (Typ.reflect_eqb (get_type t_i t_func t_atom b0) Typ.TZ) as [H12|H12]; [intros _|discriminate]. generalize H6. clear H6. destruct (Typ.reflect_eqb (get_type t_i t_func t_atom b0) t) as [H6|H6]; [intros _|discriminate]. rewrite <- H6. auto. rewrite H26 in H19. case_eq (interp_atom (t_atom .[ b1])); intros t1 v1 Heq1. assert (H50: t1 = Typ.TZ). unfold get_type, get_type' in H18. rewrite t_interp_wf in H18; trivial. rewrite Heq1 in H18. simpl in H18. rewrite Typ.eqb_spec in H18. assumption. subst t1. case_eq (interp_atom (t_atom .[ a2])); intros t2 v2 Heq2. assert (H50: t2 = Typ.TZ). unfold get_type, get_type' in H17. rewrite t_interp_wf in H17; trivial. rewrite Heq2 in H17. simpl in H17. rewrite Typ.eqb_spec in H17. assumption. subst t2. subst;elim (interp_binop_eqb_antisym (t_atom.[b1]) (t_atom.[a2]) v1 v2);trivial. unfold interp_hatom in H19; do 2 rewrite t_interp_wf in H19; trivial. unfold interp_hatom in H23; do 2 rewrite t_interp_wf in H23; trivial. unfold interp_hatom in H21; do 2 rewrite t_interp_wf in H21; trivial. trivial. destruct H19. case_eq ((a0 == b0) && (a0 == a2) && (b == a1) && (b == b1)); intros; subst; try (unfold C.valid; apply valid_C_true; trivial). repeat(apply andb_prop in H19; destruct H19). apply Int63Properties.eqb_spec in H19;apply Int63Properties.eqb_spec in H20;apply Int63Properties.eqb_spec in H21;apply Int63Properties.eqb_spec in H22;subst. unfold C.interp; simpl; rewrite orb_false_r. unfold Lit.interp; rewrite Lit.is_pos_lit. unfold Var.interp; rewrite Lit.blit_lit. rewrite wf_interp_form, H;simpl. case_eq (Lit.interp rho (a.[0]) || Lit.interp rho (a.[1]) || Lit.interp rho (a.[2])). intros;repeat (rewrite orb_true_iff in H19);destruct H19. destruct H19. apply (afold_left_orb_true int 0); auto. apply ltb_spec;rewrite H0;compute;trivial. apply (afold_left_orb_true int 1); auto. apply ltb_spec;rewrite H0;compute;trivial. apply (afold_left_orb_true int 2); auto. apply ltb_spec;rewrite H0;compute;trivial. intros; repeat (rewrite orb_false_iff in H19);destruct H19. destruct H19. unfold Lit.interp in H19. rewrite H3 in H19; unfold Var.interp in H19; rewrite H4 in H19. unfold Lit.interp in H21. case_eq (Lit.is_pos (a.[2])); intros. apply negb_true_iff in H15;rewrite H15 in H24; discriminate. rewrite H24 in H21. unfold Var.interp in H21;rewrite H16 in H21. unfold Lit.interp in H23. case_eq (Lit.is_pos (a.[1])); intros. apply negb_true_iff in H9; rewrite H9 in H25; discriminate. rewrite H25 in H23. unfold Var.interp in H23; rewrite H10 in H23. rewrite <-H22, <- H20 in H21. assert (t = Typ.TZ). rewrite Typ.eqb_spec in H6; rewrite Typ.eqb_spec in H18; subst; auto. rewrite H26 in H19. case_eq (interp_atom (t_atom .[ b0])); intros t1 v1 Heq1. assert (H50: t1 = Typ.TZ). unfold get_type, get_type' in H12. rewrite t_interp_wf in H12; trivial. rewrite Heq1 in H12. simpl in H12. rewrite Typ.eqb_spec in H12. assumption. subst t1. case_eq (interp_atom (t_atom .[ a1])); intros t2 v2 Heq2. assert (H50: t2 = Typ.TZ). unfold get_type, get_type' in H11. rewrite t_interp_wf in H11; trivial. rewrite Heq2 in H11. simpl in H11. rewrite Typ.eqb_spec in H11. assumption. subst t2. elim (interp_binop_eqb_antisym (t_atom.[b0]) (t_atom.[a1]) v1 v2); trivial. unfold interp_hatom in H19; do 2 rewrite t_interp_wf in H19; trivial. unfold interp_hatom in H21; do 2 rewrite t_interp_wf in H21; trivial. unfold interp_hatom in H23; do 2 rewrite t_interp_wf in H23; trivial. trivial. Qed. End Proof. End certif.