
MEng Final Year Project

Imperial College London

Department of Electrical and Electronic Engineering

Formally verified resource sharing for High
Level Synthesis

Author:
Michail Pardalos

Supervisor:
Dr. John Wickerson

Second Marker:
Dr. James J. Davis

Abstract

We present an extension to Vericert, a verified High Level Synthesis Compiler to imple-
ment resource sharing. Vericert currently generates the hardware to implement a given
function in an input program multiple times, matching the number of calls to the func-
tion. We remove this duplication, reducing the area usage of generated hardware. Our
benchmarking shows the generated hardware having a resource usage of 87.9% of the
original on average and 41% in the best case, for only a 0.2% average decrease in max
frequency and 0.7% average increase in cycle count. We partially extend the formal proof
of correctness of the compiler to our changes, increasing confidence in their correctness,
and outline the steps to be taken for full verification of our work.

Contents

1. Introduction 1
1.1. Project Aims . 2

2. Background 3
2.1. Coq . 3
2.2. CompCert . 5
2.3. Vericert . 5
2.4. Formal Verilog semantics . 7

2.4.1. Language Semantics . 7
2.4.2. Lööw and Myreen . 7
2.4.3. Vericert . 8

2.5. Resource Sharing . 8
2.5.1. Resource sharing in verified High Level Synthesis 9
2.5.2. Resource sharing in Vericert . 9

3. Analysis and Design 10
3.1. Changes to HTL and the externctrl map 11

4. Implementation 13
4.1. Inlining . 14
4.2. HTL generation . 15
4.3. Register renaming . 17
4.4. Verilog generation . 18
4.5. Performance Evaluation . 21
4.6. Previous attempts . 22

5. Correctness proof 23
5.1. HTL Semantics . 23

5.1.1. Original . 23

i

5.1.2. Augmented . 24
5.2. RTL to HTL translation . 25

5.2.1. Translation specification . 26
5.2.2. Matching states . 26
5.2.3. Semantic preservation proof . 27
5.2.4. Assumptions . 28

5.3. HTL renaming . 30
5.4. HTL to Verilog translation . 31

6. Conclusion and Future Work 32
6.1. Completing the proof . 32
6.2. Expanding resource sharing to array-based functions 32
6.3. Enabling concurrent execution of functions 32

A. Benchmarking data 36

ii

CHAPTER 1

Introduction

The need for faster, more energy-efficient computation has, in recent years, caused a surge
in the need for custom hardware accelerators. Such devices are commonly designed using
a hardware description language such as Verilog or VHDL. The complexities of designing
hardware in such a language, as well as the abundance of engineers trained in software
rather than hardware development has meant that high-level synthesis tools have become
an enticing option. These tools, examples of which include Intel’s i++ [12], and Vitis HLS
from Xilinx [18], allow one to generate a hardware design from a program written in a
high-level software programming language, usually C or C++. This allows an engineer’s
software programming skills to be applied to hardware design with less training necessary
compared to learning a dedicated hardware design language. This capability is especially
useful for quick prototyping of new products or features, which is more easily done in
a language like C with a High Level Synthesis tool as opposed to a dedicated hardware
design language [7].
These tools, while incredibly useful, are also known to be unreliable. Previous work by

Du et al. in 2021 [6] has found extensive miscompilation bugs in commercial HLS tools
including Vivado HLS (now Vitis HLS) [18], Intel i++ [12] and LegUp [3]. This instability
can be a significant hindrance in the development process. This is compounded by the
longer iteration times of hardware design compared to software, making the setback when
a bug is encountered much more significant. It is therefore essential to ensure that all
software used in this process, including the high-level synthesis tool, is as reliable as
possible.
Vericert [8] is a High-Level Synthesis compiler which aims to address this issue. It has

been verified correct by the highest possible standard: machine-checked formal proof. It
achieves that by providing a proof, checked using the Coq proof assistant, that every step
of its translation from C to Verilog preserves the semantics of (i.e. behaves the same way
as) its input program. This proof means that we can always trust any Verilog produced

1

by Vericert to behave the same way as the C program given to it as input. It is based
on the CompCert [13] verified C compiler.
Clearly, however, it is not enough for a high-level synthesis tool to simply be correct.

The generated hardware needs to also satisfy a number of other qualities, including high
throughput, low latency, and area efficiency ; that is, using as few hardware resources
as possible. This is desirable as it can allow for fitting “more” hardware on the same
chip, or simply using a smaller chip, reducing costs. A common optimisation in HLS
tools for improving area usage is resource sharing. That is, avoiding generating the
same hardware more than once, and, instead, re-using that hardware for more than one
purpose. Vericert does not currently perform this optimisation. It was the goal of this
project to implement it, and, keeping with the rest of Vericert, formally prove it correct
to the greatest possible extent.

1.1. Project Aims

We define the following as goals of our project:

1. Implement resource sharing in Vericert.

2. Provide a tangible improvement in area usage of generated hardware.

3. Minimise the impact on other performance metrics, including clock frequency and
cycle count.

4. Prove the optimisation correct to the greatest extend possible.

2

CHAPTER 2

Background

2.1. Coq

Coq [2] is the language and proof assistant on which this project is based. It is an estab-
lished system that has been used in both proving mathematical theorems and verified
software development, with one of the biggest projects developed using it being Comp-
Cert [13], a formally verified C compiler. This project is indirectly based on CompCert,
which is explained in greater detail in the next section.
The core language of the Coq system, Gallina, is a pure functional language, similar

in many ways to other typed functional languages such as Haskell or OCaml. Its main
distinguishing feature is dependent types. This means that types in Gallina can depend
(i.e. contain) values or arbitrary terms. For example, one may encode the type of length-
indexed vectors as follows:

1 Inductive Vec (A : Type) : nat -> Type :=
2 | Nil : Vec A 0
3 | Cons : forall (n:nat), A -> Vec A n -> Vec A (1 + n).
�

This defines a type Vec with two constructors, Nil which constructs a vector of length
0, and Cons, which constructs a vector of length 1 + n from an element of type A and
another vector of length n. We can then write functions which operate on terms of this
type while also preserving certain properties. For example, we can write a function to
concatenate two V ecs and encode in its type that its output has a length equal to the
sum of the length of its inputs.

3

1 Fixpoint concat {A : Type} {n k : nat}
2 (l1 : Vec A n)
3 (l2 : Vec A k)
4 : Vec A (n + k) :=
5 match l1 with
6 | Nil => l2
7 | Cons x xs => Cons x (concat xs l2)
8 end.
�

The syntax of Gallina is similar to languages in the family of the ML programming
language. Function application is simply juxtaposition (“f x” is f applied to x), the
match construct performs pattern matching, and “:” means “has type”.
Types are usually seen as simply encoding the set of values a term can take. Saying

that some term x has type nat means that x has a value in the set 0, 1, The same
holds for function types. If a function has type A -> B then it is an element of the set of
mappings from values of A to values of B.
There is however an alternative interpretation. Types can be seen as logical proposi-

tions, where if a term of a certain type exists, then the proposition represented by it is
true. A term can be seen as a proof of its type. For most types, the proposition stated
by them is trivial. Certain types can be valuable as propositions, however. One can, for
example, define a type for equality:

1 Inductive Equal {A: Type} : A -> A -> Type :=
2 | Refl : forall x, Equal x x.
�

The type equal only has a term when its two type parameters are the same. So,
Refl : equal 1 1 and Refl : equal (1+2) 3, but Refl cannot have type equal 1 2 because the
term 1 is different from the term 2.

We can then compose types to create more complex propositions. Logical conjunction
(the “and” operator) can be encoded as the pair type A * B. A term of type A * B can
only be constructed from a proof (term) of A and a proof (term) of B. It is therefore a
proof that both A and B are true. Logical disjunction (the “or” operator) can be encoded
as a sum type with two constructors, so that a term of type Or l r can be constructed
from either a term of type l or a term of type r:

1 Inductive Or (l : Type) (r : Type) : Type :=
2 | Or_left : l -> Or l r
3 | Or_right : r -> Or l r.
�

Functions are equivalent to logical implication. A function of type A -> B is proof that
if A is true (a term of type A exists) then B is true (a term of B exists).
This idea of a correspondence between types and logical propositions, is known as the

“Curry-Howard Isomorphism” [9], and is at the core of what allows Coq to function as

4

both a programming language and a proof assistant. In Coq, and in other dependently-
typed languages, there is no distinction between types and propositions, or proofs and
programs. They are one and the same. We can, therefore, write a program prog in Coq
to perform the task we want (in our case, compile C to Verilog) and then write another
program which has type prf : IsCorrect prog for some appropriate definition of IsCorrect

to serve as a proof that our “functional” code in prog behaves as we expect. This second
program (or proof, depending on how one prefers to view it) need not be executed. It
establishes that the proposition stated by its type holds simply by having that type. The
two programs together form a verified implementation of our specification.

2.2. CompCert

Originally introduced in Leroy 2009 [13], CompCert is a verified compiler for C99. It
compiles the vast majority of C99 (with small caveats), and generates code faster than
GCC’s -O0 optimisation level, (no optimisations enabled) but slightly slower that -O1
(containing only some optimisations).
It is internally architected in terms of ten intermediate languages. This both simplifies

implementation, as each pass has fewer changes to make, and verification, as semantic
preservation proofs become easier for the simpler transformations and can be subse-
quently composed into the proof for the entire compiler. An indirect benefit of this
architecture is that it allows for extensibility. A backend can be added as a transforma-
tion from an intermediate language into the target. The only proof that is then needed
is of that translation. A backend could also introduce other intermediate languages if
that makes its implementation or proof easier.
This project will only interface with one of CompCert’s intermediate languages: RTL.

This is a minimal 3-address-code language represented as a control-flow graph where each
node contains one instruction. It operates on an infinite supply of registers and supports
arithmetic, memory loads and stores, function calls (direct and indirect) and branching.
In normal C-to-assembly flow, the next stage after this language is performing register
allocation, moving into the LTL language.

2.3. Vericert

Introduced by Herklotz et al. in 2020 [8], Vericert is a verified C-to-Verilog High Level
Synthesis tool. It supports “all C constructs except for case statements, function pointers,
recursive function calls, integers larger than 32 bits, floats, and global variables.” [8]. It is
an extension of CompCert, essentially adding a Verilog backend to the existing verified C
compiler. In its current form, it performs no optimisations, other than those performed
by CompCert in stages earlier than those added by Vericert. This results in performance
generally about 1 order of magnitude slower than the designs generated by comparable,
unverified tools like LegUp [3].
Vericert adds two languages to CompCert: HTL, which is generated from CompCert’s

RTL, and Verilog which is generated from HTL and is the output of the compiler. HTL

5

is the representation of a Finite State Machine with Datapath (FSMD) [10]. It contains
Verilog statements split into a data- and control-path which execute concurrently. The
two paths are structured as Control Flow Graphs, same as in CompCert’s RTL, but with
matching states in both paths. The control path sets a register controlling the next state,
while computations happen in the datapath.
Listing 1 demonstrate a simple example of HTL code. Note that this is only a textual

representation of this intermediate language, and so it is missing some of the details of its
representation inside of Vericert. The statements in the control- and datapaths execute
concurrently, and the state which executes is chosen at each step (or clock cycle) based
on the value of the status register. Setting the finish register signals termination of the
module’s execution, using the value of the return register as the output value.

1 int main () {
2 int x = 1;
3 int y = 2;
4 int z = x + y;
5 return z;
6 }
�

(a) Example C Code

1 main() {
2 datapath {
3 5: x <= 32'd1;
4 4: y <= 32'd2;
5 3: z <= {{x + y} + 32'd0};
6 2: reg_1 <= z;
7 1: finish = 32'd1;
8 return = reg_1;
9 }
10
11 controllogic {
12 5: state <= 32'd4;
13 4: state <= 32'd3;
14 3: state <= 32'd2;
15 2: state <= 32'd1;
16 1: ;
17 }
18 }
�

(b) Corresponding HTL Code

Listing 1: A simple example of the HTL intermediate language

Since HTL consists of Verilog statements, translation to full Verilog is straightforward.
An HTL program is translated into a Verilog state machine controlled by two always
blocks, one containing the control path and one containing the datapath.
One core design decision of Vericert that will be addressed in this project is how

function calls are implemented. Vericert performs an inlining pass on the entire program
at the RTL level, eliminating function calls. This in turn means that the RTL code for
functions that are called more than once during the program is duplicated and therefore
the corresponding Verilog code is also generated more than once. Given the sequential
nature of the generated code, this is strictly unnecessary. Only one of those instances will
have control at any one time. This decision therefore increases design area consumption
for no gain in performance. It is this problem that this project aims to improve on.

6

2.4. Formal Verilog semantics

While Verilog is based on a standard [11], that standard is written in natural language,
which does not allow for formal reasoning. This means that in order to construct proofs
about Verilog programs, a formalisation of this standard needs to be created. This is
not entirely straightforward due to Verilog being inherently concurrent, as well having
several complex features.
Vericert uses a modified version of formalisation due to Lööw and Myreen [14] which

we briefly introduce here.

2.4.1. Language Semantics

Giving a formal semantics to a language allows for abstractly and symbolically rea-
soning about the language and its execution. Language semantics can be divided into
various different types. The semantics presented here would be classified as operational
semantics, meaning that they describe computation purely in terms of objects within the
language. This is in contrast to another type like denotational semantics which maps
the objects being reasoned about into a separate domain with existing rules which allow
for reasoning. Operational semantics can be further classed into small-step and big-step.
Small-step operational semantics describe individual steps of a computation, whereas
big-step operational semantics map expressions to their end results directly.

2.4.2. Lööw and Myreen

The semantics of Lööw and Myreen in 2019 [14] are presented in three levels. It presents a
big-step semantics for Verilog expressions and statements and a small-step semantics for
evaluating modules, where each step corresponds to a clock cycle. All 3 levels operate on
the module state, as well as a map from variable names to values representing “external
state”, such as non-deterministic inputs, called fext in the paper.
The semantics for statements are given as a function from fext , the current module

state and a statement to the next module state. Similarly for expressions, but returning
the value of the expression instead.
The semantics for modules are somewhat more interesting as they need to account

for continuous assignment. All always blocks are executed in order, keeping continuous
writes separate and only “committing” them to the module state at the end of every
cycle.
This formalisation does not support any form of continuous assignment or module

instantiation. It also requires that different always blocks not “interfere” with each other.
This is because the semantics is deterministic, and as such is invalid for programs which
have multiple possible interleavings of multiple always blocks. This is enforced by two
syntactic conditions:

1. No two blocks write to the same variable.

2. No two blocks perform a blocking read and a blocking write to the same variable.

7

2.4.3. Vericert

The semantics used in Vericert [8] are heavily based on Lööw and Myreen. The main
differences come from needing to support arrays and having to conform to CompCert’s
execution model.
According to the Vericert paper, in the Lööw and Myreen semantics, writing to an

array using both continuous and blocking assignment on different indices in the same
cycle would treat the array as a single variable and thus the blocking assignment’s value
would be overridden. As Vericert uses this pattern, this has been corrected by separating
array writes from other writes and including the index in the “queued” write.
CompCert’s computational model assumes that programs in all intermediate languages

are divided into functions which can be called and will eventually return. This is repre-
sented by execution state having three variants, the Callstate, entered when a function
is called, Returnstate entered when a function returns and plain State which is active at
all other times. The Verilog semantics therefore need to map to these states. To support
this, an explicit program counter is added, as well as a reset signal (which is asserted
when the CallState is entered), a return output signal, a done signal, and an explicit
stack. This stack is only used for values which will be accessed by pointer (for example
arrays). As Vericert inlines function calls away, the call and return states are entered
only once (at the start and end of the main module’s execution) and only one stack frame
is ever created.
Another important decision made was to remove the support for external inputs to

modules (other than the control signals already listed). Vericert currently generates a
single module, generated from the main function in the input C code. The main function
is also assumed to have no arguments. There is therefore no need to allow external inputs
to a generated module other than control signals.
Other changes to the semantics include adding register declarations explicitly to the

semantics in order to prove they are being generated correctly, and simplifying values
from their representation as arrays of booleans in Lööw and Myreen to 32-bit integers.
Generating verilog outside of this subset would be trivial. However, extending the

semantics would likely entail significant effort. We have therefore chosen to stay within
the existing semantics and implement any new features using only them.

2.5. Resource Sharing

Resource sharing is a feature shared (and expected) by most HLS compilers. Coussy
et al. 2009 [5] presents a typical architecture for an HLS compiler. In the typical ar-
chitecture generated by HLS, a number of “functional components” are selected from an
RTL component library to be allocated in the generated design. The number of instances
of these components can vary based on the needs of the specific design. Operations
which use these components are then scheduled to a clock cycle (or to a series of clock
cycles) during which an instance of the required component is unused and the inputs
to the operation are available. In commercial HLS compilers such as Intel i++[12] or
Xilinx Vitis[18] sharing can also be at the level of functions. The programmer can guide

8

the compiler as to which functions should be shared using appropriate pragmas for each
compiler.

2.5.1. Resource sharing in verified High Level Synthesis

Handel-C [1] is a variant of C extended with parallel constructs, intended for describing
hardware. There has been a verified HLS compiler for Handel-C introduced by Perna et
al. in 2011 [16] and extended in 2012 [15]. This compiler works applying reduction steps to
the source program, reducing it to a “highly parallel state machine”. This is possible, and
practical for Handel-C, as the language allows the programmer to describe the parallelism
explicitly. This is different from Vericert’s model of compilation which follows the more
traditional compilation method of translating the input program statement by statement.
BEDROC [4] is another, older, verified High Level Synthesis tool for the HardwarePal
language. It also does not implement resources sharing on the function level as “Recursion
is not allowed in HardwarePal, and all procedure and function calls are expanded in the
front-end.” [4].

2.5.2. Resource sharing in Vericert

Vericert currently performs allocation of hardware resources in a very direct manner.
It creates one instance of the hardware required for an operation or function for every
instance of the operation in the source program. It also performs performs no explicit
scheduling. It, approximately, maps every line of the source C program to one state in
the output state machine, in source program order. These two facts mean that, while
multiple instances of the same hardware exist, they are all scheduled to different clock
cycles. Any potential for parallelism is therefore not exploited, while more area than
required for such a sequential design is used.
This project is the foundation of the solution to this problem. We allow for Vericert

to instantiate the hardware for functions which are called multiple times only once, as
opposed to the multiple, redundant copies it generates currently. This is akin to making
the “allocation” step in the typical HLS flow explicit. The immediate effect of this change
is reducing area usage. As a side-effect, we expect making this process explicit in the
compiler to enable further improvements, chief among which is better scheduling. We
outline these possible improvements in Chapter 6.

9

CHAPTER 3

Analysis and Design

The design had to take multiple external factors into account. Chief among these are
the constraints of the existing code to which this project forms an extension, this is the
code of CompCert and Vericert. Furthermore, we had to ensure that, not only will we
generate compact and performant Verilog – our “performance” goal – but also do so in a
manner amenable to verification – the “correctness” goal.
We decided on implementing resource sharing at the level of source functions. A

more fine-grained level of resource sharing was certainly possible, for example sharing
the implementations of only certain operations, or extracting program fragments into
shared resources. Functions, we decided, would provide the best ratio of impact on
resource usage to implementation effort. They are provided by the programmer, and
so no analysis in necessary to split code into shareable fragments. Instead, we need
only decide which functions could and should be shared. Furthermore, in terms of the
proof, the semantics added to the generated code to support this resource sharing could
be matched to CompCert’s call semantics. This would be a much more difficult task if
trying to apply sharing on any other sections of code.
As described in Section 2.3, Vericert outputs Verilog describing an FSMD. With our

planned changes, we would be translating each RTL function into a separate state ma-
chine. Calls in RTL could then map to HTL states which transfer control between state
machines. It was also decided early on that these separate state machines would all have
to be part of the same Verilog module. While encapsulating each in its own module
would be the most “natural”, it required significant changes to Vericert’s semantics for
Verilog, and was therefore decided against.
In the current implementation of Vericert, all functions are inlined after RTL gener-

ation and before HTL generation. This means that generated HTL consists of a single
module, and that the HTL generation pass does not have to handle any RTL call instruc-
tions as input (since inlining removes them). The single generated HTL module is then

10

translated into a single Verilog module with no significant changes (since HTL consists
of Verilog statements). In order to share the hardware for functions, the first step would
be to preserve the call structure that is eliminated in this inlining pass. To this end, we
initially decided to eliminate the inlining pass, preserving the entire call structure to be
used by HTL generation. Here, however, we encountered a significant problem: memory
accesses.
The current correctness proof of the HTL generation pass assumes that all pointers

in the program refer to data in a single stackframe: that of the main function. This
assumption is valid because, due to inlining, the only RTL function that HTL generation
sees is the main. Removing inlining would break this assumption. The parts of the
proof which use this assumption are to do with the translation of the load and store RTL
instructions, and are the most complex in the entire HTL generation proof. Altering
them was decided to be out of the scope of the project. As an alternative, we settled
on only partially eliminating the inlining pass. We decided to inline all RTL functions
containing load or store instructions, but keep functions which contained neither. The
“all loads and stores refer to the main stackframe” assumption, would therefore remain
valid. In terms of generated hardware, this change means that functions that perform
loads or stores would still be duplicated at all call sites, but those which have neither
would be shared.

3.1. Changes to HTL and the externctrl map

With functions and calls preserved past RTL generation, we could then translate each
function into a separate HTL module. Almost all RTL instructions would be translated in
the same manner as before, with the exception of call instructions. In the final Verilog,
transfer of control between state machines should be done by setting the appropriate
registers to set the arguments and initiate a call, and then waiting for the callee’s finish
register to be asserted to read the return value and continue execution of the caller. This
is not be directly representable in HTL. The problem is that, while HTL consists of
Verilog statements, each HTL module is translated independently, with its own register
space. This means that there is no way for code in the calling module to refer to control
registers in a called module.
This problem, a most other in computer science, can be solved by adding another

level of indirection. We decided to add a mapping, labelled externctrl, allowing local
registers in a module to map to registers in other modules. This will be part of every
HTL module. It will map local registers names to pairs of module identifiers and register
names in those modules. Then, in our semantics for HTL, we would equate setting the
value of a register which appears as a key in the externctrl map, to setting that value
on the register it maps to, and vice-versa.
This added map, however, has no direct equivalent in Verilog. Therefore, before the

final step of Verilog generation, we would need to eliminate this externctrl map. This
means making sure that registers connected through the externctrl map have the same
name in the final Verilog. This has the same effect as the externctrl map describes

11

semantically: the two registers always have the same value. In HTL it happens because
we decide so in the semantics, and in Verilog because they are the same register.
We perform this elimination in two steps. First, we perform a renaming pass through

the whole program, making all register names globally unique. This is necessary to avoid
unintended conflicts between register names in different modules, as register names are
originally only unique within their own module. We then do a second pass, renaming
registers present in externctrl to the name of the register they target.

The final step of generating Verilog can be, for the most part, left as-is, but with one
major exception: the Verilog translation of an HTL module would recursively include the
Verilog translations of all HTL modules it calls. This is because the Verilog semantics
in Vericert do not support module instantiations. Mapping HTL modules to Verilog
modules would therefore simply complicate the semantics for no benefit, as instantiating
a Verilog module is equivalent to simply inserting all its code.

12

CHAPTER 4

Implementation

CCompCert

RTL
HTL

generation

Inlining

HTL

Renaming

Verilog
generation Verilog

Figure 4.1.: Vericert backend passes

We will present the implementation of the ideas outlined in Chapter 3. As described
in that section, the aim of the project was to synthesise hardware for certain functions in
a program only once, and to then use that hardware (or resource) for every call to that
function, i.e. to share it. The details of that translation will be described in terms of the
separate passes of the compiler, providing examples of translated code in listings. The
flow of the input program through these passes and the intermediate languages is show

13

1 int add(int a, int b) {
2 return a + b;
3 }
4
5 int main() {
6 int v = 0;
7 v = add(v, 1);
8 v = add(v, 2);
9 return v;
10 }
�

(a) C code

1 add(x2, x1) {
2 2: x3 = x2 + x1 + 0 (int)
3 1: return x3
4 }
5
6 main() {
7 9: x3 = 0
8 8: x6 = 1
9 7: x1 = "add"(x3, x6)

10 6: x3 = x1
11 5: x5 = 2
12 4: x2 = "add"(x3, x5)
13 3: x3 = x2
14 2: x4 = x3
15 1: return x4
16 }
�

(b) RTL code

Listing 2: C and RTL code of example

in Figure 4.1. We end the chapter with an evaluation of the generated code in terms of
speed and area usage. The correctness proof is not addressed in this chapter, as it is the
subject of Chapter 5
As a running example, we will use the C program in Listing 2a.

4.1. Inlining

The first pass in Vericert’s pipeline, beginning with the RTL language, is the inlining
pass. Here, we inline certain functions whose hardware cannot be shared in the latter
passes. As established in Chapter 3, functions which perform load or stores are chosen to
be inlined, while all other functions are skipped. Since this process is recursive, it ensures
that load or store instructions are only present in the main function. As explained in
Chapter 3, this is necessary not due to technical reasons but due to the complexity of
revising the proof. We plan on removing this limitation in future version of Vericert, as
outlined in Section 6.2.
This pass is implemented as a modification of the existing inlining pass used as an

optimisation in CompCert. The code for this pass is split into two sections. One that
chooses functions to inline and one that performs the inlining. Only the latter is verified.
The proof shows that the pass performs any chosen inlining correctly. It is therefore
correct irrespective of the choice of functions to be inlined. Since our modification only
affects the choice of functions, there was no need to make any changes to the proof.

14

4.2. HTL generation

HTL is Vericert’s first “hardware” language, generated from CompCert’s RTL, a 3-
address-code (3AC) language. It represents an FSMD, where the instructions in each
state are Verilog statements. See Section 2.3 for more details. Vericert’s HTL generation
step covers the majority of RTL instructions, with the exception of jumptable, call, and
tailcall instructions. Our contribution in this translation step is to allow the transla-
tion of call instructions. As described in Chapter 3, this is done through the addition
of the externctrl map.
HTL generation done independently for each RTL function. It proceeds by translating

each RTL instruction to one or more HTL states, as well as (possibly) adding register
declarations. RTL call instructions are assumed to have been removed in a previous
inlining pass and so the compiler simply throws an error in case one is encountered.
Our goal at this stage is to translate RTL call instructions, as well as to make sure to

add any additional structure required to make modules callable. To that end, as outlined
in Chapter 3, we add the externctrl map, mapping register names to pairs of module
names and labels. We then allow the translation function to add entries to this map.
When the translation requires setting a control register in a called module a new register
is created and added to externctrl, mapping it to the appropriate module and control
register.
An RTL call translates to 2 states in the HTL state machine. The first copies the argu-

ment values over to the appropriate parameter registers (which are also in externctrl),
asserts the called module’s reset signal, and proceeds to the following state on the next
clock cycle. The following state de-asserts the reset signal, allowing the called module
to proceed in its execution, and does not proceed to the next state until the called mod-
ule’s finish signal is asserted, meanwhile continuously assigning the return signal of
the called module to the call’s destination register. This has the effect of blocking while
the called module executes and then proceeding to the next state once its execution is
complete, with the result copied to the destination register.
We also extend the translation of return instructions, making modules enter an “idle”

state after returning. This state (marked as “Idle State” in Listing 3) simply holds the
module’s finish signal de-asserted and never proceeds to another state (meaning that the
only way to exit it is by resetting the module). This is to ensure that, the next time
the module is called, its finish signal is found de-asserted. If this state were not present,
and the module stayed in its return state after returning, calling a module a second time
would find its finish signal asserted and so the call would be completed immediately,
before allowing the module to fully execute. See Figure 4.2 for a pictorial explanation.
An example of this translation can be seen in Listing 3. We have added the externctrl

map in the textual representation of the HTL code.

15

1 int add(int a, int b) {
2 return a + b;
3 }
4
5 int main() {
6 int v = 0;
7 v = add(v, 1);
8 v = add(v, 2);
9 return v;

10 }
�
(a) C code

1 add(x2, x1) {
2 2: x3 = x2 + x1 + 0 (int)
3 1: return x3
4 }
5
6 main() {
7 9: x3 = 0
8 8: x6 = 1
9 7: x1 = "add"(x3, x6)

10 6: x3 = x1
11 5: x5 = 2
12 4: x2 = "add"(x3, x5)
13 3: x3 = x2
14 2: x4 = x3
15 1: return x4
16 }
�

(b) RTL code

1 add(a, b) {
2 externctrl { clk -> main.clk }
3 controllogic {
4 2: reg_4 <= 1;
5 1: reg_4 <= 3;
6 3: ;
7 }
8 datapath {
9 2: reg_3 <= {{a + b} + 0};

10 1: finish = 1; return = reg_3;
11 3: finish <= 0;
12 }
13 }
14
15 main() {
16 externctrl {
17 add_1_a -> add.param_0; add_1_b -> add.param_1;
18 add_1_finish -> add.finish; add_1_rst -> add.rst;
19 add_1_return -> add.return;
20
21 add_0_a -> add.param_0; add_0_b -> add.param_1;
22 add_0_finish -> add.finish; add_0_rst -> add.rst;
23 add_0_return -> add.return;
24
25 clk -> main.clk;
26 }
27 controllogic {
28 9: reg_7 <= 8;
29 8: reg_7 <= 7;
30 7: reg_7 <= 12;
31 12: if ({ add_0_finish == 1}) reg_7 <= 6;
32 6: reg_7 <= 5;
33 5: reg_7 <= 4;
34 4: reg_7 <= 10;
35 10: if ({ add_1_finish == 1}) reg_7 <= 3;
36 3: reg_7 <= 2;
37 2: reg_7 <= 1;
38 1: reg_7 <= 11;
39 11: ;
40 }
41 datapath {
42 9: reg_3 <= 0;
43 8: reg_6 <= 1;
44 7: add_0_rst <= 1; add_0_a <= reg_3; add_0_b <= reg_6;
45 12: add_0_rst <= 0; reg_1 <= add_0_return;
46 6: reg_3 <= reg_1;
47 5: reg_5 <= 2;
48 4: add_1_rst <= 1; add_1_a <= reg_3; add_1_b <= reg_5;
49 10: add_1_rst <= 0; reg_2 <= add_1_return;
50 3: reg_3 <= reg_2;
51 2: reg_4 <= reg_3;
52 1: finish = 1; return = reg_4;
53 11: finish <= 0;
54 }
55 }
�

Idle State

(c) HTL code

Listing 3: Translation from C to RTL to HTL. Matching colours indicate sections
of code which translate to each-other

16

1st call start 1st call end 2nd call start

clk
Without idle state

rst
fin

active module caller callee caller

With idle state

rst
fin

active module caller callee caller callee

Caller sees
fin=1, contin-
ues

Caller sees
fin=0, blocks

Figure 4.2.: Timing diagram comparison of call with idle state versus without

4.3. Register renaming

In preparation for the next and final phase, Verilog generation, we need to ensure that
register names are globally unique. The Verilog output includes the code for all HTL
modules in a single Verilog module and so we need to rename registers to avoid any
conflicts. In addition, the externctrl map present in HTL does not have a direct equiv-
alent in Verilog. It is therefore necessary to eliminate it before or during the Verilog
translation. This will be achieved by renaming registers which are tied together through
the externctrl map to the same name in the final Verilog. These two problems can be
solved with two very similar but distinct passes, performing two different kinds of register
renaming.
It is important to note here that, in Vericert, (and also in CompCert more generally)

register names are simply positive integers. This simplifies many different operations as
numbers are simpler to manipulate and reason about than a different representation such
as strings. It is also important for these compiler passes.
The first renaming pass ensures global uniqueness of register names by renaming all

registers to fresh numbers. The first register in the first module in the program is renamed
to 1, and so are all subsequent instances of that register in the same module, the second

17

register and all its instances to 2 and so on. When one module is done, the same process is
followed for the next module, beginning from the successor of the highest register number
used in the last module. Repeating this process ensures that there are no register names
shared between modules.
Subsequently, we want to re-introduce some “conflicts” between modules: Those de-

scribed by the externctrlmap. This is done by the next renaming pass. Here, we rename
registers which appear in their module’s externctrl map to have the same name as the
register they are associated to in the map. So if, for example module A’s externctrl
map contains the entry 10 7→ (B, reset), and B’s reset register is 20, all instances of
register 10 in module A will be renamed to 20. This pass means that in the next phase,
Verilog generation, when all HTL modules become part of the same Verilog module the
externctrl map can be simply discarded, and the registers inside it will be directly tied
to the modules that they are meant to control.

4.4. Verilog generation

And so we arrive at the last step in Vericert’s backend. This stage required (conceptually)
minimal changes from how it functioned before the implementation of this project. We
nevertheless present this pass in its entirety for the sake of completeness.
Let us first consider the simple case of a single HTL module, with an empty externctrl

map, i.e. one generated from a C function containing no calls. For the purposes of this
example we will also disregard pointers, as they complicate this process, and are not
significant for this project. An example of such a module and its Verilog translation is
given in Figure 4.3. The code present inside the state machine described by the HTL is
not altered in any way for Verilog generation. This is possible because the code inside
HTL states is in Verilog. What is added by this stage is structure around this state
machine required to make it a syntactically valid Verilog program, as well as cover its
semantic differences from Verilog.
The state machine described by an HTL program is converted to Verilog as a module

containing two always-blocks, one each for the control- and datapath. Each block con-
tains a single case-statement, branching on the module’s state register. The branches
of the case-statement contain the code for each HTL state on the right hand side, and
the state number on the left hand side. In addition, register declarations are copied over
as-is from the HTL module. Finally, in the control logic always-block we insert code to
reset the module state if the reset signal is asserted.
Extrapolating from this to the case including a non-empty externctrl map requires

one main change: recursively include the Verilog translation of all modules referenced
in the map. Because of the renumbering described in Section 4.3 there is no change
required to “apply” externctrl in any way. Simply placing the Verilog translations of
all referenced HTL modules in the same Verilog module will have the effect prescribed
by the externctrl map.
There is one complication to this translation scheme: register declarations. Since

they are part of HTL, and are directly transferred to Verilog, they will be duplicated

18

1 add(a, b) {
2 externctrl { }
3 controllogic {
4 2: state <= 1;
5 1: state <= 3;
6 3: ;
7 }
8 datapath {
9 2: reg_10 <= {{a + b} + 0};

10 1: finish = 1; return = reg_10;
11 3: finish <= 0;
12 }
13 }
�

1 module add(clk , reset , start , a, b, return_val , finish);
2 input [0:0] clk , reset , start;
3 input [31:0] a, b;
4 output reg [0:0] finish;
5 output reg [31:0] return_val;
6
7 reg [0:0] state;
8 reg [31:0] reg_10;
9

10 always @(posedge clk)
11 if ({reset == 1}) begin
12 state <= 2;
13 finish <= 0;
14 end
15 else begin
16 case (state)
17 2: state <= 1;
18 1: state <= 3;
19 3: ;
20 default: ;
21 endcase
22 end
23
24 always @(posedge clk)
25 case (state)
26 2: reg_10 <= {{a + b} + 0};
27 1: finish = 1; return_val = reg_10;
28 3: finish <= 0;
29 default: ;
30 endcase
31 endmodule
�

Register declarations.
Hidden in HTL list-
ings, but part of HTL

Handling of reset
signal

Figure 4.3.: Verilog translation for a simple HTL module. Code added by verilog
generation in green

for registers present in externctrl maps. This is because they are declared both in
the module of which they are control registers (as input or output) and also in the
module whose externctrl map they appear in (as internal registers). Furthermore,
control registers of each module are marked as input or output. These declarations
need to be removed for all registers but those belonging to the top-level module. Both
these problems can be resolved by removing declarations marked as input or output from
included modules. After this step, we have the final Verilog which can be saved to disk
and handed off to a synthesis or simulation tool.

19

1 module main(start , reset , clk , finish , return_val);
2 input [0:0] clk , reset , start;
3 output reg [0:0] finish;
4 output reg [31:0] return_val;
5
6 reg [0:0] reg_1 , add_reset , add_fin;
7 reg [31:0] main_state , add_state , add_a , add_b , add_return_val ,
8 reg_10 , reg_20 , reg_21 , reg_25 , reg_26 , reg_28 ,
9 reg_30;

10 reg [31:0] add_stack [-1:0];
11 reg [31:0] main_stack [-1:0];
12
13
14 always @(posedge clk)
15 if ({reset == 1}) begin state <= 9; finish <= 0; end
16 else begin
17 case (state)
18 9: state <= 8; 8: state <= 7; 7: state <= 12;
19 12: if ({ add_fin == 1}) state <= 6;
20 6: state <= 5; 5: state <= 4; 4: state <= 10;
21 3: state <= 2;
22 10: if ({ add_fin == 1}) state <= 3;
23 2: state <= 1; 1: state <= 11;
24 11: ;
25 default: ;
26 endcase
27 end
28 always @(posedge clk)
29 case (state)
30 9: reg_21 <= 0;
31 8: reg_26 <= 1;
32 7: add_reset <= 1; add_a <= reg_21; add_b <= reg_26;
33 12: add_reset <= 0; reg_28 <= add_return_val;
34 6: reg_21 <= reg_28;
35 5: reg_25 <= 2;
36 4: add_reset <= 1; add_a <= reg_21; add_b <= reg_25;
37 10: add_reset <= 0; reg_30 <= add_return_val;
38 3: reg_21 <= reg_30;
39 2: reg_20 <= reg_21;
40 1: finish = 1; return_val = reg_20;
41 11: finish <= 0;
42 default: ;
43 endcase
44
45 always @(posedge clk)
46 if ({ add_reset == 1}) begin add_state <= 2; add_fin <= 0; end
47 else begin
48 case (add_state)
49 2: add_state <= 1; 1: add_state <= 3; 3: ;
50 default: ;
51 endcase
52 end
53 always @(posedge clk)
54 case (add_state)
55 2: reg_10 <= {{add_a + add_b} + 0};
56 1: add_fin = 1; add_return_val = reg_10;
57 3: add_fin <= 0;
58 default: ;
59 endcase
60 endmodule
�

main

Control logic

main

Datapath

add

Control logic

add

Datapath

Register
declarations
for all state
machines

Figure 4.4.: Verilog translation of Listing 3. Edited for readability.

20

4.5. Performance Evaluation

We compare the performance of Vericert-generated code with resource-sharing imple-
mented as described in this report versus without, i.e. in the state on which we began
developing our changes. We used a selection of benchmarks from the polybench [17]
benchmark suite. We used the benchmark selection originally used to evaluate Vericert
in Herklotz et al. in 2020 [8], with the exception of the adi and ludcmp benchmarks.
The former caused a compiler error in both Vericert master and our Vericert, while the
latter caused an error only in our compiler1. We used Icarus Verilog [19] to simulate the
generated designs and get a cycle count measurement. The designs were then synthesised
using Xilinx Vivado 2017.1, targeting a Xilinx 7-series FPGA (XC7K70T) with a target
frequency of 50MHz. The area usage and fmax results reported here are based on the
reports generated by Vivado. The detailed data is presented in Appendix A.

0.5 1 2

0.5

1

2

fmax Ratio (Higher is better)

C
el
lu

sa
ge

R
at
io

(L
ow

er
is

be
tt
er
)

0.5 1 2

0.5

1

2

Cycle count Ratio (Lower is better)

Figure 4.5.: Comparison of change in fmax and cycle count against change in cell usage

Figure 4.5 shows a visual summary of the benchmarking data. The two plots compare
cell usage, fmax and cycle count using the ratio of the value in Vericert with our changes
over in Vericert without our changes. We found an improvement in cell usage across
almost all benchmarks. The change in cell usage ranged from using 106% of the logic
cells in the worst case to just 41% in the best case averaging out to 87.9% the area
usage overall. Cycle count appears to be mostly unaffected, using 0.7% more clock cycles
on average. A modest increase was expected, as the translation involves introducing an
extra state into the state machine for every call in the source program. Clock frequency
(fmax) appears similarly unaffected, ranging from a 1.5% improvement (increase) to a
3.1% worsening (decrease), averaging a 0.2% decrease over all benchmarks.

1The reason for this is to be investigated and resolved. This does not affect compiler correctness, as no
miscompilation was identified

21

Overall, we consider the project to be a success in terms of the performance-related
goals we set in Section 1.1. We have achieved an measurable improvement in area usage,
while cycle count and frequency have seen minimal impact.

4.6. Previous attempts

The design presented above is not the one originally planned. There were other paths
explored and abandoned early on in the project which are presented briefly here.
It was identified early on in the proof that the main problem to be solved by the

project was the lack of a semantics for function calls in any of the “hardware” languages
in Vericert, those being HTL, and Vericert’s subset of Verilog. As “true” Verilog has no
concept of calls, we attempted to augment HTL, adding calls to the language and its
semantics. This took the form of three new instructions: fork, join, and wait. fork would
behave as the datapath of the state implementing the first part of the call process in
the current design, while wait and join would behave as the control- and datapath of the
second state in the process, respectively.

fork would take as arguments a module identifier to be called, and a list of registers
where the arguments to the call are located. It would set the arguments for the identified
module and set its reset signal. wait would appear in the controlpath and take a module
identifier and state number as arguments, waiting for the module to assert its done signal
before progressing the state.
We abandoned this approach as it increased complexity in the HTL proof which as-

sumed that HTL statements were “just” Verilog statements. Adapting the proof to sup-
port these new instructions was quickly found to be too costly and abandoned.

22

CHAPTER 5

Correctness proof

Formal proof of the correctness of this project formed the bulk of its workload. This
proof follows the general structure of proofs in CompCert, outlined in Section 2.2. As
we have made changes throughout all of Vericert’s passes, all their associated proofs
required adjustments as well. We have partially completed the correctness proof for
HTL generation, with certain lemmas assumed correct. We give an outline of the proof,
including changes made to the semantics of the language, and list our assumptions. The
renaming passes and Verilog generation have not been proven correct in any way, but we
nonetheless give a possible outline of their possible correctness proofs.

5.1. HTL Semantics

We first present the original semantics for HTL, as used in Vericert and outline the
changes we made to support our implementation.

5.1.1. Original

In general, semantics for intermediate languages in CompCert’s framework are given in
terms of a “state”, which is defined separately for each language. A set of inference rules
are then added, defining how this state evolves as a program in the language executes.
For the HTL semantics, this state has three variants:

1. State stk m pc Γr Γα

Active while in the middle of a module’s execution. m is the currently executing
module. Not its identifier, but the full datastructure representing the module. Γr
is the map containing scalar registers’ values, while Γα serves that role for array
registers. pc is the value in the module’s state register, denoted σm Finally stk is
the callstack, represented as a list of stackframes, meant to contain the states of

23

Γr ! finm = 1 Γr ! retm = v

State stk m pc Γr Γα −→ Returnstate stk v
Finish

Callstate stk m ~r −→
State stk m entrym (init_params ~r a)[rstm 7→ 0, finm 7→ 0, σm 7→ entrym] ε

Call

Figure 5.1.: State transition rules in original HTL semantics

modules further up the callstack. This was empty in all proofs originally, as there
is only a single module called in any HTL program.

2. Returnstate stk v

Entered when a module finishes execution. Holds the stack, which has is the same
as for the normal State, and the return value of the module, i.e. the value of the
module’s return register when it finished execution.

3. Callstate stk m ~r

State used to initiate a call to a module. In the original HTL semantics this is only
used for the initial state, which calls the main function. ~r denotes the values of the
arguments to the call which are given to the parameter registers, denoted ~p, with
~pn being the register of the nth parameter.

The inference rules for the original state transitions are given in Figure 5.1. The “Call”
and “Finish” rules are only ever used to call the main function and return from it, re-
spectively. This is why there are no Callstate → State or Returnstate → State rules
given. The State→ State rule reuses the Verilog semantics for execution of statements,
and executes the control logic statement at the program counter, followed by the dat-
apath statement at the program counter, correctly handling blocking and non-blocking
assignments, and ensuring that the control registers have the appropriate values to allow
execution.

5.1.2. Augmented

Our augmented semantics for HTL to support calls required the addition of one parameter
to all three state variants: the identifier of the current module. We also implement two
new state transitions: “InitCall”, transitioning from State to Callstate, and “Return”,
allowing us to step from Returnstate back to State. Finally, we augment the step relation
itself with the “global environment” g: A map from module identifiers to modules. Such a
map is keeping with CompCert practice, as it is also used for the semantics of RTL. These
new rules have also required the use of the stack, the former creating a new stackframe
and the latter consuming it. The parameters of Stackframe are identical to those of
State, excluding only stk (since a stackframe does not have its own stack).

24

externctrlm ! rst = (idw, reset)→ Γr ! rst = 0
∀n < |~p|. externctrlm ! ~pn = (idw,paramn) ∀n < |~p|. ~rn = Γr ! ~pn

g ! idw = w

State stk idm m pc Γr Γα
g−→

Callstate ((Stackframe idm m pc Γr Γα) :: stk) idw w ~r

InitCall

externctrlm ! rtrn = (idw, return)
externctrlm ! fin = (idw,finish)

Returnstate (Stackframe idm mm pc Γr Γα :: stk) idw v
g−→

State stk idm mm pc Γr[σm 7→ pc,fin 7→ 1, rtrn 7→ v] Γα

Return

Figure 5.2.: Added/altered state transitions for HTL

InitCall requires that a register rst, which is mapped to the reset signal of some “callee”
module through the externctrl map, is set to 0. If that condition is met, the rule can
be applied. We find a list of registers ~p that are mapped to parameters of the callee and
use their values to form ~r, the arguments that are used in the call. Finally, we look up
the name of the callee in the global environment to find the data of the callee module
(mcallee). After creating a new Stackframe using the parameters of the calling State we
have all the necessary data for the new Callstate.
Return pops the top stackframe off the callstack and uses the data from it to re-create

the State at which the state was created (i.e. the state at which the last call took place).
In addition, it requires that the “caller” has registers mapped to the “return” and “finish”
registers of the “callee” in its externctrl map. Those registers are set to 1 and the return
value, respectively.
A “necessary evil” had to be allowed into the formulation of these semantics: non-

determinism. The InitCall rule can be triggered when an externctrl-mapped reset
register is set to 0, but it does not have to be. The Step rule would be equally valid at
that state. We explain how this non-determinism was “tamed” for the purposes of the
HTL generation correctness proof, as well as how it would affect the Verilog generation
correctness proof.

5.2. RTL to HTL translation

The goal of this proof is to prove that the output of the function has semantics which
match those of the input. This can be broken down as follows:

1. Find a specification of the translation function which describes its proof-relevant
aspects.

2. Prove that the translation fulfils its specification.

25

3. Describe what it means for a state in the source language (RTL) to match a state
in the target language (HTL). This includes the fact that the programs the states
relate to are related by the translation spec.

4. Prove that if some RTL state S steps to some RTL state S′ in the RTL semantics,
and S matches some HTL state R, then there exists an HTL state R′, such that R
steps to R′ in one or more steps and R′ matches S′.

∀R,S, S′. (S ===⇒
RTL

S′)→ S match R→ ∃R′. (R ===⇒
HTL

∗ R′) ∧ (S′ match R′)

This is called a semantic preservation proof using forward simulation

Here, we describe the translation specification and state matching statements, and
outline the semantic preservation proof.

5.2.1. Translation specification

The specification, at the level of instructions, in base vericert has the form

tr_code cRTL pc data ctrl fin rtrn σ stk

This predicate says that the RTL statement at pc in the RTL code cRTL is translated into
the datapath and control statements at pc in data and ctrl, respectively. In Vericert, this
just wraps the predicate spec_instr (detailed in Herklotz et al. 2020 [8] page 8), which
relates an RTL instruction to a control and a datapath HTL statement.
We extend tr_code by adding two special cases, for the translation of the call and

return RTL instructions. The translation of these two instructions differs from that of
all other instructions: They each create a new state, as well as new registers, i.e. ones
not present in the RTL code. We solve both these problems by require that there exist
some HTL state in the control- and datapaths matching the specification of the added
state with some registers

5.2.2. Matching states

The match relation is extended from Vericert master. We extend the matching of call-
stacks, adding a rule matching an RTL to an HTL stack frame, where Vericert master
only allows two empty lists of stack frames to match. This rule duplicates the require-
ments for the matching of states, reflecting how stack frames duplicate the data contained
in a State. Furthermore, we also require that every module on the stack contains appro-
priate registers in its externctrl map for the module in the stackframe above it, as well
as the one at the top of the stack containing them for the currently executing module.
For example, if f calls g then we require that module f have externctrl registers for
g’s reset, finish, etc. signals. Finally, we require that the control- and datapath code
at the return σ value (the “return address”) of every stackframe contain a specific code
fragment, (that of the “join” state) which makes sure that the result is copied from the
externctrl register to the destination register used in the RTL code.

26

5.2.3. Semantic preservation proof

The proof is by induction on the RTL step relation. Each case of this proof is packaged
in it own lemma, as some are quite lengthy. Each lemma essentially replicates the top-
level semantic preservation statement, specialised to a specific instance of the RTL step
relation.
Existing lemmas, for the most part, required minor adjustments to cover the new

requirements imposed on the state matching relation. Most could be proven by reusing
the proof from the starting state in the resulting state, as the code in question did not
affect the property. In other cases, however, changes were more significant. For the
proofs relating to the load and store instructions, certain assumptions had to be taken.
The original proof used the fact that the stack in HTL was always empty, i.e. there were
no stackframes. This was valid because the only function ever called was the main. This
is no longer the case as a function call structure now exists in HTL. This change could
indeed be the cause of bugs, were it not for the fact that our implementation handles
this. The inlining pass makes this scenario impossible; functions performing loads or
stores are inlined, meaning that the load and store instructions should only ever appear
in the main function. This fact, however, has not been proven correct and is therefore
taken as an assumption. The reasons for this are outlined in Subsection 5.2.4.
There were three new lemmas required to match transitions in RTL which were previ-

ously impossible in HTL.

1. State→ Callstate

2. Callstate→ State

3. Returnstate→ State

In addition, the lemma relating to the State→ Returnstate transition had to be proven
from scratch, even though its statement remained the same.
We give the statement of each lemma and an outline of each proof, stating where

assumptions have been made or proofs are still incomplete.

Lemma 5.1 (transl_icall_correct). The semantics of the State → Callstate transi-
tion in RTL are preserved by the HTL translation.

Proof sketch. This step corresponds to the first part of the execution of the RTL call
instruction. The translation specification dictates that the HTL state matching an RTL
call instruction is a “fork” state, set to transition into a “join” state. The initial RTL state
of this transition, then, matches to an HTL the “fork” state, which sets the arguments’
values and asserts the module’s reset signal (as always using registers in externctrl).
An HTL State → State transition is then applied, moving execution to the next state,
a “join”, which de-asserts the reset signal. At this point, the HTL State → Callstate
transition can be applied. The callstate that we transition to can be shown to match the
RTL Callstate of the lemma. The execution has been proven correct, but the matching
between the RTL and HTL states has only partially been proven correct.

27

Lemma 5.2 (transl_callstate_correct). The semantics of the Callstate→ State tran-
sition in RTL are preserved by the HTL translation.

Proof sketch. The initial RTL Callstate directly matches an HTL Callstate, which single-
steps to an HTL State. This state is then shown to match the target RTL State.
The execution has been proven correct, but the matching between the RTL and HTL

states has only partially been proven correct. For the part of the state matching which
we proved correct we made used of the no_stack_calls admitted lemma.

Lemma 5.3 (transl_returnstate_correct). The semantics of the Returnstate→ State
transition in RTL are preserved by the HTL translation.

Proof sketch. The initial state of this transition matches an HTL Returnstate. We need
to perform two steps to find an HTL state matching the final RTL state. First, from
the Returnstate, we enter the calling module, using the state register (σ) value specified
at the top stackframe. From the stackframe matching relation we know that at this σ
value there is a “join” state, set to transition to a state matching the return address of
the RTL stackframe. From here, we can apply the State → State transition to execute
this “join” state. This copies the called function’s result from the externctrl register to
the register which appears in the final RTL state, and as we established, transitions to
the state matching the RTL return address.
This lemma is fully proven correct, but makes use of the no_pointer_return and

no_stack_functions assumptions which are detailed below.

Lemma 5.4. The semantics of the State→ Returnstate transition in RTL are preserved
by the HTL translation.

Proof sketch. This proof corresponds to the execution of the return RTL instruction,
which maps to two states in HTL: One setting the module result and finish signal
(the “return” state) and the “idle” state. The RTL transition is matched by two HTL
transitions: one State → State transition, executing the “return” state, and a State →
Returnstate transition, allowed because of the “return” state setting the module finish
signal. The “idle state” is not invoked in this proof, as it does not match any part of the
RTL semantics. It is required strictly for the resulting Verilog.
This lemma is fully proven correct and did not require the use of any assumptions.

5.2.4. Assumptions

For the purposes of the correctness proof of the RTL to HTL pass, we had to take certain
assumptions. These are listed here, along with the reason for which they are required,
their consequences in terms of correctness (i.e. could this assumption be violated? If
so what could go wrong?), and what steps could be taken to remove it. This section
contains an exhaustive list of the assumptions in correctness proof of the RTL to HTL
pass. These assumptions are in addition to the lemmata stated as not entirely proven
above.

28

only_main_stores

We assume that, for all RTL states matching an HTL state, if the current instruction
is a store, then the callstack is empty, i.e. the currently executing function is at the
top of the callstack. This assumption is founded on the inlining pass. Since we inline
all functions performing loads or stores before the RTL to HTL translation, the only
place where a store instruction could be encountered is in the RTL main function. This
assumption is used for the correctness proof of the store instruction translation, in order
to prove that the translation of that instruction preserves the matching of stackframes.
We believe this assumption to be valid, and that it would be provable given more time.

no_stack_functions

no_stack_calls

These two assumptions are closely related to each other and only_main_stores. To-
gether, they state that if an RTL state matches an HTL state, then the function cur-
rently executing (in the case of no_stack_functions) or being called (in the case of
no_stack_calls) must either have a stack size of zero or be at the top of the callstack,
i.e. be the main function. These two are used in the proofs relating to the call and return
RTL instructions. They are used in conjunction with the following two assumptions.

mem_free_zero

mem_alloc_zero

These are to do with Memory in RTL semantics. They state that allocating or freeing an
empty block of memory leaves the representation of memory unchanged. These lemmas
are not provable, due to the way in which the free and allocate functions work for RTL.
They are however, functionally correct. While allocating or freeing a block of memory
does not leave the memory unchanged, it does leave it in a functionally identical state,
which should be provable and could be used to draw the same conclusions as these lemmas
have been used for in our proof.

no_pointer_return and no_pointer_call

This assumption is required due to a fact used throughout HTL, which departs from the
rest of CompCert. In CompCert semantics, in general, pointers are represented as a base
and offset. The base can be the stack pointer for pointers to function-local addresses, or
the beginning of an allocated block for dynamically-allocated memory. In HTL semantics,
however, pointers are represented only by the offset. This is because in HTL there is
only a single memory block, and all pointers can be seen as being based at its start.
The HTL generation proof relies on all pointers in the input RTL having the stack

pointer of the currently executing function as their base address. This is possible because
calls were previously never translated. There were, therefore, no pointers returned from
functions, and so all pointers were ones based on the stack pointer of the main function.

29

This has now changed. Functions can be called and so pointers can originate outside the
currently executing function, having a base pointer other than the current stack pointer.
This conflicts with the previously held assumption.
Our work-around to this problem was to take the no_pointer_call and no_pointer-

_return assumptions. These essentially state that no function is called with a pointer
argument, or returns a pointer, respectively. This eliminates the problem, since pointers
are once again assumed to never cross function boundaries, but is obviously wrong: Func-
tions can return pointers. This conflict means that the formal proof does not guarantee
that accesses on pointers which have been returned from functions will be valid. For
example, if a function were used to perform arithmetic on a pointer, and the resulting
pointer were dereferenced, our formal proof does not guarantee that the semantics of that
access will be preserved past HTL generation, and therefore in the resulting hardware.
Note, however, that a function returning a pointer to a local variable, which is then
dereferenced, is undefined behaviour. CompCert, much like any other C compiler, makes
no guarantees about programs exhibiting undefined behaviour, and so this scenario need
not be considered.
Because of the way in which function returns are translated to HTL, we believe this

assumption to be highly unlikely to result in a bug. The HTL translation of an RTL
return simply copies the returned register to the result register of the module, without
performing any alterations. Indeed, basic testing on simple functions performing pointer
arithmetic, showed that Vericert-generated Verilog behaved correctly. Nevertheless, this
is a gap in the proof and should be eliminated in order to consider this pass (and Vericert
as a whole) verified.
Eliminating these two assumptions could be done in a few different ways. The most

direct, easiest route, would be to change the assumption in the proof. Instead of requiring
that all pointers are based on the current function’s stack pointer, we could require that
they are all based on the stack pointer of the function at the bottom of the callstack,
i.e. the main. This is equivalent to the assumption in Vericert master, since it only ever
had one function on the callstack, however, it would generalise to our extended Vericert.
The more principled fix would be to get rid of the need to inline functions performing
memory accesses altogether. The semantics of memory accesses in HTL would then be
closer to those of RTL and this assumption could then be removed completely. This is a
much more radical change, which we discuss in Section 6.2.

5.3. HTL renaming

The two HTL renaming passes described in Chapter 3 are, as of the writing of this report,
unverified. We lay out a roadmap for their correctness proof.
For the two passes we will need to prove two theorems: The first is the regular semantic

preservation proof that is required of any pass in CompCert or Vericert. This is to ensure
that neither pass alters the behaviour of a program with respect to HTL semantics. The
second is a theorem stating that the two passes, together, perform their intended function.
That is, that they ensure that the only register names shared across HTL modules are

30

those intended to be shared through the externctrl map. This will be necessary for the
subsequent correctness proof of the HTL to Verilog translation.
For the semantic preservation proof, we need to establish how we match the state of

the original program to that of its renamed version. This would essentially amount to
applying the renaming mapping to the execution state. For example, say we know the
renaming applied the mapping [1 7→ 10; 2 7→ 20], meaning that register 1 has been re-
named to register 10 and register 2 has been renamed to register 20. Using this mapping,
we would then say that the state {1 : ‘a’; 2 : ‘b’} in the original program matches
the state {10 : ‘a’; 2 : ‘b’} in the renamed program. That is, we expect register 10
to have the value of register 1 in the old program and register 20 to have the value of
register 2 in the old program. We would then proceed to prove that this matching of
states is preserved through all transitions in the HTL semantics by forward simulation.
This planned proof would also require that we augment both passes to output not only
the transformed program, but also the mapping they applied.
The second proof would be split between the two renaming passes. First we establish

that the global renaming pass does indeed make register names globally unique. Then,
using that fact, and establishing that the externctrl application pass only changes the
names of registers appearing in the externctrl map, we could show that, after both
passes, we have a program were all register names are externctrl map.

5.4. HTL to Verilog translation

The HTL to Verilog translation was previously proven correct. This was a simple proof,
compared to most others in CompCert or Vericert. This is because the semantics of
HTL and Verilog are almost a one-to-one match. It was further simplified by the fact
that the Verilog generation uses the entire HTL program as-is and simply adds structure
around it (see Section 4.4). The proof therefore, needed only to address the parts of HTL
which were implicit in its semantics but were made syntactically explicit in Verilog, for
example, the code added to handle the reset signal.
We expect a large section of this proof to still be usable, however a significant amount

of work will need to be added. We expect most of the complexity to be due to the
addition of function call semantics in HTL which have no analogue in Verilog. It will,
be necessary to be precise in how the state matching relation is defined, so that a calling
state in HTL can match an appropriate state in Verilog. As discussed in the previous
section, we also expect to explicitly have to make use of the correctness of the renaming
passes in proving the semantics of calls correct.

31

CHAPTER 6

Conclusion and Future Work

6.1. Completing the proof

The project has achieved its implementation goals, providing an improvement in the
area usage of generated hardware, for only a consistently small worsening of cycle count
and clock frequency. The main limitation of the project is, however, in its proof. It
would have to be expanded to cover all aspects of the compiler before the project can be
considered fully verified.
The first step to this would be completing the HTL generation proof. This would mean

removing or proving correct any assumptions and completing the proofs of lemmata left
incomplete. The two renaming passes and Verilog generation would also have to be
proven correct as outlined in Sections 5.3 and 5.4.

6.2. Expanding resource sharing to array-based functions

The inclusion of the inlining pass could also be considered a limitation. Vericert is
currently unable to share the hardware of functions which perform any kind of memory
access, which is what made the inlining pass necessary. Removing this limitation would
allow for further improvements in area usage, however the impact on cycle count and
clock frequency would depend on the specific implementation and remains to be seen.

6.3. Enabling concurrent execution of functions

The way in which resource sharing has been implemented should enable concurrent execu-
tion of functions. Currently, calls in C map to transfer of control between state machines
in the resulting hardware, where only one state machine is ever running at a time. This

32

could be altered. Currently calls happen using two states, where one sets the call up, set-
ting the arguments and resetting the called module, and the next blocks while the called
module executes. These states are currently always created to be sequential. Instead,
the initiating state could be transferred “up” to where all the arguments are available,
and another call to this function is not also active, while the waiting state could be
transferred “down”, to right before the first point where its result is needed. This way
the execution of the called function would be interleaved with that of the caller, and the
waiting state could find the result immediately available, cutting down on overall cycle
count.

33

Bibliography

[1] Matthew Aubury et al. “Handel-C language reference guide”. In: Computing Labo-
ratory. Oxford University, UK 12 (1996).

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Texts in Theoretical Computer Science An EATCS Series. Springer
Berlin Heidelberg, 2004, nil. doi: 10.1007/978- 3- 662- 07964- 5. url: https:
//doi.org/10.1007/978-3-662-07964-5.

[3] Andrew Canis et al. “LegUp: High-Level Synthesis for FPGA-Based Processor/Ac-
celerator Systems”. In: Proceedings of the 19th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays. FPGA ’11. Monterey, CA, USA: As-
sociation for Computing Machinery, 2011, 33–36. isbn: 9781450305549. doi: 10.
1145/1950413.1950423. url: https://doi.org/10.1145/1950413.1950423.

[4] R. Chapman, G. Brown, and M. Leeser. “Verified high-level synthesis in BEDROC”.
In: [1992] Proceedings The European Conference on Design Automation. 1992,
pp. 59–63. doi: 10.1109/EDAC.1992.205894.

[5] Philippe Coussy et al. “An Introduction to High-Level Synthesis”. In: IEEE Design
Test of Computers 26.4 (2009), pp. 8–17. issn: 1558-1918. doi: 10.1109/MDT.2009.
69.

[6] Zewei Du et al. “Fuzzing High-Level Synthesis Tools”. In: The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. FPGA ’21. Virtual
Event, USA: Association for Computing Machinery, 2021, p. 148. isbn: 9781450382182.
doi: 10.1145/3431920.3439466. url: https://doi.org/10.1145/3431920.
3439466.

[7] Dan Gajski, Todd Austin, and Steve Svoboda. “What Input-Language is the Best
Choice for High Level Synthesis (HLS)?” In: Proceedings of the 47th Design Au-
tomation Conference. DAC ’10. Anaheim, California: Association for Computing
Machinery, 2010, 857–858. isbn: 9781450300025. doi: 10.1145/1837274.1837489.
url: https://doi.org/10.1145/1837274.1837489.

34

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/EDAC.1992.205894
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1145/3431920.3439466
https://doi.org/10.1145/3431920.3439466
https://doi.org/10.1145/3431920.3439466
https://doi.org/10.1145/1837274.1837489
https://doi.org/10.1145/1837274.1837489

[8] Yann Herklotz et al. “Formal Verification of High-Level Synthesis”. 2020. url:
https://yannherklotz.com/docs/drafts/formal_hls.pdf (visited on 01/30/2021).

[9] William A Howard. “The formulae-as-types notion of construction”. In: To HB
Curry: essays on combinatory logic, lambda calculus and formalism 44 (1980),
pp. 479–490.

[10] E. Hwang, F. Vahid, and Yu-Chin Hsu. “FSMD functional partitioning for low
power”. In: Design, Automation and Test in Europe Conference and Exhibition,
1999. Proceedings (Cat. No. PR00078). 1999, pp. 22–28. doi: 10.1109/DATE.1999.
761092.

[11] “IEEE Standard for Verilog Hardware Description Language”. In: IEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001) (2006), pp. 1–590. doi: 10.1109/IEEESTD.
2006.99495.

[12] Intel High Level Synthesis Compiler. 2021. url: https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/hls-compiler.html.

[13] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Commun. ACM
52.7 (July 2009), 107–115. issn: 0001-0782. doi: 10.1145/1538788.1538814. url:
https://doi.org/10.1145/1538788.1538814.

[14] A. Lööw and M. O. Myreen. “A Proof-Producing Translator for Verilog Devel-
opment in HOL”. In: 2019 IEEE/ACM 7th International Conference on Formal
Methods in Software Engineering (FormaliSE). 2019, pp. 99–108. doi: 10.1109/
FormaliSE.2019.00020.

[15] Juan Perna and Jim Woodcock. “Mechanised wire-wise verification of Handel-C
synthesis”. In: Science of Computer Programming 77.4 (2012). Brazilian Sympo-
sium on Formal Methods (SBMF 2008), pp. 424 –443. issn: 0167-6423. doi: https:
//doi.org/10.1016/j.scico.2010.02.007. url: http://www.sciencedirect.
com/science/article/pii/S0167642310000341.

[16] Juan Perna et al. “Correct hardware synthesis”. In: Acta informatica 48.7-8 (2011),
pp. 363–396.

[17] Louis-Noël Pouchet. PolyBench/C. the Polyhedral Benchmark suite. 2020. url:
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

[18] Vitis HLS. 2021. url: https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html.

[19] Stephen Williams. Icarus Verilog. http://iverilog.icarus.com/. Version 11.0.

35

https://yannherklotz.com/docs/drafts/formal_hls.pdf
https://doi.org/10.1109/DATE.1999.761092
https://doi.org/10.1109/DATE.1999.761092
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/https://doi.org/10.1016/j.scico.2010.02.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.02.007
http://www.sciencedirect.com/science/article/pii/S0167642310000341
http://www.sciencedirect.com/science/article/pii/S0167642310000341
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://iverilog.icarus.com/

36

APPENDIX A

Benchmarking data

Ratio of ours over original
Benchmark Cell usage Cycle count fmax

2mm 0.988 1.004 1.000
3mm 0.579 1.006 1.000
atas 0.961 1.034 1.000
bicg 0.546 1.014 1.000
cholesky 0.786 1.000 0.967
covariance 0.990 1.002 0.969
doitgen 0.828 1.003 1.000
durbin 0.929 1.001 1.000
fdtd-2d 0.727 1.001 1.000
floyd-warshall 0.492 1.001 1.015
gemm 0.994 1.007 1.000
gemver 0.957 1.009 1.004
gesummv 0.953 1.025 1.000
heat-3d 1.065 1.007 1.000
jacobi-1d 0.911 1.003 1.000
jacobi-2d 0.936 1.003 1.000
mvt 0.411 1.014 1.000
nussinov 1.012 1.000 1.008
seidel-2d 0.941 1.004 1.000
symm 0.987 1.005 0.997
syr2k 1.032 1.007 1.000
syrk 0.997 1.010 1.000
trisolv 0.974 1.006 1.000
trmm 1.008 1.006 0.965

Geometric mean 0.879 1.007 0.998

Table A.1.: Evaluation results for polybench
37

	Introduction
	Project Aims

	Background
	Coq
	CompCert
	Vericert
	Formal Verilog semantics
	Language Semantics
	Lööw and Myreen
	Vericert

	Resource Sharing
	Resource sharing in verified High Level Synthesis
	Resource sharing in Vericert

	Analysis and Design
	Changes to HTL and the externctrl map

	Implementation
	Inlining
	HTL generation
	Register renaming
	Verilog generation
	Performance Evaluation
	Previous attempts

	Correctness proof
	HTL Semantics
	Original
	Augmented

	RTL to HTL translation
	Translation specification
	Matching states
	Semantic preservation proof
	Assumptions

	HTL renaming
	HTL to Verilog translation

	Conclusion and Future Work
	Completing the proof
	Expanding resource sharing to array-based functions
	Enabling concurrent execution of functions

	Benchmarking data

