Formal Verification of High-Level
Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, John Wickerson

Imperial College London

CHICAGO
1111111111

Imperial College
London

Outline

Example

Verification

Imperial College
London

What is High-Level Synthesis

Definition (High-Level Synthesis (HLS))

Translation of a high-level programming language such as C/C++ into a
hardware description language (HDL) such as Verilog.

Imperial College
London

What is High-Level Synthesis

Definition (High-Level Synthesis (HLS))

Translation of a high-level programming language such as C/C++ into a
hardware description language (HDL) such as Verilog.

Benefits of HLS

e Usability: Use software ecosystem.
e Speed: Quickly design hardware.

Imperial College
London

What is High-Level Synthesis

Definition (High-Level Synthesis (HLS))

Translation of a high-level programming language such as C/C++ into a
hardware description language (HDL) such as Verilog.

Benefits of HLS

e Usability: Use software ecosystem.
e Speed: Quickly design hardware.

Trade-offs of HLS

¢ Performance: Requires automatic parallelisation.
e Correctness: Hard to verify generated HDL.

Imperial College
London

Motivation

High-level synthesis is often quite unreliable:

¢ Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

Imperial College
London

Motivation

High-level synthesis is often quite unreliable:
¢ Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).
e We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

Imperial College
London

Motivation

High-level synthesis is often quite unreliable:
¢ Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).
e We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

Difficult to debug HLS tools:
e Simulation can take a long time.

Imperial College
London

Motivation

High-level synthesis is often quite unreliable:
¢ Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).
e We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

Difficult to debug HLS tools:
e Simulation can take a long time.
e Correctness is important in hardware, testing is done at every level.

Imperial College
London

Solution

x86
CminorSel aarch64

1

HTL Verilog

Use CompCert, a fully verified C compiler, and add an HLS backend.

Imperial College
London

Solution

CompCert

x86
Clight & -+ CminorSel = 3AC — LTL — - -- é aarché64

l

Vericert i
i HTL — Verilog

insertion

Current progress: fully verified HLS tool for a subset of C.
Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

Imperial College
London

Outline

Example

Imperial College
London

Example: RTL

int main() {

int x[2] = {3, 6}; Example of a very simple
int i =1; C program performing loads and
return x[i]; stores.

Imperial College
London

Example: RTL

¢ three address code (RTL)
instructions are represented

as a control-flow graph
(CFQ).

e Fach instruction links to the
next one.

Imperial College
London

main() {
xb =3
int32[stack(8)] = x5
X4 =6
int32[stack(4)] = x4
x1 =1
x3 = stack(8) (int)
x2 = int32[x3 + x1 * 4 + 0]
return x2

Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := PTree.t Verilog.stmnt.
Definition controllogic := PTree.t Verilog.stmnt.

Imperial College
London

Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := PTree.t Verilog.stmnt.
Definition controllogic := PTree.t Verilog.stmnt.

Record module: Type := mkmodule {
mod_datapath: datapath; mod_controllogic: controllogic;
mod_wf: map_well_formed mod_controllogic
/\ map_well_formed mod_datapath;
mod_reset: reg;
mod_ram: ram_spec;

3.

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.
e Each RTL instructions translated into equivalent Verilog statements.

x3=x3+xb+0 — reg.3 <= {reg_3 + {reg_b + 32'd0}}

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.
e Each RTL instructions translated into equivalent Verilog statements.
e Function stack implemented as RAM.

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.

Each RTL instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.

Pointers for loads and stores translated to RAM addresses.

x5+ x1 * 4 +0
— {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}

Imperial College
London

Example: Translation (RTL — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.
Each RTL instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.
Pointers for loads and stores translated to RAM addresses.
® Byte addressed to word addressed.

x5+ x1 * 4 +0
— {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}

Imperial College
London

Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 6;
output reg [31:0] return_val = 0;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 8, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;

reg [0:0] en = 6, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

Imperial College
London

Example: Translation (HTL — Verilog)

module main(reset, clk, finish, return_val);
input [6:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 6;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,
reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;
reg [6:0] en = 6, u_en = 0;
reg [31:0] stack [1:6];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

Imperial College
London

¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM
interface.

Example: Translation (HTL — Verilog)

// Data-path ¢ Finally, translate the FSMD
always @(posedge clk) . .
(state)
cazg‘d?w? ?eg,Z <= d_out; into Verllog'
32'd8: _5 <= 32'd3; . .
2'd7: begin e This includes a RAM
u_en <= (~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.
end
3206: reg <= 52t ® Data path is translated into a
d5: begin
_en <= (~ u_en); wr_en <= 32'd1;
4in < regd: adur < 32041; case statement.
end

32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;
endcase

Imperial College
London

Example: Translation (HTL — Verilog)

// bata-path ¢ Finally, translate the FSMD

always @(posedge clk)

(posed : .
T reg 2 < dout; into Verilog.

32'd8: _b <= 32'd3; . .

2'd7: begin e This includes a RAM
u_en <= (~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.

end

32'dé: _4 <= 32'd6; H H
215: beain ® Data path is translated into a

_en <= (~ u_en); wr_en <= 32'd1;
g_?: <= reg_z;egddrwzzeg?'m; ‘ case Statement'
end
32'd4: reg_1 <= 32'd1; ® Ram loads and stores
32'd3: reg_3 <= 32'do; .
32'd2¢ begin automatically turn off RAM.
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
d
gg‘m: begin finish = 32'd71; return_val = reg_2; end
default: ;
endcase

Imperial College
London

Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM

// Control logi .
aluays B(posedge c1k) interface.
if ({reset == 32'd1}) state <= 32'd8;
1 (state) H H
e caz;'d%? gtate <= 32'd1; 32'd4: state <= 32'd3; * Data path IS tranSlated Into a
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32';7: zt:tz <= 32‘;(); 32';2: zt:tz <= 32‘;“; case Statement'
32'd6: state <= 32'd5; 32'd1:
32'd5: state <= 32'd4; default: ; ® Ram loads and stores
endcase .
endnodule automatically turn off RAM.

e Control logic is translated
into another case statement
with a reset.

Imperial College
London o

Outline

Verification

Imperial College
London

Verilog Semantics (Adapted from L66w et al. (2019))

Module
(Fv €, 77_”2) \l/module“' (FI7 A/) (F/ // A,a €, T_fL) i/module_ (Fﬂa AH)

(T, module main(...); m endmodule) {program (I // A”)

e Two separate association maps: current (I') and next (A).

Imperial College
London

Verilog Semantics (Adapted from L66w et al. (2019))

Module
(Fv €, 77_”2) \l/module“' (FI7 A/) (F/ // A,a €, T_fL) i/module_ (Fﬂa AH)

(T, module main(...); m endmodule) {program (I // A”)

e Two separate association maps: current (I') and next (A).
® Maps are merged at the end of the clock cycle.

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee

Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-
nitely.
Wrong Such as undefined behaviour, no guarantees need to
be shown.

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Theorem (Main Backward Simulation)

VC,V,B, HLS(C)=0K(V)A Safe(C) = (VI B = C| B).
where
Safe(C): VB, C | B = B € Safe

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Theorem (Forward Simulation)

(YO, V, B € Safe, HLS(C)=0K(V)AC B = V | B)
/\(v‘/,Bl7B2, V»U«Bl/\VU«BQ_—_>B1:B2).

Imperial College
London

RTL — HTL: Build a Specification

Assuming HLS(C') = OK(V) requires reasoning about implementation details.

Imperial College
London

RTL — HTL: Build a Specification

Assuming HLS(C') = 0K(V') requires reasoning about implementation details.

Instead we build a model of the translation which we can use.

VO, V, HLS(C)=0K(V) — tr_hls C' V.

Imperial College
London

RTL — HTL: Build a Specification

Assuming HLS(C') = OK(V') requires reasoning about implementation details.
Instead we build a model of the translation which we can use.

vC,V, HLS(C) =0K(V) — tr_hls C' V.
Example (RTL to HTL operator conversion)

lop
tr_op opa=0K e

tr_instr fin rtrn o stk (Iop op @ dn) (d <= e) (0 <= n)

Imperial College
London

RTL — HTL: Prove Forward Simulation

match_states defined as:

~ R INRLZT AM<Tlstk\Npc=Tlo

match_states Prove the simulation diagram correct:

match_states

Imperial College
London

RTL — HTL: Prove Forward Simulation

match_states defined as:

~ R INRLZT AM<Tlstk\Npc=Tlo

match_states Prove the simulation diagram correct:

e Assuming an initial match between the
RTL state S; and Verilog state Ry,

match_states

Imperial College
London

RTL — HTL: Prove Forward Simulation

match_states defined as:

~ R INRLZT AM<Tlstk\Npc=Tlo

match_states Prove the simulation diagram correct:

e Assuming an initial match between the
RTL state S; and Verilog state Ry,

i e there exists 1 or more steps in Verilog,

match_states

Imperial College
London

RTL — HTL: Prove Forward Simulation

match_states defined as:

~ INRLZT AM<Tlstk\Npc=Tlo
match_states

Prove the simulation diagram correct:

e Assuming an initial match between the
RTL state S; and Verilog state Ry,

i e there exists 1 or more steps in Verilog,

,,,,,,,,,,,,,,, Ry e such that after 1 step in RTL, the
match_states resulting states match.

Imperial College
London

Results

Performance Results
e Ran on 27//30 PolyBench/C benchmarks and compared to LegUp.

Imperial College
London

Results

Performance Results
e Ran on 27//30 PolyBench/C benchmarks and compared to LegUp.
e J07x slower and 1.1x larger.

Imperial College
London

Results

Performance Results
e Ran on 27//30 PolyBench/C benchmarks and compared to LegUp.
e J07x slower and 1.1x larger.
e Ran on PolyBench/C with divisions replaced by iterative shifting.

Imperial College
London

Results

Performance Results

Ran on 27/30 PolyBench/C benchmarks and compared to LegUp.
27 x slower and 1.1x larger.

Ran on PolyBench/C with divisions replaced by iterative shifting.
2x slower (on par with unoptimised LegUp).

Imperial College
London

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
e One bug was found in the pretty printing.
® Many compile-time errors are expected.
e Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)
v ¥ v

Imperial College
London

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e Base translation proven correct by proving translation of CFG into
FSMD.

Imperial College
London

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e Base translation proven correct by proving translation of CFG into
FSMD.

e Small optimisations implemented such as Ram Inference.

Imperial College
London

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e Base translation proven correct by proving translation of CFG into
FSMD.
e Small optimisations implemented such as Ram Inference.
e Performance without divisions comparable to LegUp without
optimisations.

Imperial College
London .

Thank you

Documentation GltHub
&
https://vericert.ymhg.org https://github.com/ymherklotz/vericert

OOPSLA’ 21 Preprint

https://ymhg.org/papers/fvhls_oopsla2l.pdf

Imperial College
London

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

References

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. Many-core compiler fuzzing. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '15, pages 65-76, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450334686. doi:
10.1145/2737924.2737986. URL
https://doi.org/10.1145/2737924.2737986.

Imperial College
London

20

https://doi.org/10.1145/2737924.2737986

	Example
	Verification
	References

