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The Need to Design Hardware Accelerators

Field-programmable gate arrays (FPGAs) becoming more popular as
flexible hardware acceleration.
Compared to microcontrollers:

• Can greatly reduce latency.
• Lower power.
• Higher performance.

But:
• Needs knowledge about hardware design.
• Less flexible.
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FPGA Layout
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So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.
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Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

6



Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

6



Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Use CompCert, a fully verified C compiler, and add an HLS backend.
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Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Current progress: fully verified HLS tool for a subset of C.
Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.
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Example: RTL

int main() {

int x[2] = {3, 6};

int i = 1;

return x[i];

}

Example of a very simple
program performing loads and
stores.
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Example: RTL

• three address code (RTL)
instructions are represented
as a control-flow graph
(CFG).

• Each instruction links to the
next one.

main() {

x5 = 3

int32[stack(0)] = x5

x4 = 6

int32[stack(4)] = x4

x1 = 1

x3 = stack(0) (int)

x2 = int32[x3 + x1 * 4 + 0]

return x2

}
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Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := PTree.t Verilog.stmnt.

Definition controllogic := PTree.t Verilog.stmnt.

Record module: Type := mkmodule {

mod_datapath: datapath; mod_controllogic: controllogic;

mod_wf: map_well_formed mod_controllogic

/\ map_well_formed mod_datapath;

mod_reset: reg;

mod_ram: ram_spec;

...

}.
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Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each RTL instructions translated into equivalent Verilog statements.
• Function stack implemented as RAM.
• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

11



Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.

• Each RTL instructions translated into equivalent Verilog statements.
• Function stack implemented as RAM.
• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

11



Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each RTL instructions translated into equivalent Verilog statements.

• Function stack implemented as RAM.
• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

x3 = x3 + x5 + 0 −→ reg_3 <= {reg_3 + {reg_5 + 32'd0}}

11



Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each RTL instructions translated into equivalent Verilog statements.
• Function stack implemented as RAM.

• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

11



Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each RTL instructions translated into equivalent Verilog statements.
• Function stack implemented as RAM.
• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

x5 + x1 * 4 + 0

−→ {{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}

11



Example: Translation (RTL→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each RTL instructions translated into equivalent Verilog statements.
• Function stack implemented as RAM.
• Pointers for loads and stores translated to RAM addresses.

• Byte addressed to word addressed.

x5 + x1 * 4 + 0

−→ {{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}

11



Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)

if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.
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Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= ( ~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= ( ~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= ( ~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};

end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

12



Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= ( ~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= ( ~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= ( ~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

12



Example: Translation (HTL→ Verilog)

// Control logic
always @(posedge clk)

if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;
32'd5: state <= 32'd4; default: ;

endcase
endmodule

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.
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Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• Within each small step, a Verilog module is executed in one big step.
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How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.
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How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee
Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-

nitely.
Wrong Such as undefined behaviour, no guarantees need to

be shown.
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How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

Theorem (Main Backward Simulation)

∀C, V,B, HLS(C) = OK(V ) ∧ Safe(C) =⇒ (V ⇓ B =⇒ C ⇓ B).

where

Safe(C) : ∀B, C ⇓ B =⇒ B ∈ Safe
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With Division approximately 27× slower
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Without Division about 2× slower
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Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
• One bug was found in the pretty printing.
• Many compile-time errors are expected.
• Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)
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Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• Base translation proven correct by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.
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Thank you

Documentation

https://vericert.ymhg.org

GitHub

https://github.com/ymherklotz/vericert

OOPSLA’21 Preprint

https://ymhg.org/papers/fvhls_oopsla21.pdf
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