Formal Verification of High-Level
Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, John Wickerson

Imperial College A

London

The Need to Design Hardware Accelerators

Application-specific hardware accelerators are increasingly being needed in

industries.
|
(PUE>{SSD

® Using a CPU everywhere not
always the best choice.

HDD

The Need to Design Hardware Accelerators

Application-specific hardware accelerators are increasingly being needed in
industries.

® Using a CPU everywhere not
always the best choice.

¢ Application-specific integrated m
circuits (ASIC) are the ideal —_—

choice, but very expensive to AS \C

create. *—>"’

HDD

The Need to Design Hardware Accelerators

Application-specific hardware accelerators are increasingly being needed in
industries.

® Using a CPU everywhere not
always the best choice.

¢ Application-specific integrated m
circuits (ASIC) are the ideal —_—

choice, but very expensive to
create. s—>""F"767A
¢ Field-programmable gate arrays
(FPGA) act as reprogrammable HD.O
hardware, therefore can be made
application-specific.

Where does the flexibility of FPGAs come from?

e FPGA's are programmable circuits with two main components.

Y

R

S
R

</
oltr

R

S,

9
0%
K

X

0,‘\’
5%

<7
Q"I
9
Vo 0:%

B
K
2K

\

Where does the flexibility of FPGAs come from?

e FPGA's are programmable circuits with two main components.

¢ Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

[UT

r

N

Where does the flexibility of FPGAs come from?

e FPGA's are programmable circuits with two main components.

¢ Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

e RAMs provide accessible storage.

[UT

K
%
2%
ORI
QR
XA

4
I
Y,
R

QQ: 9
%
R

v
o
K

%
0
&

%5
X

{0
7%
K
X

()

K
%5
&5

K/
2
4

X 2R

Sy

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

® Programmed using hardware
description languages.

wmodole Top {),

ﬁ Fine control @ Long to design

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

® Programmed using hardware
description languages.

e Simulation quite slow.

wmodole Top {),

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

it wain () Z
Er(lq'r =0 ; f(/i/; ;-“.);
vetvrp i}

® Programmed using hardware
description languages.

e Simulation quite slow.

e High-Level Synthesis is an
alternative.

ﬁ Quick to design @ Less control

So How do we Program an FPGA?

FPGAs contain LUTs and
programmable interconnects.

Programmed using hardware
description languages.

Simulation quite slow.

High-Level Synthesis is an
alternative.

Faster testing through execution.

7;:'/':'#3 8 Deve Iofmzvff'
it wain () Z

for(iativo i< H;ind)i
vetorn i)

Coﬂri l aTion

e cPo

Motivation for Formal Verification

High-level synthesis is often quite unreliable:
e We fuzzed HLS tools (Herklotz et al. [2021]) and found they failed on

simple random test cases.

Tool

Run-time errors

Vivado HLS

Intel i++

Bambu 0.9.7-dev
LegUp 4.0

1.23%
0.4%
0.3%
0.1%

Solution

x86
CminorSel aarch64

Verilog

Use CompCert, a fully verified C compiler, and add an HLS backend.

Solution

x86
CminorSel aarch64

Verilog

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

Outline

Example

Example: 3AC

int main() {
int x[2] = {3, 6}; e Example of a very simple

int 1 = 1; program performing loads
return x[i]; and stores.

Example: 3AC

main() {
xb =3
e Three address code (3AC) 12t§2£5t30k(@)] = x5
instructions are represented X =)
as a control-flow graph (CFG).)1(r11t1:>21[stack(4)] = x4
e Each instruction links to the x3 = stack(?) (int)
next one. X2 = int32[x3 + x1 * 4 + 0]
return x2

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic :=Z* ~ Verilog.stmnt

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic :=Z* ~ Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic :=Z* ~ Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic :=Z* ~ Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic :=Z* ~ Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

e Control-flow is translated into a finite state-machine.

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

e Control-flow is translated into a finite state-machine.
e Each 3AC instructions translated into equivalent Verilog statements.

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

e Control-flow is translated into a finite state-machine.
e Each 3AC instructions translated into equivalent Verilog statements.
e Call stack implemented as Verilog array.

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

Control-flow is translated into a finite state-machine.

Each 3AC instructions translated into equivalent Verilog statements.

Call stack implemented as Verilog array.
Pointers for loads and stores translated to array addresses.

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

Control-flow is translated into a finite state-machine.

Each 3AC instructions translated into equivalent Verilog statements.

Call stack implemented as Verilog array.

Pointers for loads and stores translated to array addresses.
® Byte addressed to word addressed.

Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
e Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= (~ u_en);

wr_en <= 0;
addr <= reg_b / 4;

Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
e Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= (~ u_en);

wr_en <= 0;
addr <= reg_b / 4;

Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
e Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= (~ u_en);

wr_en <= 0;
addr <= reg_b / 4;

Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
e Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= (~ u_en);

wr_en <= 0;
addr <= reg_b / 4;

Translation (HTL — Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:9] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg-3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg-2 = 0,
reg-4 = 0, d_out = 0, reg-1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

® Finally, translate the FSMD
into Verilog.

Translation (HTL — Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg-3 = 0, addr = 0, d_in = 0,

reg-5 = 0, wr_en = 0,
state = 0, reg-2 = 0,
reg-4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

® Finally, translate the FSMD
into Verilog.

® This includes a RAM interface.

Translation (HTL — Verilog)

// Data-path

always @(posedge clk) e Finally, translate the FSMD
case (state) . .

32'd11: _2 <= d_out;

32'd8: rQS?S <= 32'([]1[3]; into Verll'og'

32'd7: begi . ' .
Wen < (~ w_en); wr_en < 32'dT; e This includes a RAM interface.
d_in <= reg_5; addr <= 32'd0; . .
d

s reg.d <= 320; ¢ Data path is translated into a

o beatn case statement.

u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd7;
end
32'd4: reg-1 <= 32'd1;
32'd3: reg-3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg-3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg-2; end
default: ;
endcase

Translation (HTL — Verilog)

// Data-path

always @(posedge clk) ® Finally, translate the FSMD
case (state)
32'd11: reg-2 <= d_out; Into Verllog
32'd8: reg_b <= 32'd3;)
32'd7: begi . . .
W <o (~ wen); wr_en <= 32'd1; e This includes a RAM interface.
d_in <= reg_5; addr <= 32'd0;
d , ,
Pds: reg.t <= 2'd6; e Data path is translated into a
s case statement.
d_in <= reg_4; addr <= 32'd1;
o " rjg 3: e e RAM loads and stores
'd4: reg-1 <= 32'dl; .
32'03: reg 3 <= 32'8; automatically turn off RAM.
32'd2: begin

u-en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg-2; end
default: ;
endcase

Translation (HTL — Verilog)

// Control logic

always @(posedge clk)
if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;
32'd5: state <= 32'd4; default: ;

endcase

endmodule

Finally, translate the FSMD
into Verilog.

This includes a RAM interface.

Data path is translated into a
case statement.

RAM loads and stores
automatically turn off RAM.
Control logic is translated into
another case statement with
a reset.

Outline

Verification

Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.

Y S S

Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.

I Y S S

e At each clock tick, the whole module is executed using big-step

semantics.
wodole. Top (};

2, b2

el wao(u/e

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
¢ Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

e Abstract values like the program counter now correspond to values in
registers.

Outline

Results

imately 27 x slower

Ivision approxima

with d

The bad news

‘ Vericert Il [lLegUp no-opt no-chaining Il [l LegUp nofopt‘

0 0 10 1
=} — —
—

dn8a 0} aAnell swn co_Suwxuo_Dmm._ O} SAjeIR) ealY

17

uelpaw
wiwJy
AOSLI}

MJAs

NglAs
WWAS
pz-19ples
Aoulssnu
IAw
dwopn)

n
pg-iqooef
pL-1qooef
pe-jeay
AWWNsa3
JoAwa3
wwagd
11eysiem-pAoy
PZ-P¥ps
uig4np
uagdyop
20UelIeA0D
Axsa104o
8o1q

seje

ipe

wwe

wwg

bout 2 x slower

ithout division a

Wi

The better news

‘ Vericert! I LegUp no-opt no-chaining Il f LegUp no-opt ‘

0 <t [a\] — n < [a\] — 0
(e} (e}

dn8a7 01 aAne)al sawiy uoinoax3 dn3a 01 aAe)RL BalY

18

uelpaw
wiwy
AJOS1I}

SIAS

SNglAs
WWAS
pz-1eples
Aoulssnu
AW
dwopn)

n
pe-1gooe]
P L-1gooel
pg-1esy
AWWNSa3
BEVIEK]
wwad
1leysiem-pAoy
PZ-P¥ps
uiqunp
uadyiop
90UelIeA0D
Asjsaj0yo
goiq

seje

Ipe

wwg

wwg

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool

Run-time errors

Vivado HLS

Intel i++

Bambu 0.9.7-dev
LegUp 4.0

1.23%
0.4%
0.3%
0.1%

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool

Run-time errors

Vivado HLS

Intel i++

Bambu 0.9.7-dev
LegUp 4.0

1.23%
0.4%
0.3%
0.1%

Vericert

0:03% 0%

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e HLS tool proven correct in Coq by proving translation of CFG into FSMD.

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e HLS tool proven correct in Coq by proving translation of CFG into FSMD.
e Small optimisations implemented such as RAM Inference.

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e HLS tool proven correct in Coq by proving translation of CFG into FSMD.
e Small optimisations implemented such as RAM Inference.

e Performance without divisions comparable to LegUp without
optimisations.

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e HLS tool proven correct in Coq by proving translation of CFG into FSMD.
e Small optimisations implemented such as RAM Inference.
e Performance without divisions comparable to LegUp without
optimisations.
Future Work
Make Vericert not only correct, but competitive.
¢ Implement scheduling and resource sharing.

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e HLS tool proven correct in Coq by proving translation of CFG into FSMD.
e Small optimisations implemented such as RAM Inference.
e Performance without divisions comparable to LegUp without
optimisations.
Future Work
Make Vericert not only correct, but competitive.
¢ Implement scheduling and resource sharing.
e Add external module support.

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e HLS tool proven correct in Coq by proving translation of CFG into FSMD.
e Small optimisations implemented such as RAM Inference.
e Performance without divisions comparable to LegUp without
optimisations.
Future Work
Make Vericert not only correct, but competitive.
¢ Implement scheduling and resource sharing.
e Add external module support.
e Add global variable support.

20

Thank you

Documentation
[=] 242-[u]

h
[=]

https://vericert.ymhg.org

https://ymhg.org/papers/fvhls_oopsla2l.pdf

21

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

References

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An
empirical study of the reliability of high-level synthesis tools. In 2027 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 219-223,2021. doi:
10.1109/FCCM51124.2021.00034.

22

	Example
	Verification
	Results
	References

