Formal Verification of High-Level
Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, John Wickerson

Imperial College London

CHICAGO
1111111111

Imperial College
London

Outline

Example

Verification

Results

Imperial College
London

The Need to Design Hardware Accelerators

Field-programmable gate arrays (FPGAs) becoming more popular as
flexible hardware acceleration.
Compared to microcontrollers:

e Can greatly reduce latency.
e |ower power.
e Higher performance.
But:
¢ Needs knowledge about hardware design.
® Less flexible.

Imperial College
London

FPGA Layout

e FPGA’s are programmable circuits with two main components.

2
2
I."
KPR

9%
XXX

Q%
%

5
5
5
0%
<5

Z
X
LR

"'
0
K
K

X2

7
:/I;
2
%
%
o

00,
KL

%%

X
%
%
%
R

R

R

X2

Imperial College
London

FPGA Layout

e FPGA’s are programmable circuits with two main components.

e Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

LUT

9,

%

Q.
Youlle

X

X

23
QLR

%

0

%
oo

Y%

&

0
%

3
XX

X

%
%
LR

IR

Y%
%
B,

&

,
0
0%
,‘:

%
£

2

X2

Imperial College
London

FPGA Layout

e FPGA’s are programmable circuits with two main components.

e Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

® BRAMSs provide accessible storage.

LUT

Imperial College
London

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

Imperial College
London

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

® Programmed using hardware
description languages.

wmodole Top {),

ﬁ Fine control @ Long to design

Imperial College
London

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

® Programmed using hardware
description languages.

e Simulation quite slow.

ﬁ Fine control @ Long to design

Imperial College
London

wmodole Top {),

So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.

it wain () Z
ﬁr(lﬂ-r =0 ; f(/i/; ;-“.);
vetvorp i}

® Programmed using hardware
description languages.

e Simulation quite slow.

e High-Level Synthesis is an
alternative.

ﬁ Quick to design @ Less control

Imperial College
London

So How do we Program an FPGA?

® FPGAs contain .LUTs and Tectng & Developmert
programmable interconnects.

it wain () Z
ﬁr(lﬂ-r =0 ; f(/i/; ;-“.);
vetvorp i}

Coﬂri l aTion

> cPo

® Programmed using hardware
description languages.

e Simulation quite slow.

e High-Level Synthesis is an
alternative.

e Faster testing through execution.

ﬁ Quick to design @ Less control

Imperial College
London

Motivation for Formal Verification

Difficult to debug HLS tools:
e Simulation can take a long time.
e Correctness is important in hardware, testing is done at every level.

Imperial College
London

Motivation for Formal Verification

Difficult to debug HLS tools:
e Simulation can take a long time.
e Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
e |ntel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).
e We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

Imperial College
London

Solution

x86
CminorSel aarch64

1

HTL Verilog

Use CompCert, a fully verified C compiler, and add an HLS backend.

Imperial College
London

Solution

CompCert

x86
Clight & -+ CminorSel = 3AC — LTL — - -- é aarché64

l

Vericert i
i HTL — Verilog

insertion

Current progress: fully verified HLS tool for a subset of C.
Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

Imperial College
London

Outline

Example

Imperial College
London

Example: 3AC

int main() {

int x[2] = {3, 6}; Example of a very simple
int i =1; C program performing loads and
return x[i]; stores.

Imperial College
London

Example: 3AC

¢ three address code (3AC)
instructions are represented

as a control-flow graph
(CFQ).

e Fach instruction links to the
next one.

Imperial College
London

main() {
xb =3
int32[stack(8)] = x5
X4 =6
int32[stack(4)] = x4
x1 =1
x3 = stack(9) (int)
x2 = int32[x3 + x1 * 4 + 0]
return x2

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Imperial College
London

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.

Imperial College
London

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.
e EFach 3AC instructions translated into equivalent Verilog statements.

x3=x3+xb+0 — reg.3 <= {reg_3 + {reg_b + 32'd0}}

Imperial College
London

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.
e EFach 3AC instructions translated into equivalent Verilog statements.
e Function stack implemented as RAM.

Imperial College
London

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.

Each 3AC instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.

Pointers for loads and stores translated to RAM addresses.

x5+ x1 * 4 +0
— {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}

Imperial College
London

Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.
Each 3AC instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.
Pointers for loads and stores translated to RAM addresses.
® Byte addressed to word addressed.

x5+ x1 * 4 +0
— {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}

Imperial College
London

Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 6;
output reg [31:0] return_val = 0;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 8, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;

reg [0:0] en = 6, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

Imperial College
London

Example: Translation (HTL — Verilog)

module main(reset, clk, finish, return_val);
input [6:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 6;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,
reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;
reg [6:0] en = 6, u_en = 0;
reg [31:0] stack [1:6];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end

Imperial College
London

¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM
interface.

Example: Translation (HTL — Verilog)

// Data-path ¢ Finally, translate the FSMD
always @(posedge clk) . .
(state)
cazg‘d?w? ?eg,Z <= d_out; into Verllog'
32'd8: _5 <= 32'd3; . .
2'd7: begin e This includes a RAM
u_en <= (~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.
end
3206: reg <= 52t ® Data path is translated into a
d5: begin
_en <= (~ u_en); wr_en <= 32'd1;
4in < regd: adur < 32041; case statement.
end

32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;
endcase

Imperial College
London

Example: Translation (HTL — Verilog)

// bata-path ¢ Finally, translate the FSMD

always @(posedge clk)

(posed : .
T reg 2 < dout; into Verilog.

32'd8: _b <= 32'd3; . .

2'd7: begin e This includes a RAM
u_en <= (~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.

end

32'dé: _4 <= 32'd6; H H
215: beain ® Data path is translated into a

_en <= (~ u_en); wr_en <= 32'd1;
g_?: <= reg_z;egddrwzzeg?'m; ‘ case Statement'
end
32'd4: reg_1 <= 32'd1; ® Ram loads and stores
32'd3: reg_3 <= 32'do; .
32'd2¢ begin automatically turn off RAM.
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
d
gg‘m: begin finish = 32'd71; return_val = reg_2; end
default: ;
endcase

Imperial College
London

Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM

// Control logi .
aluays B(posedge c1k) interface.
if ({reset == 32'd1}) state <= 32'd8;
1 (state) H H
e caz;'d%? gtate <= 32'd1; 32'd4: state <= 32'd3; * Data path IS tranSlated Into a
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32';7: zt:tz <= 32‘;(); 32';2: zt:tz <= 32‘;“; case Statement'
32'd6: state <= 32'd5; 32'd1:
32'd5: state <= 32'd4; default: ; ® Ram loads and stores
endcase .
endnodule automatically turn off RAM.

e Control logic is translated
into another case statement
with a reset.

Imperial College
London

Outline

Verification

Imperial College
London

Verilog Syntax

module top(input clk, input [31:0] int,
output reg [31:0] outl);
reg [31:0] reg_1, tmp;

always @(posedge clk) begin

regl <= ini; ¢ Verilog example for a simple shift
end register.

always @(posedge clk) begin

tmp = regl;
out1 <= tmp;
end
endmodule

Imperial College
London

Verilog Syntax

module top(input clk, input [31:08] in1
output reg [31:0] outl);
reg [31:0] reg_1, tmp;

always @(posedge clk) begin
regl <= inl;

end

always @(posedge clk) begin

tmp = regl;
out1 <= tmp;
end
endmodule

Imperial College
London

)

e Verilog example for a simple shift
register.

e Always block run in parallel

Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.

I Y S S

Imperial College
London

Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.

I R S e

e At each clock tick, the whole module is executed using big-step

semantics.
wodvle. top (;

2, b2

enclueol e

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Imperial College
London

How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee

Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-
nitely.
Wrong Such as undefined behaviour, no guarantees need to
be shown.

Imperial College
London

Outline

Results

Imperial College
London

tely 27 x slower

ivision approxima

With D

‘ Vericert! [l LegUp no-opt no-chaining il f LegUp no-opt ‘

0 0 10 1
o — —

—
dn8a7 03 aAnze)al BWI} co_yzowxunjmm._ O3 SAlEI3 Rl

17

uelpaw
W}
A0S}
MJAs

NglAs
WWwAs
pc-19pies
Aouissnu
Aw
dwopn)

n
pg-1qooel
pL-1qooef
pg-iesy
Awwnsag
JaAwad
wwa3d
Nleysiem-pAoy
PT-PIPs
uiginp
uagjiop
90UBIIBAOD
Avsajoyo
8o1q

seje

pe

wwe

wwg

Imperial College

London

bout 2 x slower

Ivision a

Without D

‘ Vericert! [l LegUp no-opt no-chaining il £ LegUp no-opt ‘

0 <+ N o~
==

[}

—

2
S

dn8a7 01 aAl3e1a1 BWIY UOIINdaXTFNSaT 0} dAlle)al BALY

18

uelpaw
W}
AJOSI14}

SJAs

MglAs
WWwAs
pc-19ptes
Aoulssnu
AW
dwopn

m
pe-1qo2e|
p-tqooel
pg-iesy
AWWwNsa3
FEVVEY]
wws3
lleysiem-pAoy
PZ-Pip
uiginp
uagjiop
90UelIBAOD
Asjse10y0
goiq

seje

pe

wwg

wwyg

Imperial College

London

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
e One bug was found in the pretty printing.
® Many compile-time errors are expected.
e Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)
v ¥ v

Imperial College
London

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e Base translation proven correct by proving translation of CFG into
FSMD.

Imperial College
London

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e Base translation proven correct by proving translation of CFG into
FSMD.

e Small optimisations implemented such as Ram Inference.

Imperial College
London

20

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e Base translation proven correct by proving translation of CFG into
FSMD.
e Small optimisations implemented such as Ram Inference.
e Performance without divisions comparable to LegUp without
optimisations.

Imperial College
London ”

Thank you

Documentation GltHub
&
https://vericert.ymhg.org https://github.com/ymherklotz/vericert

OOPSLA’ 21 Preprint

https://ymhg.org/papers/fvhls_oopsla2l.pdf

Imperial College
London

21

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

References

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. Many-core compiler fuzzing. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '15, pages 65-76, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450334686. doi:
10.1145/2737924.2737986. URL
https://doi.org/10.1145/2737924.2737986.

Imperial College
London

22

https://doi.org/10.1145/2737924.2737986

	Example
	Verification
	Results
	References

