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The Need to Design Hardware Accelerators

Field-programmable gate arrays (FPGAs) becoming more popular as
flexible hardware acceleration.
Compared to microcontrollers:

e Can greatly reduce latency.
e |ower power.
e Higher performance.
But:
¢ Needs knowledge about hardware design.
® Less flexible.
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FPGA Layout

e FPGA’s are programmable circuits with two main components.
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FPGA Layout

e FPGA’s are programmable circuits with two main components.

e Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.
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FPGA Layout

e FPGA’s are programmable circuits with two main components.

e Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

® BRAMSs provide accessible storage.

LUT
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So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.
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So How do we Program an FPGA?

e FPGAs contain LUTs and
programmable interconnects.
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® Programmed using hardware
description languages.

e Simulation quite slow.

e High-Level Synthesis is an
alternative.

ﬁ Quick to design @ Less control
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So How do we Program an FPGA?

® FPGAs contain .LUTs and Tectng & Developmert
programmable interconnects.
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® Programmed using hardware
description languages.

e Simulation quite slow.

e High-Level Synthesis is an
alternative.

e Faster testing through execution.

ﬁ Quick to design @ Less control
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Motivation for Formal Verification

Difficult to debug HLS tools:
e Simulation can take a long time.
e Correctness is important in hardware, testing is done at every level.
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Motivation for Formal Verification

Difficult to debug HLS tools:
e Simulation can take a long time.
e Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
e |ntel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).
e We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.
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Solution

x86
CminorSel aarch64

1

HTL Verilog

Use CompCert, a fully verified C compiler, and add an HLS backend.
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Solution

CompCert

x86
Clight & -+ CminorSel = 3AC — LTL — - -- é aarché64

l

Vericert i
i HTL — Verilog

insertion

Current progress: fully verified HLS tool for a subset of C.
Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.
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Example: 3AC

int main() {

int x[2] = {3, 6}; Example of a very simple
int i =1; C program performing loads and
return x[i]; stores.
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Example: 3AC

¢ three address code (3AC)
instructions are represented

as a control-flow graph
(CFQ).

e Fach instruction links to the
next one.
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main() {
xb =3
int32[stack(8)] = x5
X4 =6
int32[stack(4)] = x4
x1 =1
x3 = stack(9) (int)
x2 = int32[x3 + x1 * 4 + 0]
return x2



Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).
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Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

e Control-flow is translated into a finite state-machine.
e EFach 3AC instructions translated into equivalent Verilog statements.

x3=x3+xb+0 — reg.3 <= {reg_3 + {reg_b + 32'd0}}
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Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.

Each 3AC instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.

Pointers for loads and stores translated to RAM addresses.

x5+ x1 * 4 +0
—  {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}
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Example: Translation (3AC — HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

Control-flow is translated into a finite state-machine.
Each 3AC instructions translated into equivalent Verilog statements.
Function stack implemented as RAM.
Pointers for loads and stores translated to RAM addresses.
® Byte addressed to word addressed.

x5+ x1 * 4 +0
—  {{{reg_b + 32'd8} + {reg_1 * 32'd4}} / 32'd4}
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Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 6;
output reg [31:0] return_val = 0;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 8, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;

reg [0:0] en = 6, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end
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Example: Translation (HTL — Verilog)

module main(reset, clk, finish, return_val);
input [6:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 6;
reg [31:6] reg_3 = 0, addr = 0, d_in = 0,
reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 6, reg_1 = 0;
reg [6:0] en = 6, u_en = 0;
reg [31:0] stack [1:6];
// RAM interface
always @(negedge clk)
if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;
end
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¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM
interface.



Example: Translation (HTL — Verilog)

// Data-path ¢ Finally, translate the FSMD
always @(posedge clk) . .
(state)
cazg‘d?w? ?eg,Z <= d_out; into Verllog'
32'd8: _5 <= 32'd3; . .
2'd7: begin e This includes a RAM
u_en <= ( ~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.
end
3206: reg <= 52t ® Data path is translated into a
d5: begin
_en <= ( ~ u_en); wr_en <= 32'd1;
4in < regd: adur < 32041; case statement.
end

32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= ( ~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;
endcase
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Example: Translation (HTL — Verilog)

// bata-path ¢ Finally, translate the FSMD

always @(posedge clk)

(posed : .
T reg 2 < dout; into Verilog.

32'd8: _b <= 32'd3; . .

2'd7: begin e This includes a RAM
u_en <= ( ~ u_en); wr_en <= 32'd1; .
d_in <= reg_5; addr <= 32'd0; interface.

end

32'dé: _4 <= 32'd6; H H
215: beain ® Data path is translated into a

_en <= ( ~ u_en); wr_en <= 32'd1;
g_?: <= reg_z;egddrwzzeg?'m; ‘ case Statement'
end
32'd4: reg_1 <= 32'd1; ® Ram loads and stores
32'd3: reg_3 <= 32'do; .
32'd2¢ begin automatically turn off RAM.
u_en <= ( ~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
d
gg‘m: begin finish = 32'd71; return_val = reg_2; end
default: ;
endcase
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Example: Translation (HTL — Verilog)

¢ Finally, translate the FSMD
into Verilog.

® This includes a RAM

// Control logi .
aluays B(posedge c1k) interface.
if ({reset == 32'd1}) state <= 32'd8;
1 (state) H H
e caz;'d%? gtate <= 32'd1; 32'd4: state <= 32'd3; * Data path IS tranSlated Into a
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32';7: zt:tz <= 32‘;(); 32';2: zt:tz <= 32‘;“; case Statement'
32'd6: state <= 32'd5; 32'd1:
32'd5: state <= 32'd4; default: ; ® Ram loads and stores
endcase .
endnodule automatically turn off RAM.

e Control logic is translated
into another case statement
with a reset.
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Verilog Syntax

module top(input clk, input [31:0] int,
output reg [31:0] outl);
reg [31:0] reg_1, tmp;

always @(posedge clk) begin

regl <= ini; ¢ Verilog example for a simple shift
end register.

always @(posedge clk) begin

tmp = regl;
out1 <= tmp;
end
endmodule
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Verilog Syntax

module top(input clk, input [31:08] in1
output reg [31:0] outl);
reg [31:0] reg_1, tmp;

always @(posedge clk) begin
regl <= inl;

end

always @(posedge clk) begin

tmp = regl;
out1 <= tmp;
end
endmodule
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e Verilog example for a simple shift
register.

e Always block run in parallel



Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.
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Verilog Semantics (Adapted from L66w et al. (2019))

® Top-level semantics are small-step operational semantics.

I R S e

e At each clock tick, the whole module is executed using big-step

semantics.
wodvle. top (;

2, b2

enclueol e
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How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.
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How do we prove the HLS tool correct?

® We have an algorithm describing the translation.

® Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee

Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging  C is in an infinite loop, Verilog must execute indefi-
nitely.
Wrong Such as undefined behaviour, no guarantees need to
be shown.
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Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
e One bug was found in the pretty printing.
® Many compile-time errors are expected.
e Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)
v ¥ v
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Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

e Base translation proven correct by proving translation of CFG into
FSMD.
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Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e Base translation proven correct by proving translation of CFG into
FSMD.
e Small optimisations implemented such as Ram Inference.
e Performance without divisions comparable to LegUp without
optimisations.
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Thank you

Documentation GltHub
&
https://vericert.ymhg.org https://github.com/ymherklotz/vericert

OOPSLA’ 21 Preprint

https://ymhg.org/papers/fvhls_oopsla2l.pdf
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https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf
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