
Formal Verification of High-Level

Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, JohnWickerson

Imperial College London

1

Outline

Example

Verification

Results

2

The Need to Design Hardware Accelerators

Field-programmable gate arrays (FPGAs) becoming more popular as
flexible hardware acceleration.
Compared to microcontrollers:

• Can greatly reduce latency.
• Lower power.
• Higher performance.

But:
• Needs knowledge about hardware design.
• Less flexible.

3

FPGA Layout

• FPGA’s are programmable circuits with two main components.

• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

FPGA Layout

• FPGA’s are programmable circuits with two main components.
• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

FPGA Layout

• FPGA’s are programmable circuits with two main components.
• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Fine control Long to design

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.

• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Fine control Long to design

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Quick to design Less control

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Quick to design Less control

5

Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

6

Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.

6

Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Use CompCert, a fully verified C compiler, and add an HLS backend.

7

Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

7

Outline

Example

Verification

Results

8

Example: 3AC

int main() {

int x[2] = {3, 6};

int i = 1;

return x[i];

}

Example of a very simple
program performing loads and
stores.

9

Example: 3AC

• three address code (3AC)
instructions are represented
as a control-flow graph
(CFG).

• Each instruction links to the
next one.

main() {

x5 = 3

int32[stack(0)] = x5

x4 = 6

int32[stack(4)] = x4

x1 = 1

x3 = stack(0) (int)

x2 = int32[x3 + x1 * 4 + 0]

return x2

}

9

Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := Z+ 7→ Verilog.stmnt

Definition controllogic := Z+ 7→ Verilog.stmnt

Record module: Type := mkmodule {

mod_datapath: datapath;

mod_controllogic: controllogic;

mod_reset: reg;

mod_ram: ram_spec;

...

}.

10

Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := Z+ 7→ Verilog.stmnt

Definition controllogic := Z+ 7→ Verilog.stmnt

Record module: Type := mkmodule {

mod_datapath: datapath;

mod_controllogic: controllogic;

mod_reset: reg;

mod_ram: ram_spec;

...

}.

10

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.

• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.

• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

x3 = x3 + x5 + 0 −→ reg_3 <= {reg_3 + {reg_5 + 32'd0}}

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.

• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

x5 + x1 * 4 + 0 −→ {{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

x5 + x1 * 4 + 0 −→ {{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}

11

Example: Memory Inference Pass

• An HTL→ HTL translation removes loads and stores.
• Replaced by accesses to a proper RAM.

stack[{{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}]

becomes

u_en <= (~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};

12

Verilog Syntax

module top(input clk, input [31:0] in1,

output reg [31:0] out1);

reg [31:0] reg_1, tmp;

always @(posedge clk) begin

reg1 <= in1;

end

always @(posedge clk) begin

tmp = reg1;

out1 <= tmp;

end

endmodule

• Verilog example for a simple shift
register.

• Always block run in parallel

13

Verilog Syntax

module top(input clk, input [31:0] in1,

output reg [31:0] out1);

reg [31:0] reg_1, tmp;

always @(posedge clk) begin

reg1 <= in1;

end

always @(posedge clk) begin

tmp = reg1;

out1 <= tmp;

end

endmodule

• Verilog example for a simple shift
register.

• Always block run in parallel

13

Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)

if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface

always @(negedge clk)

if ({u_en != en}) begin

if (wr_en) stack[addr] <= d_in;

else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};

end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Control logic
always @(posedge clk)

if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;
32'd5: state <= 32'd4; default: ;

endcase
endmodule

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Outline

Example

Verification

Results

15

Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• At each clock tick, the whole module is executed using big-step
semantics.

16

Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• At each clock tick, the whole module is executed using big-step
semantics.

16

How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

17

How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee
Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-

nitely.
Wrong Such as undefined behaviour, no guarantees need to

be shown.

17

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
• Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

• Abstract values like the program counter now correspond to values in
registers.

18

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
• Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

• Abstract values like the program counter now correspond to values in
registers.

18

Outline

Example

Verification

Results

19

With Division approximately 27× slower

1

10

100

Ex
ec
ut
io
n
tim
e
re
la
tiv
e
to
Le
gU
p

2m
m

3m
m ad
i

at
as

bi
cg

ch
ol
es
ky

co
va
ria
nc
e

do
itg
en

du
rb
in

fd
td
-2
d

flo
yd
-w
ar
sh
al
l

ge
m
m

ge
m
ve
r

ge
su
m
m
v

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d lu

lu
dc
m
p

m
vt

nu
ss
in
ov

se
id
el
-2
d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

m
ed
ia
n

1

10

Ar
ea
re
la
tiv
e
to
Le
gU
p

Vericert LegUp no-opt no-chaining LegUp no-opt

20

Without Division about 2× slower

0.5

1

2

4

8

Ex
ec
ut
io
n
tim
e
re
la
tiv
e
to
Le
gU
p

2m
m

3m
m ad
i

at
as

bi
cg

ch
ol
es
ky

co
va
ria
nc
e

do
itg
en

du
rb
in

fd
td
-2
d

flo
yd
-w
ar
sh
al
l

ge
m
m

ge
m
ve
r

ge
su
m
m
v

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d lu

lu
dc
m
p

m
vt

nu
ss
in
ov

se
id
el
-2
d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

m
ed
ia
n

0.5

1

2

4

Ar
ea
re
la
tiv
e
to
Le
gU
p

Vericert LegUp no-opt no-chaining LegUp no-opt

21

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
• One bug was found in the pretty printing.
• Many compile-time errors are expected.
• Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)

22

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.

23

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.

• Performance without divisions comparable to LegUp without
optimisations.

23

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.

23

Thank you

Documentation

https://vericert.ymhg.org

GitHub

https://github.com/ymherklotz/vericert

OOPSLA’21 Preprint

https://ymhg.org/papers/fvhls_oopsla21.pdf

24

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

References

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. Many-core compiler fuzzing. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, pages 65–76, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450334686. doi:
10.1145/2737924.2737986. URL
https://doi.org/10.1145/2737924.2737986.

25

https://doi.org/10.1145/2737924.2737986

	Example
	Verification
	Results
	References

