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The Need to Design Hardware Accelerators

Field-programmable gate arrays (FPGAs) becoming more popular as
flexible hardware acceleration.
Compared to microcontrollers:

• Can greatly reduce latency.
• Lower power.
• Higher performance.

But:
• Needs knowledge about hardware design.
• Less flexible.
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FPGA Layout

• FPGA’s are programmable circuits with two main components.

• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.
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So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.
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Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools and found they failed on 2.5% of simple random
test cases.
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Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Use CompCert, a fully verified C compiler, and add an HLS backend.
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Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.
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Example: 3AC

int main() {

int x[2] = {3, 6};

int i = 1;

return x[i];

}

Example of a very simple
program performing loads and
stores.
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Example: 3AC

• three address code (3AC)
instructions are represented
as a control-flow graph
(CFG).

• Each instruction links to the
next one.

main() {

x5 = 3

int32[stack(0)] = x5

x4 = 6

int32[stack(4)] = x4

x1 = 1

x3 = stack(0) (int)

x2 = int32[x3 + x1 * 4 + 0]

return x2

}
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Example: HTL Overview

The representation of the finite state-machine with datapath (FSMD) is
abstract and called HTL.

Definition datapath := Z+ 7→ Verilog.stmnt

Definition controllogic := Z+ 7→ Verilog.stmnt

Record module: Type := mkmodule {

mod_datapath: datapath;

mod_controllogic: controllogic;

mod_reset: reg;

mod_ram: ram_spec;

...

}.
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Example: Translation (3AC→ HTL)

Translation from control-flow graph (CFG) into a finite state-machine with
datapath (FSMD).

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.
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Example: Memory Inference Pass

• An HTL→ HTL translation removes loads and stores.
• Replaced by accesses to a proper RAM.

stack[{{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}]

becomes

u_en <= ( ~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
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Verilog Syntax

module top(input clk, input [31:0] in1,

output reg [31:0] out1);

reg [31:0] reg_1, tmp;

always @(posedge clk) begin

reg1 <= in1;

end

always @(posedge clk) begin

tmp = reg1;

out1 <= tmp;

end

endmodule

• Verilog example for a simple shift
register.

• Always block run in parallel
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Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)

if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.
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Example: Translation (HTL→ Verilog)

// Control logic
always @(posedge clk)

if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;
32'd5: state <= 32'd4; default: ;

endcase
endmodule
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Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• At each clock tick, the whole module is executed using big-step
semantics.
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How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.
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How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee
Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-

nitely.
Wrong Such as undefined behaviour, no guarantees need to

be shown.
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Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
• Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

• Abstract values like the program counter now correspond to values in
registers.
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With Division approximately 27× slower
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Without Division about 2× slower
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Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.
• One bug was found in the pretty printing.
• Many compile-time errors are expected.
• Mainly rejected because of wrong size.

passes (26.00%) compile-time errors (73.97%) run-time errors (0.03%)
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Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.
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Thank you

Documentation

https://vericert.ymhg.org

GitHub

https://github.com/ymherklotz/vericert

OOPSLA’21 Preprint

https://ymhg.org/papers/fvhls_oopsla21.pdf
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