
Formal Verification of High-Level

Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, JohnWickerson

Imperial College London

1

Outline

Example

Verification

Results

2

The Need to Design Hardware Accelerators

Hardware accelerators are needed more and more industries.

• Using a CPU everywhere not
always the best choice.

• Field-Programmable Gate Arrays
(FPGA) provide a good
alternative.

• FPGAs act as reprogrammable
hardware, therefore can be
made application specific.

3

The Need to Design Hardware Accelerators

Hardware accelerators are needed more and more industries.

• Using a CPU everywhere not
always the best choice.

• Field-Programmable Gate Arrays
(FPGA) provide a good
alternative.

• FPGAs act as reprogrammable
hardware, therefore can be
made application specific.

3

The Need to Design Hardware Accelerators

Hardware accelerators are needed more and more industries.

• Using a CPU everywhere not
always the best choice.

• Field-Programmable Gate Arrays
(FPGA) provide a good
alternative.

• FPGAs act as reprogrammable
hardware, therefore can be
made application specific.

3

Where does the flexibility of FPGAs come from?

• FPGA’s are programmable circuits with two main components.

• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

Where does the flexibility of FPGAs come from?

• FPGA’s are programmable circuits with two main components.
• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

Where does the flexibility of FPGAs come from?

• FPGA’s are programmable circuits with two main components.
• Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

• BRAMs provide accessible storage.

4

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Fine control Long to design

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.

• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Fine control Long to design

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Quick to design Less control

5

So How dowe Program an FPGA?

• FPGAs contain LUTs and
programmable interconnects.

• Programmed using hardware
description languages.

• Simulation quite slow.
• High-Level Synthesis is an
alternative.

• Faster testing through execution.

Quick to design Less control

5

Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools (Herklotz et al. [2021]) and found they failed on
2.5% of simple random test cases.

6

Motivation for Formal Verification

Difficult to debug HLS tools:
• Simulation can take a long time.
• Correctness is important in hardware, testing is done at every level.

High-level synthesis is often quite unreliable:
• Intel’s OpenCL could not be fuzzed because of too many issues
(Lidbury et al. [2015]).

• We fuzzed HLS tools (Herklotz et al. [2021]) and found they failed on
2.5% of simple random test cases.

6

Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Use CompCert, a fully verified C compiler, and add an HLS backend.

7

Solution

Clight · · · CminorSel 3AC LTL aarch64
x86
· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

7

Outline

Example

Verification

Results

8

Example: 3AC

int main() {

int x[2] = {3, 6};

int i = 1;

return x[i];

}

Example of a very simple
program performing loads and
stores.

9

Example: 3AC

• three address code (3AC)
instructions are represented
as a control-flow graph
(CFG).

• Each instruction links to the
next one.

main() {

x5 = 3

int32[stack(0)] = x5

x4 = 6

int32[stack(4)] = x4

x1 = 1

x3 = stack(0) (int)

x2 = int32[x3 + x1 * 4 + 0]

return x2

}

9

Example: HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath := Z+ 7→ Verilog.stmnt

Definition controllogic := Z+ 7→ Verilog.stmnt

Record module: Type := mkmodule {

mod_datapath: datapath;

mod_controllogic: controllogic;

mod_reset: reg;

mod_ram: ram_spec;

...

}.

10

Example: HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath := Z+ 7→ Verilog.stmnt

Definition controllogic := Z+ 7→ Verilog.stmnt

Record module: Type := mkmodule {

mod_datapath: datapath;

mod_controllogic: controllogic;

mod_reset: reg;

mod_ram: ram_spec;

...

}.

10

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.

• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.

• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.

• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Translation (3AC→ HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

• Control-flow is translated into a finite state-machine.
• Each 3AC instructions translated into equivalent Verilog statements.
• Function stack implemented as Verilog array.
• Pointers for loads and stores translated to array addresses.

• Byte addressed to word addressed.

11

Example: Memory Inference Pass

• An HTL→ HTL translation removes loads and stores.
• Replaced by accesses to a proper RAM.

stack[{{{reg_5 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}]

becomes

u_en <= (~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};

12

Verilog Syntax

module top(input clk, input [31:0] in1,

output reg [31:0] out1);

reg [31:0] reg_1, tmp;

always @(posedge clk) begin

reg1 <= in1;

end

always @(posedge clk) begin

tmp = reg1;

out1 <= tmp;

end

endmodule

• Verilog example for a simple shift
register.

• Always block run in parallel

13

Verilog Syntax

module top(input clk, input [31:0] in1,

output reg [31:0] out1);

reg [31:0] reg_1, tmp;

always @(posedge clk) begin

reg1 <= in1;

end

always @(posedge clk) begin

tmp = reg1;

out1 <= tmp;

end

endmodule

• Verilog example for a simple shift
register.

• Always block run in parallel

13

Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface
always @(negedge clk)

if ({u_en != en}) begin
if (wr_en) stack[addr] <= d_in;
else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

module main(reset, clk, finish, return_val);
input [0:0] reset, clk;
output reg [0:0] finish = 0;
output reg [31:0] return_val = 0;
reg [31:0] reg_3 = 0, addr = 0, d_in = 0,

reg_5 = 0, wr_en = 0,
state = 0, reg_2 = 0,
reg_4 = 0, d_out = 0, reg_1 = 0;

reg [0:0] en = 0, u_en = 0;
reg [31:0] stack [1:0];
// RAM interface

always @(negedge clk)

if ({u_en != en}) begin

if (wr_en) stack[addr] <= d_in;

else d_out <= stack[addr];
en <= u_en;

end

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};

end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Data-path
always @(posedge clk)

case (state)
32'd11: reg_2 <= d_out;
32'd8: reg_5 <= 32'd3;
32'd7: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_5; addr <= 32'd0;

end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= (~ u_en); wr_en <= 32'd1;
d_in <= reg_4; addr <= 32'd1;

end
32'd4: reg_1 <= 32'd1;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (~ u_en); wr_en <= 32'd0;

addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'd1: begin finish = 32'd1; return_val = reg_2; end
default: ;

endcase

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Example: Translation (HTL→ Verilog)

// Control logic
always @(posedge clk)

if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1: ;
32'd5: state <= 32'd4; default: ;

endcase
endmodule

• Finally, translate the FSMD
into Verilog.

• This includes a RAM
interface.

• Data path is translated into a
case statement.

• Ram loads and stores
automatically turn off RAM.

• Control logic is translated
into another case statement
with a reset.

14

Outline

Example

Verification

Results

15

Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• At each clock tick, the whole module is executed using big-step
semantics.

16

Verilog Semantics (Adapted from Lööw et al. (2019))

• Top-level semantics are small-step operational semantics.

• At each clock tick, the whole module is executed using big-step
semantics.

16

How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

17

How dowe prove the HLS tool correct?

• We have an algorithm describing the translation.
• Have to prove that it does not change behaviour with respect to our
language semantics.

Behaviour Guarantee
Converging Means a result is obtained, Verilog and C results must

be equal.
Diverging C is in an infinite loop, Verilog must execute indefi-

nitely.
Wrong Such as undefined behaviour, no guarantees need to

be shown.

17

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
• Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

• Abstract values like the program counter now correspond to values in
registers.

18

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
• Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.

• Abstract values like the program counter now correspond to values in
registers.

18

Outline

Example

Verification

Results

19

The bad news: with division approximately 27× slower

1

10

100

Ex
ec
ut
io
n
tim
e
re
la
tiv
e
to
Le
gU
p

2m
m

3m
m ad
i

at
as

bi
cg

ch
ol
es
ky

co
va
ria
nc
e

do
itg
en

du
rb
in

fd
td
-2
d

flo
yd
-w
ar
sh
al
l

ge
m
m

ge
m
ve
r

ge
su
m
m
v

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d lu

lu
dc
m
p

m
vt

nu
ss
in
ov

se
id
el
-2
d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

m
ed
ia
n

1

10

Ar
ea
re
la
tiv
e
to
Le
gU
p

Vericert LegUp no-opt no-chaining LegUp no-opt

20

The better news: without division about 2× slower

0.5

1

2

4

8

Ex
ec
ut
io
n
tim
e
re
la
tiv
e
to
Le
gU
p

2m
m

3m
m ad
i

at
as

bi
cg

ch
ol
es
ky

co
va
ria
nc
e

do
itg
en

du
rb
in

fd
td
-2
d

flo
yd
-w
ar
sh
al
l

ge
m
m

ge
m
ve
r

ge
su
m
m
v

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d lu

lu
dc
m
p

m
vt

nu
ss
in
ov

se
id
el
-2
d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

m
ed
ia
n

0.5

1

2

4

Ar
ea
re
la
tiv
e
to
Le
gU
p

Vericert LegUp no-opt no-chaining LegUp no-opt

21

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool Run-time errors
Vivado HLS 1.23%
Intel i++ 0.4%
LegUp 4.0 0.1%
Bambu 0.9.7-dev 0.3% (13.7%)

22

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool Run-time errors
Vivado HLS 1.23%
Intel i++ 0.4%
LegUp 4.0 0.1%
Bambu 0.9.7-dev 0.3% (13.7%)
Vericert 0% (0.03%)

22

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.

23

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.

• Performance without divisions comparable to LegUp without
optimisations.

23

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.

• HLS tool proven correct in Coq by proving translation of CFG into
FSMD.

• Small optimisations implemented such as Ram Inference.
• Performance without divisions comparable to LegUp without
optimisations.

23

Thank you

Documentation

https://vericert.ymhg.org

GitHub

https://github.com/ymherklotz/vericert

OOPSLA’21 Preprint

https://ymhg.org/papers/fvhls_oopsla21.pdf

24

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

References

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An
empirical study of the reliability of high-level synthesis tools. In 2021
IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 219–223, 2021. doi:
10.1109/FCCM51124.2021.00034.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. Many-core compiler fuzzing. In Proc. of the 36th ACM
SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI ’15. ACM, 2015. doi: 10.1145/2737924.2737986.

25

	Example
	Verification
	Results
	References

