
LSR

Yann Herklotz Grave

April 2022



Contents

1 Introduction 3

2 Background 4

3 Formal Verification of High-Level Synthesis 5

4 WIP Static Scheduling 8

5 FW Loop Pipelining 9

6 FW Dynamic Scheduling 10

7 Schedule 11

8 Conclusion 12

2



1 Introduction

3



2 Background

Was there ever in anyone’s life span a point free in time, devoid of memory, a night when choice

was any more than the sum of all the choices gone before?

— Joan Didion, Run, River

aroistenaoirstenoiaresntoien

4



3 Formal Verification of High-Level
Synthesis

Can you trust your high-level synthesis tool? As latency, throughput, and energy

efficiency become increasingly important, custom hardware accelerators are being

designed for numerous applications. Alas, designing these accelerators can be a tedious

and error-prone process using a hardware description language (HDL) such as Verilog.

An attractive alternative is high-level synthesis (HLS), in which hardware designs are

automatically compiled from software written in a high-level language like C. Modern

HLS tools such as LegUp [Can+11], Vivado HLS [Xil20], Intel i++ [Int20], and Bambu

HLS [PF13] promise designs with comparable performance and energy-efficiency to

those hand-written in an HDL [HG14; GW20; Pel+16], while offering the convenient

abstractions and rich ecosystems of software development. But existing HLS tools cannot

always guarantee that the hardware designs they produce are equivalent to the software

they were given, and this undermines any reasoning conducted at the software level.

Indeed, there are reasons to doubt that HLS tools actually do always preserve equi-

valence. For instance, Vivado HLS has been shown to apply pipelining optimisations

incorrectly
1

or to silently generate wrong code should the programmer stray outside

the fragment of C that it supports.
2

Meanwhile, Lidbury et al. [Lid+15] had to abandon

their attempt to fuzz-test Altera’s (now Intel’s) OpenCL compiler since it “either crashed

or emitted an internal compiler error” on so many of their test inputs. More recently,

Herklotz et al. [Her+21a] fuzz-tested three commercial HLS tools using Csmith [Yan+11],

and despite restricting the generated programs to the C fragment explicitly supported by

all the tools, they still found that on average 2.5% of test-cases were compiled to designs

that behaved incorrectly.

1https://bit.ly/vivado-hls-pipeline-bug
2https://bit.ly/vivado-hls-pointer-bug

5



Existing workarounds Aware of the reliability shortcomings of HLS tools, hardware

designers routinely check the generated hardware for functional correctness. This is

commonly done by simulating the generated design against a large test-bench. But

unless the test-bench covers all inputs exhaustively – which is often infeasible – there is a

risk that bugs remain.

One alternative is to use translation validation [PSS98] to prove equivalence between

the input program and the output design. Translation validation has been successfully

applied to several HLS optimisations [YKM04; Kar+06; CK20; Ban+14; CKB19]. Nev-

ertheless, it is an expensive task, especially for large designs, and it must be repeated

every time the compiler is invoked. For example, the translation validation for Catapult

C [Men20] may require several rounds of expert ‘adjustments’ [Cha20, p. 3] to the input C

program before validation succeeds. And even when it succeeds, translation validation

does not provide watertight guarantees unless the validator itself has been mechanically

proven correct [e.g. TL08], which has not been the case in HLS tools to date.

Our position is that none of the above workarounds are necessary if the HLS tool can

simply be trusted to work correctly.

Our solution We have designed a new HLS tool in the Coq theorem prover and proved

that any output design it produces always has the same behaviour as its input program.

Our tool, called Vericert, is automatically extracted to an OCaml program from Coq,

which ensures that the object of the proof is the same as the implementation of the tool.

Vericert is built by extending the CompCert verified C compiler [Ler09] with a new

hardware-specific intermediate language and a Verilog back end. It supports most C

constructs, including integer operations, function calls (which are all inlined), local arrays,

structs, unions, and general control-flow statements, but currently excludes support for

case statements, function pointers, recursive function calls, non-32-bit integers, floats,

and global variables.

Contributions and Outline The contributions of this paper are as follows:

• We present Vericert, the first mechanically verified HLS tool that compiles C

to Verilog. In Section ??, we describe the design of Vericert, including certain

optimisations related to memory accesses and division.

• We state the correctness theorem of Vericert with respect to an existing semantics

6



for Verilog due to Lööw and Myreen [LM19]. In Section ??, we describe how we

extended this semantics to make it suitable as an HLS target. We also describe how

the Verilog semantics is integrated into CompCert’s language execution model

and its framework for performing simulation proofs. A mapping of CompCert’s

infinite memory model onto a finite Verilog array is also described.

• In Section ??, we describe how we proved the correctness theorem. The proof follows

standard CompCert techniques – forward simulations, intermediate specifications,

and determinism results – but we encountered several challenges peculiar to our

hardware-oriented setting. These include handling discrepancies between the

byte-addressed memory assumed by the input software and the word-addressed

memory that we implement in the output hardware, different handling of unsigned

comparisons between C and Verilog, and carefully implementing memory reads

and writes so that these behave properly as a RAM in hardware.

• In Section ??, we evaluate Vericert on the PolyBench/C benchmark suite [Pou20],

and compare the performance of our generated hardware against an existing,

unverified HLS tool called LegUp [Can+11]. We show that Vericert generates

hardware that is 27× slower (2× slower in the absence of division) and 1.1× larger

than that generated by LegUp. This performance gap can be largely attributed to

Vericert’s current lack of support for instruction-level parallelism and the absence

of an efficient, pipelined division operator. We intend to close this gap in the

future by introducing (and verifying) HLS optimisations of our own, such as

scheduling and memory analysis. This section also reports on our campaign to

fuzz-test Vericert using over a hundred thousand random C programs generated

by Csmith [Yan+11] in order to confirm that its correctness theorem is watertight.

Companion material Vericert is fully open source and available on GitHub at https:

//github.com/ymherklotz/vericert. A snapshot of the Vericert development is also

available in a Zenodo repository [Her+21b].

7



4 WIP Static Scheduling

8



5 FW Loop Pipelining

9



6 FW Dynamic Scheduling

10



7 Schedule

11



8 Conclusion

12



Bibliography

[Ban+14] K. Banerjee et al. “Verification of Code Motion Techniques Using Value

Propagation”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33.8 (Aug. 2014), pp. 1180–1193. issn: 1937-4151. doi:

10.1109/TCAD.2014.2314392.

[Can+11] Andrew Canis et al. “LegUp: high-level synthesis for FPGA-based pro-

cessor/accelerator systems”. In: FPGA. ACM, 2011, pp. 33–36. doi: 10.1145/

1950413.1950423.

[Cha20] Pankaj Chauhan. Formally Ensuring Equivalence between C++ and RTL designs.

2020. url: https://bit.ly/2KbT0ki.

[CK20] R. Chouksey and C. Karfa. “Verification of Scheduling of Conditional

Behaviors in High-Level Synthesis”. In: IEEE Transactions on Very Large Scale

Integration (VLSI) Systems (2020), pp. 1–14. issn: 1557-9999. doi: 10.1109/

TVLSI.2020.2978242. url: https://doi.org/10.1109/TVLSI.2020.2978242.

[CKB19] R. Chouksey, C. Karfa and P. Bhaduri. “Translation Validation of Code

Motion Transformations Involving Loops”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 38.7 (July 2019), pp. 1378–1382.

issn: 1937-4151. doi: 10.1109/TCAD.2018.2846654.

[GW20] Stephane Gauthier and Zubair Wadood. High-Level Synthesis: Can it outper-

form hand-coded HDL? White paper. 2020. url: https://info.silexica.com/

high-level-synthesis/1.

[Her+21a] Yann Herklotz et al. “An Empirical Study of the Reliability of High-Level

Synthesis Tools”. In: 2021 IEEE 29th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). 2021, pp. 219–223.

doi: 10.1109/FCCM51124.2021.00034.

13



[Her+21b] Yann Herklotz et al. ymherklotz/vericert: Vericert v1.2.1. Version v1.2.1. July

2021. doi: 10.5281/zenodo.5093839. url: https://doi.org/10.5281/

zenodo.5093839.

[HG14] Ekawat Homsirikamol and Kris Gaj. “Can high-level synthesis compete

against a hand-written code in the cryptographic domain? A case study”.

In: ReConFig. IEEE, 2014, pp. 1–8. doi: 10.1109/ReConFig.2014.7032504.

[Int20] Intel. High-level Synthesis Compiler. 2020. url: https://intel.ly/2UDiWr5

(visited on 18/11/2020).

[Kar+06] C Karfa et al. “A Formal Verification Method of Scheduling in High-level

Synthesis”. In: Proceedings of the 7th International Symposium on Quality

Electronic Design. ISQED ’06. Washington, DC, USA: IEEE Computer Society,

2006, pp. 71–78. isbn: 0-7695-2523-7. doi: 10.1109/ISQED.2006.10.

[Ler09] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Commun.

ACM 52.7 (July 2009), pp. 107–115. issn: 0001-0782. doi: 10.1145/1538788.

1538814.

[Lid+15] Christopher Lidbury et al. “Many-Core Compiler Fuzzing”. In: Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’15. Portland, OR, USA: ACM, 2015, pp. 65–76. isbn:

9781450334686. doi: 10.1145/2737924.2737986.

[LM19] Andreas Lööw and Magnus O. Myreen. “A Proof-producing Translator for

Verilog Development in HOL”. In: Proceedings of the 7th International Workshop

on Formal Methods in Software Engineering. FormaliSE ’19. Montreal, Quebec,

Canada: IEEE Press, 2019, pp. 99–108. doi: 10.1109/FormaliSE.2019.00020.

url: https://doi.org/10.1109/FormaliSE.2019.00020.

[Men20] Mentor. Catapult High-Level Synthesis. 2020. url: https://www.mentor.com/

hls- lp/catapult- high- level- synthesis/c- systemc- hls (visited on

06/06/2020).

[Pel+16] Maxime Pelcat et al. “Design productivity of a high level synthesis compiler

versus HDL”. In: 2016 International Conference on Embedded Computer Systems:

Architectures, Modeling and Simulation (SAMOS). 2016, pp. 140–147. doi:

10.1109/SAMOS.2016.7818341.

14



[PF13] Christian Pilato and Fabrizio Ferrandi. “Bambu: A modular framework for

the high level synthesis of memory-intensive applications”. In: FPL. IEEE,

2013, pp. 1–4. doi: 10.1109/FPL.2013.6645550.

[Pou20] Louis-Noël Pouchet. PolyBench/C: the Polyhedral Benchmark suite. 2020. url:

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

[PSS98] A. Pnueli, M. Siegel and E. Singerman. “Translation validation”. In: Tools and

Algorithms for the Construction and Analysis of Systems. Ed. by Bernhard Steffen.

Berlin, Heidelberg: Springer, 1998, pp. 151–166. isbn: 978-3-540-69753-4. doi:

10.1007/BFb0054170.

[TL08] Jean-Baptiste Tristan and Xavier Leroy. “Formal Verification of Translation

Validators: A Case Study on Instruction Scheduling Optimizations”. In: Pro-

ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’08. San Francisco, California, USA: ACM,

2008, pp. 17–27. isbn: 9781595936899. doi: 10.1145/1328438.1328444.

[Xil20] Xilinx. Vivado High-level Synthesis. 2020. url: https://bit.ly/39ereMx

(visited on 20/07/2020).

[Yan+11] Xuejun Yang et al. “Finding and Understanding Bugs in C Compilers”. In:

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’11. San Jose, California, USA: ACM, 2011,

pp. 283–294. isbn: 9781450306638. doi: 10.1145/1993498.1993532. url:

https://doi.org/10.1145/1993498.1993532.

[YKM04] Youngsik Kim, S. Kopuri and N. Mansouri. “Automated formal verification

of scheduling process using finite state machines with datapath (FSMD)”.

In: International Symposium on Signals, Circuits and Systems. Proceedings, SCS

2003. (Cat. No.03EX720). Mar. 2004, pp. 110–115. doi: 10.1109/ISQED.2004.

1283659.

15


