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1 Introduction
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2 Background

Was there ever in anyone’s life span a point free in time, devoid of memory, a night when choice

was any more than the sum of all the choices gone before?

— Joan Didion, Run, River
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3 Formal Verification of High-Level
Synthesis

Can you trust your high-level synthesis tool? As latency, throughput, and energy

efficiency become increasingly important, custom hardware accelerators are being

designed for numerous applications. Alas, designing these accelerators can be a tedious

and error-prone process using a hardware description language (HDL) such as Verilog.

An attractive alternative is high-level synthesis (HLS), in which hardware designs are

automatically compiled from software written in a high-level language like C. Modern

HLS tools such as LegUp [Can+11], Vivado HLS [Xil20], Intel i++ [Int20], and Bambu

HLS [PF13] promise designs with comparable performance and energy-efficiency to

those hand-written in an HDL [HG14; GW20; Pel+16], while offering the convenient

abstractions and rich ecosystems of software development. But existing HLS tools cannot

always guarantee that the hardware designs they produce are equivalent to the software

they were given, and this undermines any reasoning conducted at the software level.

Indeed, there are reasons to doubt that HLS tools actually do always preserve equi-

valence. For instance, Vivado HLS has been shown to apply pipelining optimisations

incorrectly
1

or to silently generate wrong code should the programmer stray outside

the fragment of C that it supports.
2

Meanwhile, Lidbury et al. [Lid+15] had to abandon

their attempt to fuzz-test Altera’s (now Intel’s) OpenCL compiler since it “either crashed

or emitted an internal compiler error” on so many of their test inputs. More recently,

Herklotz et al. [Her+21a] fuzz-tested three commercial HLS tools using Csmith [Yan+11],

and despite restricting the generated programs to the C fragment explicitly supported by

all the tools, they still found that on average 2.5% of test-cases were compiled to designs

that behaved incorrectly.

1https://bit.ly/vivado-hls-pipeline-bug
2https://bit.ly/vivado-hls-pointer-bug

5



Existing workarounds Aware of the reliability shortcomings of HLS tools, hardware

designers routinely check the generated hardware for functional correctness. This is

commonly done by simulating the generated design against a large test-bench. But

unless the test-bench covers all inputs exhaustively – which is often infeasible – there is a

risk that bugs remain.

One alternative is to use translation validation [PSS98] to prove equivalence between

the input program and the output design. Translation validation has been successfully

applied to several HLS optimisations [YKM04; Kar+06; CK20; Ban+14; CKB19]. Nev-

ertheless, it is an expensive task, especially for large designs, and it must be repeated

every time the compiler is invoked. For example, the translation validation for Catapult

C [Men20] may require several rounds of expert ‘adjustments’ [Cha20, p. 3] to the input C

program before validation succeeds. And even when it succeeds, translation validation

does not provide watertight guarantees unless the validator itself has been mechanically

proven correct [e.g. TL08], which has not been the case in HLS tools to date.

Our position is that none of the above workarounds are necessary if the HLS tool can

simply be trusted to work correctly.

Our solution We have designed a new HLS tool in the Coq theorem prover and proved

that any output design it produces always has the same behaviour as its input program.

Our tool, called Vericert, is automatically extracted to an OCaml program from Coq,

which ensures that the object of the proof is the same as the implementation of the tool.

Vericert is built by extending the CompCert verified C compiler [Ler09] with a new

hardware-specific intermediate language and a Verilog back end. It supports most C

constructs, including integer operations, function calls (which are all inlined), local arrays,

structs, unions, and general control-flow statements, but currently excludes support for

case statements, function pointers, recursive function calls, non-32-bit integers, floats,

and global variables.

Contributions and Outline The contributions of this paper are as follows:

• We present Vericert, the first mechanically verified HLS tool that compiles C

to Verilog. In Section ??, we describe the design of Vericert, including certain

optimisations related to memory accesses and division.

• We state the correctness theorem of Vericert with respect to an existing semantics
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for Verilog due to Lööw and Myreen [LM19]. In Section ??, we describe how we

extended this semantics to make it suitable as an HLS target. We also describe how

the Verilog semantics is integrated into CompCert’s language execution model

and its framework for performing simulation proofs. A mapping of CompCert’s

infinite memory model onto a finite Verilog array is also described.

• In Section ??, we describe how we proved the correctness theorem. The proof follows

standard CompCert techniques – forward simulations, intermediate specifications,

and determinism results – but we encountered several challenges peculiar to our

hardware-oriented setting. These include handling discrepancies between the

byte-addressed memory assumed by the input software and the word-addressed

memory that we implement in the output hardware, different handling of unsigned

comparisons between C and Verilog, and carefully implementing memory reads

and writes so that these behave properly as a RAM in hardware.

• In Section ??, we evaluate Vericert on the PolyBench/C benchmark suite [Pou20],

and compare the performance of our generated hardware against an existing,

unverified HLS tool called LegUp [Can+11]. We show that Vericert generates

hardware that is 27× slower (2× slower in the absence of division) and 1.1× larger

than that generated by LegUp. This performance gap can be largely attributed to

Vericert’s current lack of support for instruction-level parallelism and the absence

of an efficient, pipelined division operator. We intend to close this gap in the

future by introducing (and verifying) HLS optimisations of our own, such as

scheduling and memory analysis. This section also reports on our campaign to

fuzz-test Vericert using over a hundred thousand random C programs generated

by Csmith [Yan+11] in order to confirm that its correctness theorem is watertight.

Companion material Vericert is fully open source and available on GitHub at https:

//github.com/ymherklotz/vericert. A snapshot of the Vericert development is also

available in a Zenodo repository [Her+21b].
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