// source: https://github.com/tc466/machsuite/tree/a7d831882d931009d4135f0c4d3f642f782ef897/fft/transpose /* Copyright (c) 2011, UT-Battelle, LLC Copyright (c) 2014, the President and Fellows of Harvard College All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Oak Ridge National Laboratory, nor UT-Battelle, LLC, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Implementations based on: V. Volkov and B. Kazian. Fitting fft onto the g80 architecture. 2008. */ #include "fft.h" //////BEGIN TWIDDLES //////// #define THREADS 64 #define cmplx_M_x(a_x, a_y, b_x, b_y) (a_x*b_x - a_y *b_y) #define cmplx_M_y(a_x, a_y, b_x, b_y) (a_x*b_y + a_y *b_x) #define cmplx_MUL_x(a_x, a_y, b_x, b_y ) (a_x*b_x - a_y*b_y) #define cmplx_MUL_y(a_x, a_y, b_x, b_y ) (a_x*b_y + a_y*b_x) #define cmplx_mul_x(a_x, a_y, b_x, b_y) (a_x*b_x - a_y*b_y) #define cmplx_mul_y(a_x, a_y, b_x, b_y) (a_x*b_y + a_y*b_x) #define cmplx_add_x(a_x, b_x) (a_x + b_x) #define cmplx_add_y(a_y, b_y) (a_y + b_y) #define cmplx_sub_x(a_x, b_x) (a_x - b_x) #define cmplx_sub_y(a_y, b_y) (a_y - b_y) #define cm_fl_mul_x(a_x, b) (b*a_x) #define cm_fl_mul_y(a_y, b) (b*a_y) void twiddles8(TYPE a_x[8], TYPE a_y[8], int i, int n){ int reversed8[8] = {0,4,2,6,1,5,3,7}; int j; TYPE phi, tmp, phi_x, phi_y; for(j=1; j < 8; j++){ phi = ((-2*PI*reversed8[j]/n)*i); phi_x = cos(phi); phi_y = sin(phi); tmp = a_x[j]; a_x[j] = cmplx_M_x(a_x[j], a_y[j], phi_x, phi_y); a_y[j] = cmplx_M_y(tmp, a_y[j], phi_x, phi_y); } } ////END TWIDDLES //// #define FF2(a0_x, a0_y, a1_x, a1_y){ \ TYPE c0_x = *a0_x; \ TYPE c0_y = *a0_y; \ *a0_x = cmplx_add_x(c0_x, *a1_x); \ *a0_y = cmplx_add_y(c0_y, *a1_y); \ *a1_x = cmplx_sub_x(c0_x, *a1_x); \ *a1_y = cmplx_sub_y(c0_y, *a1_y); \ } #define FFT4(a0_x, a0_y, a1_x, a1_y, a2_x, a2_y, a3_x, a3_y){ \ TYPE exp_1_44_x; \ TYPE exp_1_44_y; \ TYPE tmp; \ exp_1_44_x = 0.0; \ exp_1_44_y = -1.0; \ FF2( a0_x, a0_y, a2_x, a2_y); \ FF2( a1_x, a1_y, a3_x, a3_y); \ tmp = *a3_x; \ *a3_x = *a3_x*exp_1_44_x-*a3_y*exp_1_44_y; \ *a3_y = tmp*exp_1_44_y - *a3_y*exp_1_44_x; \ FF2( a0_x, a0_y, a1_x, a1_y ); \ FF2( a2_x, a2_y, a3_x, a3_y ); \ } #define FFT8(a_x, a_y) \ { \ TYPE exp_1_8_x, exp_1_4_x, exp_3_8_x; \ TYPE exp_1_8_y, exp_1_4_y, exp_3_8_y; \ TYPE tmp_1, tmp_2; \ exp_1_8_x = 1; \ exp_1_8_y = -1; \ exp_1_4_x = 0; \ exp_1_4_y = -1; \ exp_3_8_x = -1; \ exp_3_8_y = -1; \ FF2( &a_x[0], &a_y[0], &a_x[4], &a_y[4]); \ FF2( &a_x[1], &a_y[1], &a_x[5], &a_y[5]); \ FF2( &a_x[2], &a_y[2], &a_x[6], &a_y[6]); \ FF2( &a_x[3], &a_y[3], &a_x[7], &a_y[7]); \ tmp_1 = a_x[5]; \ a_x[5] = cm_fl_mul_x( cmplx_mul_x(a_x[5], a_y[5], exp_1_8_x, exp_1_8_y), M_SQRT1_2 ); \ a_y[5] = cm_fl_mul_y( cmplx_mul_y(tmp_1, a_y[5], exp_1_8_x, exp_1_8_y) , M_SQRT1_2 ); \ tmp_1 = a_x[6]; \ a_x[6] = cmplx_mul_x( a_x[6], a_y[6], exp_1_4_x , exp_1_4_y); \ a_y[6] = cmplx_mul_y( tmp_1, a_y[6], exp_1_4_x , exp_1_4_y); \ tmp_1 = a_x[7]; \ a_x[7] = cm_fl_mul_x( cmplx_mul_x(a_x[7], a_y[7], exp_3_8_x, exp_3_8_y), M_SQRT1_2 ); \ a_y[7] = cm_fl_mul_y( cmplx_mul_y(tmp_1, a_y[7], exp_3_8_x, exp_3_8_y) , M_SQRT1_2 ); \ FFT4( &a_x[0], &a_y[0], &a_x[1], &a_y[1], &a_x[2], &a_y[2], &a_x[3], &a_y[3] ); \ FFT4( &a_x[4], &a_y[4], &a_x[5], &a_y[5], &a_x[6], &a_y[6], &a_x[7], &a_y[7] ); \ } void loadx8(TYPE a_x[], TYPE x[], int offset, int sx){ a_x[0] = x[0*sx+offset]; a_x[1] = x[1*sx+offset]; a_x[2] = x[2*sx+offset]; a_x[3] = x[3*sx+offset]; a_x[4] = x[4*sx+offset]; a_x[5] = x[5*sx+offset]; a_x[6] = x[6*sx+offset]; a_x[7] = x[7*sx+offset]; } void loady8(TYPE a_y[], TYPE x[], int offset, int sx){ a_y[0] = x[0*sx+offset]; a_y[1] = x[1*sx+offset]; a_y[2] = x[2*sx+offset]; a_y[3] = x[3*sx+offset]; a_y[4] = x[4*sx+offset]; a_y[5] = x[5*sx+offset]; a_y[6] = x[6*sx+offset]; a_y[7] = x[7*sx+offset]; } void fft1D_512(TYPE work_x[512], TYPE work_y[512]){ int tid, hi, lo, i, j, stride; int reversed[] = {0,4,2,6,1,5,3,7}; TYPE DATA_x[THREADS*8]; TYPE DATA_y[THREADS*8]; TYPE data_x[ 8 ]; TYPE data_y[ 8 ]; TYPE smem[8*8*9]; stride = THREADS; //Do it all at once... loop1 : for(tid = 0; tid < THREADS; tid++){ //GLOBAL_LOAD... data_x[0] = work_x[0*stride+tid]; data_x[1] = work_x[1*stride+tid]; data_x[2] = work_x[2*stride+tid]; data_x[3] = work_x[3*stride+tid]; data_x[4] = work_x[4*stride+tid]; data_x[5] = work_x[5*stride+tid]; data_x[6] = work_x[6*stride+tid]; data_x[7] = work_x[7*stride+tid]; data_y[0] = work_y[0*stride+tid]; data_y[1] = work_y[1*stride+tid]; data_y[2] = work_y[2*stride+tid]; data_y[3] = work_y[3*stride+tid]; data_y[4] = work_y[4*stride+tid]; data_y[5] = work_y[5*stride+tid]; data_y[6] = work_y[6*stride+tid]; data_y[7] = work_y[7*stride+tid]; //First 8 point FFT... FFT8(data_x, data_y); //First Twiddle twiddles8(data_x, data_y, tid, 512); //save for fence DATA_x[tid*8] = data_x[0]; DATA_x[tid*8 + 1] = data_x[1]; DATA_x[tid*8 + 2] = data_x[2]; DATA_x[tid*8 + 3] = data_x[3]; DATA_x[tid*8 + 4] = data_x[4]; DATA_x[tid*8 + 5] = data_x[5]; DATA_x[tid*8 + 6] = data_x[6]; DATA_x[tid*8 + 7] = data_x[7]; DATA_y[tid*8] = data_y[0]; DATA_y[tid*8 + 1] = data_y[1]; DATA_y[tid*8 + 2] = data_y[2]; DATA_y[tid*8 + 3] = data_y[3]; DATA_y[tid*8 + 4] = data_y[4]; DATA_y[tid*8 + 5] = data_y[5]; DATA_y[tid*8 + 6] = data_y[6]; DATA_y[tid*8 + 7] = data_y[7]; } int sx, offset; sx = 66; loop2 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = hi*8+lo; smem[0*sx+offset] = DATA_x[tid*8 + 0]; smem[4*sx+offset] = DATA_x[tid*8 + 1]; smem[1*sx+offset] = DATA_x[tid*8 + 4]; smem[5*sx+offset] = DATA_x[tid*8 + 5]; smem[2*sx+offset] = DATA_x[tid*8 + 2]; smem[6*sx+offset] = DATA_x[tid*8 + 3]; smem[3*sx+offset] = DATA_x[tid*8 + 6]; smem[7*sx+offset] = DATA_x[tid*8 + 7]; } sx = 8; loop3 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = lo*66+hi; DATA_x[tid*8 +0] = smem[0*sx+offset]; DATA_x[tid*8 +4] = smem[4*sx+offset]; DATA_x[tid*8 +1] = smem[1*sx+offset]; DATA_x[tid*8 +5] = smem[5*sx+offset]; DATA_x[tid*8 +2] = smem[2*sx+offset]; DATA_x[tid*8 +6] = smem[6*sx+offset]; DATA_x[tid*8 +3] = smem[3*sx+offset]; DATA_x[tid*8 +7] = smem[7*sx+offset]; } sx = 66; loop4 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = hi*8+lo; smem[0*sx+offset] = DATA_y[tid*8 + 0]; smem[4*sx+offset] = DATA_y[tid*8 + 1]; smem[1*sx+offset] = DATA_y[tid*8 + 4]; smem[5*sx+offset] = DATA_y[tid*8 + 5]; smem[2*sx+offset] = DATA_y[tid*8 + 2]; smem[6*sx+offset] = DATA_y[tid*8 + 3]; smem[3*sx+offset] = DATA_y[tid*8 + 6]; smem[7*sx+offset] = DATA_y[tid*8 + 7]; } loop5 : for(tid = 0; tid < 64; tid++){ data_y[0] = DATA_y[tid*8 + 0]; data_y[1] = DATA_y[tid*8 + 1]; data_y[2] = DATA_y[tid*8 + 2]; data_y[3] = DATA_y[tid*8 + 3]; data_y[4] = DATA_y[tid*8 + 4]; data_y[5] = DATA_y[tid*8 + 5]; data_y[6] = DATA_y[tid*8 + 6]; data_y[7] = DATA_y[tid*8 + 7]; hi = tid>>3; lo = tid&7; loady8(data_y, smem, lo*66+hi, 8); DATA_y[tid*8] = data_y[0]; DATA_y[tid*8 + 1] = data_y[1]; DATA_y[tid*8 + 2] = data_y[2]; DATA_y[tid*8 + 3] = data_y[3]; DATA_y[tid*8 + 4] = data_y[4]; DATA_y[tid*8 + 5] = data_y[5]; DATA_y[tid*8 + 6] = data_y[6]; DATA_y[tid*8 + 7] = data_y[7]; } loop6 : for(tid = 0; tid < 64; tid++){ data_x[0] = DATA_x[tid*8 + 0]; data_x[1] = DATA_x[tid*8 + 1]; data_x[2] = DATA_x[tid*8 + 2]; data_x[3] = DATA_x[tid*8 + 3]; data_x[4] = DATA_x[tid*8 + 4]; data_x[5] = DATA_x[tid*8 + 5]; data_x[6] = DATA_x[tid*8 + 6]; data_x[7] = DATA_x[tid*8 + 7]; data_y[0] = DATA_y[tid*8 + 0]; data_y[1] = DATA_y[tid*8 + 1]; data_y[2] = DATA_y[tid*8 + 2]; data_y[3] = DATA_y[tid*8 + 3]; data_y[4] = DATA_y[tid*8 + 4]; data_y[5] = DATA_y[tid*8 + 5]; data_y[6] = DATA_y[tid*8 + 6]; data_y[7] = DATA_y[tid*8 + 7]; //Second FFT8... FFT8(data_x, data_y); //Calculate hi for second twiddle calculation... hi = tid>>3; //Second twiddles calc, use hi and 64 stride version as defined in G80/SHOC... twiddles8(data_x, data_y, hi, 64); //Save for final transpose... DATA_x[tid*8] = data_x[0]; DATA_x[tid*8 + 1] = data_x[1]; DATA_x[tid*8 + 2] = data_x[2]; DATA_x[tid*8 + 3] = data_x[3]; DATA_x[tid*8 + 4] = data_x[4]; DATA_x[tid*8 + 5] = data_x[5]; DATA_x[tid*8 + 6] = data_x[6]; DATA_x[tid*8 + 7] = data_x[7]; DATA_y[tid*8] = data_y[0]; DATA_y[tid*8 + 1] = data_y[1]; DATA_y[tid*8 + 2] = data_y[2]; DATA_y[tid*8 + 3] = data_y[3]; DATA_y[tid*8 + 4] = data_y[4]; DATA_y[tid*8 + 5] = data_y[5]; DATA_y[tid*8 + 6] = data_y[6]; DATA_y[tid*8 + 7] = data_y[7]; } //Transpose.. sx = 72; loop7 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = hi*8+lo; smem[0*sx+offset] = DATA_x[tid*8 + 0]; smem[4*sx+offset] = DATA_x[tid*8 + 1]; smem[1*sx+offset] = DATA_x[tid*8 + 4]; smem[5*sx+offset] = DATA_x[tid*8 + 5]; smem[2*sx+offset] = DATA_x[tid*8 + 2]; smem[6*sx+offset] = DATA_x[tid*8 + 3]; smem[3*sx+offset] = DATA_x[tid*8 + 6]; smem[7*sx+offset] = DATA_x[tid*8 + 7]; } sx = 8; loop8 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = hi*72+lo; DATA_x[tid*8 +0] = smem[0*sx+offset]; DATA_x[tid*8 +4] = smem[4*sx+offset]; DATA_x[tid*8 +1] = smem[1*sx+offset]; DATA_x[tid*8 +5] = smem[5*sx+offset]; DATA_x[tid*8 +2] = smem[2*sx+offset]; DATA_x[tid*8 +6] = smem[6*sx+offset]; DATA_x[tid*8 +3] = smem[3*sx+offset]; DATA_x[tid*8 +7] = smem[7*sx+offset]; } sx = 72; loop9 : for(tid = 0; tid < 64; tid++){ hi = tid>>3; lo = tid&7; offset = hi*8+lo; smem[0*sx+offset] = DATA_y[tid*8 + 0]; smem[4*sx+offset] = DATA_y[tid*8 + 1]; smem[1*sx+offset] = DATA_y[tid*8 + 4]; smem[5*sx+offset] = DATA_y[tid*8 + 5]; smem[2*sx+offset] = DATA_y[tid*8 + 2]; smem[6*sx+offset] = DATA_y[tid*8 + 3]; smem[3*sx+offset] = DATA_y[tid*8 + 6]; smem[7*sx+offset] = DATA_y[tid*8 + 7]; } loop10 : for(tid = 0; tid < 64; tid++){ data_y[0] = DATA_y[tid*8 + 0]; data_y[1] = DATA_y[tid*8 + 1]; data_y[2] = DATA_y[tid*8 + 2]; data_y[3] = DATA_y[tid*8 + 3]; data_y[4] = DATA_y[tid*8 + 4]; data_y[5] = DATA_y[tid*8 + 5]; data_y[6] = DATA_y[tid*8 + 6]; data_y[7] = DATA_y[tid*8 + 7]; hi = tid>>3; lo = tid&7; loady8(data_y, smem, hi*72+lo, 8); DATA_y[tid*8 + 0] = data_y[0]; DATA_y[tid*8 + 1] = data_y[1]; DATA_y[tid*8 + 2] = data_y[2]; DATA_y[tid*8 + 3] = data_y[3]; DATA_y[tid*8 + 4] = data_y[4]; DATA_y[tid*8 + 5] = data_y[5]; DATA_y[tid*8 + 6] = data_y[6]; DATA_y[tid*8 + 7] = data_y[7]; } loop11 : for(tid = 0; tid < 64; tid++){ //Load post-trans data_y[0] = DATA_y[tid*8]; data_y[1] = DATA_y[tid*8 + 1]; data_y[2] = DATA_y[tid*8 + 2]; data_y[3] = DATA_y[tid*8 + 3]; data_y[4] = DATA_y[tid*8 + 4]; data_y[5] = DATA_y[tid*8 + 5]; data_y[6] = DATA_y[tid*8 + 6]; data_y[7] = DATA_y[tid*8 + 7]; data_x[0] = DATA_x[tid*8]; data_x[1] = DATA_x[tid*8 + 1]; data_x[2] = DATA_x[tid*8 + 2]; data_x[3] = DATA_x[tid*8 + 3]; data_x[4] = DATA_x[tid*8 + 4]; data_x[5] = DATA_x[tid*8 + 5]; data_x[6] = DATA_x[tid*8 + 6]; data_x[7] = DATA_x[tid*8 + 7]; //Final 8pt FFT... FFT8(data_x, data_y); //Global store work_x[0*stride+tid] = data_x[reversed[0]]; work_x[1*stride+tid] = data_x[reversed[1]]; work_x[2*stride+tid] = data_x[reversed[2]]; work_x[3*stride+tid] = data_x[reversed[3]]; work_x[4*stride+tid] = data_x[reversed[4]]; work_x[5*stride+tid] = data_x[reversed[5]]; work_x[6*stride+tid] = data_x[reversed[6]]; work_x[7*stride+tid] = data_x[reversed[7]]; work_y[0*stride+tid] = data_y[reversed[0]]; work_y[1*stride+tid] = data_y[reversed[1]]; work_y[2*stride+tid] = data_y[reversed[2]]; work_y[3*stride+tid] = data_y[reversed[3]]; work_y[4*stride+tid] = data_y[reversed[4]]; work_y[5*stride+tid] = data_y[reversed[5]]; work_y[6*stride+tid] = data_y[reversed[6]]; work_y[7*stride+tid] = data_y[reversed[7]]; } }