#+title: Basic Block Generation #+author: Yann Herklotz #+email: yann [at] yannherklotz [dot] com * RTLBlockgen :PROPERTIES: :header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlockgen.v :END: Refers to [[rtlblockgen-equalities][rtlblockgen-equalities]]. #+begin_src coq :comments no :padline no :exports none <> #+end_src #+name: rtlblockgen-imports #+begin_src coq Require compcert.backend.RTL. Require Import compcert.common.AST. Require Import compcert.lib.Maps. Require Import compcert.lib.Integers. Require Import compcert.lib.Floats. Require Import vericert.common.Vericertlib. Require Import vericert.hls.RTLBlockInstr. Require Import vericert.hls.RTLBlock. #[local] Open Scope positive. #+end_src #+name: rtlblockgen-equalities-insert #+begin_src coq :comments no <> #+end_src #+name: rtlblockgen-main #+begin_src coq Parameter partition : RTL.function -> Errors.res function. (** [find_block max nodes index]: Does not need to be sorted, because we use filter and the max fold function to find the desired element. *) Definition find_block (max: positive) (nodes: list positive) (index: positive) : positive := List.fold_right Pos.min max (List.filter (fun x => (index <=? x)) nodes). (*Compute find_block (2::94::28::40::19::nil) 40.*) Definition check_instr (n: positive) (istr: RTL.instruction) (istr': instr) := match istr, istr' with | RTL.Inop n', RBnop => (n' + 1 =? n) | RTL.Iop op args dst n', RBop None op' args' dst' => ceq operation_eq op op' && ceq list_pos_eq args args' && ceq peq dst dst' && (n' + 1 =? n) | RTL.Iload chunk addr args dst n', RBload None chunk' addr' args' dst' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq dst dst' && (n' + 1 =? n) | RTL.Istore chunk addr args src n', RBstore None chunk' addr' args' src' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq src src' && (n' + 1 =? n) | _, _ => false end. Definition check_cf_instr_body (istr: RTL.instruction) (istr': instr): bool := match istr, istr' with | RTL.Iop op args dst _, RBop None op' args' dst' => ceq operation_eq op op' && ceq list_pos_eq args args' && ceq peq dst dst' | RTL.Iload chunk addr args dst _, RBload None chunk' addr' args' dst' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq dst dst' | RTL.Istore chunk addr args src _, RBstore None chunk' addr' args' src' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq src src' | RTL.Inop _, RBnop | RTL.Icall _ _ _ _ _, RBnop | RTL.Itailcall _ _ _, RBnop | RTL.Ibuiltin _ _ _ _, RBnop | RTL.Icond _ _ _ _, RBnop | RTL.Ijumptable _ _, RBnop | RTL.Ireturn _, RBnop => true | _, _ => false end. Definition check_cf_instr (istr: RTL.instruction) (istr': cf_instr) := match istr, istr' with | RTL.Inop n, RBgoto n' => (n =? n') | RTL.Iop _ _ _ n, RBgoto n' => (n =? n') | RTL.Iload _ _ _ _ n, RBgoto n' => (n =? n') | RTL.Istore _ _ _ _ n, RBgoto n' => (n =? n') | RTL.Icall sig (inl r) args dst n, RBcall sig' (inl r') args' dst' n' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' && ceq peq dst dst' && (n =? n') | RTL.Icall sig (inr i) args dst n, RBcall sig' (inr i') args' dst' n' => ceq signature_eq sig sig' && ceq peq i i' && ceq list_pos_eq args args' && ceq peq dst dst' && (n =? n') | RTL.Itailcall sig (inl r) args, RBtailcall sig' (inl r') args' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' | RTL.Itailcall sig (inr r) args, RBtailcall sig' (inr r') args' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' | RTL.Icond cond args n1 n2, RBcond cond' args' n1' n2' => ceq condition_eq cond cond' && ceq list_pos_eq args args' && ceq peq n1 n1' && ceq peq n2 n2' | RTL.Ijumptable r ns, RBjumptable r' ns' => ceq peq r r' && ceq list_pos_eq ns ns' | RTL.Ireturn (Some r), RBreturn (Some r') => ceq peq r r' | RTL.Ireturn None, RBreturn None => true | _, _ => false end. Definition is_cf_instr (n: positive) (i: RTL.instruction) := match i with | RTL.Inop n' => negb (n' + 1 =? n) | RTL.Iop _ _ _ n' => negb (n' + 1 =? n) | RTL.Iload _ _ _ _ n' => negb (n' + 1 =? n) | RTL.Istore _ _ _ _ n' => negb (n' + 1 =? n) | RTL.Icall _ _ _ _ _ => true | RTL.Itailcall _ _ _ => true | RTL.Ibuiltin _ _ _ _ => true | RTL.Icond _ _ _ _ => true | RTL.Ijumptable _ _ => true | RTL.Ireturn _ => true end. Definition check_present_blocks (c: code) (n: list positive) (max: positive) (i: positive) (istr: RTL.instruction) := let blockn := find_block max n i in match c ! blockn with | Some istrs => match List.nth_error istrs.(bb_body) (Pos.to_nat blockn - Pos.to_nat i)%nat with | Some istr' => if is_cf_instr i istr then check_cf_instr istr istrs.(bb_exit) && check_cf_instr_body istr istr' else check_instr i istr istr' | None => false end | None => false end. Definition transl_function (f: RTL.function) := match partition f with | Errors.OK f' => let blockids := map fst (PTree.elements f'.(fn_code)) in if forall_ptree (check_present_blocks f'.(fn_code) blockids (fold_right Pos.max 1 blockids)) f.(RTL.fn_code) then Errors.OK f' else Errors.Error (Errors.msg "check_present_blocks failed") | Errors.Error msg => Errors.Error msg end. Definition transl_fundef := transf_partial_fundef transl_function. Definition transl_program : RTL.program -> Errors.res program := transform_partial_program transl_fundef. #+end_src ** Equalities #+name: rtlblockgen-equalities #+begin_src coq :tangle no Lemma comparison_eq: forall (x y : comparison), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma condition_eq: forall (x y : Op.condition), {x = y} + {x <> y}. Proof. generalize comparison_eq; intro. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. decide equality. Defined. Lemma addressing_eq : forall (x y : Op.addressing), {x = y} + {x <> y}. Proof. generalize Int.eq_dec; intro. generalize AST.ident_eq; intro. generalize Z.eq_dec; intro. generalize Ptrofs.eq_dec; intro. decide equality. Defined. Lemma typ_eq : forall (x y : AST.typ), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma operation_eq: forall (x y : Op.operation), {x = y} + {x <> y}. Proof. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. generalize Float.eq_dec; intro. generalize Float32.eq_dec; intro. generalize AST.ident_eq; intro. generalize condition_eq; intro. generalize addressing_eq; intro. generalize typ_eq; intro. decide equality. Defined. Lemma memory_chunk_eq : forall (x y : AST.memory_chunk), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma list_typ_eq: forall (x y : list AST.typ), {x = y} + {x <> y}. Proof. generalize typ_eq; intro. decide equality. Defined. Lemma option_typ_eq : forall (x y : option AST.typ), {x = y} + {x <> y}. Proof. generalize typ_eq; intro. decide equality. Defined. Lemma signature_eq: forall (x y : AST.signature), {x = y} + {x <> y}. Proof. repeat decide equality. Defined. Lemma list_operation_eq : forall (x y : list Op.operation), {x = y} + {x <> y}. Proof. generalize operation_eq; intro. decide equality. Defined. Lemma list_pos_eq : forall (x y : list positive), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intros. decide equality. Defined. Lemma sig_eq : forall (x y : AST.signature), {x = y} + {x <> y}. Proof. repeat decide equality. Defined. Lemma instr_eq: forall (x y : instr), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intro. generalize typ_eq; intro. generalize Int.eq_dec; intro. generalize memory_chunk_eq; intro. generalize addressing_eq; intro. generalize operation_eq; intro. generalize condition_eq; intro. generalize signature_eq; intro. generalize list_operation_eq; intro. generalize list_pos_eq; intro. generalize AST.ident_eq; intro. repeat decide equality. Defined. Lemma cf_instr_eq: forall (x y : cf_instr), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intro. generalize typ_eq; intro. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. generalize Float.eq_dec; intro. generalize Float32.eq_dec; intro. generalize Ptrofs.eq_dec; intro. generalize memory_chunk_eq; intro. generalize addressing_eq; intro. generalize operation_eq; intro. generalize condition_eq; intro. generalize signature_eq; intro. generalize list_operation_eq; intro. generalize list_pos_eq; intro. generalize AST.ident_eq; intro. repeat decide equality. Defined. Definition ceq {A: Type} (eqd: forall a b: A, {a = b} + {a <> b}) (a b: A): bool := if eqd a b then true else false. #+end_src * RTLBlockgenproof :PROPERTIES: :header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlockgenproof.v :END: #+begin_src coq :comments no :padline no :exports none <> #+end_src ** Imports #+name: rtlblockgenproof-imports #+begin_src coq Require compcert.backend.RTL. Require Import compcert.common.AST. Require Import compcert.lib.Maps. Require Import vericert.hls.RTLBlock. Require Import vericert.hls.RTLBlockgen. #+end_src ** Match states The ~match_states~ predicate describes which states are equivalent between the two languages, in this case ~RTL~ and ~RTLBlock~. #+name: rtlblockgenproof-match-states #+begin_src coq Inductive match_states : RTL.state -> RTLBlock.state -> Prop := | match_state : forall stk f tf sp pc rs m (TF: transl_function f = OK tf), match_states (RTL.State stk f sp pc rs m) (RTLBlock.State stk tf sp (find_block max n i) rs m). #+end_src ** Correctness #+name: rtlblockgenproof-correctness #+begin_src coq Section CORRECTNESS. Context (prog : RTL.program). Context (tprog : RTLBlock.program). Context (TRANSL : match_prog prog tprog). Theorem transf_program_correct: Smallstep.forward_simulation (RTL.semantics prog) (RTLBlock.semantics tprog). Proof. eapply Smallstep.forward_simulation_plus; eauto with htlproof. apply senv_preserved. End CORRECTNESS. #+end_src * Partition :PROPERTIES: :header-args:ocaml: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/Partition.ml :END: #+begin_src ocaml :comments no :padline no :exports none <> #+end_src #+name: partition-main #+begin_src ocaml open Printf open Clflags open Camlcoq open Datatypes open Coqlib open Maps open AST open Kildall open Op open RTLBlockInstr open RTLBlock (** Assuming that the nodes of the CFG [code] are numbered in reverse postorder (cf. pass [Renumber]), an edge from [n] to [s] is a normal edge if [s < n] and a back-edge otherwise. *) let find_edge i n = let succ = RTL.successors_instr i in let filt = List.filter (fun s -> P.lt n s || P.lt s (P.pred n)) succ in ((match filt with [] -> [] | _ -> [n]), filt) let find_edges c = PTree.fold (fun l n i -> let f = find_edge i n in (List.append (fst f) (fst l), List.append (snd f) (snd l))) c ([], []) let prepend_instr i = function | {bb_body = bb; bb_exit = e} -> {bb_body = (i :: bb); bb_exit = e} let translate_inst = function | RTL.Inop _ -> Some RBnop | RTL.Iop (op, ls, dst, _) -> Some (RBop (None, op, ls, dst)) | RTL.Iload (m, addr, ls, dst, _) -> Some (RBload (None, m, addr, ls, dst)) | RTL.Istore (m, addr, ls, src, _) -> Some (RBstore (None, m, addr, ls, src)) | _ -> None let translate_cfi = function | RTL.Icall (s, r, ls, dst, n) -> Some (RBcall (s, r, ls, dst, n)) | RTL.Itailcall (s, r, ls) -> Some (RBtailcall (s, r, ls)) | RTL.Ibuiltin (e, ls, r, n) -> Some (RBbuiltin (e, ls, r, n)) | RTL.Icond (c, ls, dst1, dst2) -> Some (RBcond (c, ls, dst1, dst2)) | RTL.Ijumptable (r, ls) -> Some (RBjumptable (r, ls)) | RTL.Ireturn r -> Some (RBreturn r) | _ -> None let rec next_bblock_from_RTL is_start e (c : RTL.code) s i = let succ = List.map (fun i -> (i, PTree.get i c)) (RTL.successors_instr i) in let trans_inst = (translate_inst i, translate_cfi i) in match trans_inst, succ with | (None, Some i'), _ -> if List.exists (fun x -> x = s) (snd e) && not is_start then Errors.OK { bb_body = [RBnop]; bb_exit = RBgoto s } else Errors.OK { bb_body = [RBnop]; bb_exit = i' } | (Some i', None), (s', Some i_n)::[] -> if List.exists (fun x -> x = s) (fst e) then Errors.OK { bb_body = [i']; bb_exit = RBgoto s' } else if List.exists (fun x -> x = s) (snd e) && not is_start then Errors.OK { bb_body = [RBnop]; bb_exit = RBgoto s } else begin match next_bblock_from_RTL false e c s' i_n with | Errors.OK bb -> Errors.OK (prepend_instr i' bb) | Errors.Error msg -> Errors.Error msg end | _, _ -> Errors.Error (Errors.msg (coqstring_of_camlstring "next_bblock_from_RTL went wrong.")) let rec traverseacc f l c = match l with | [] -> Errors.OK c | x::xs -> match f x c with | Errors.Error msg -> Errors.Error msg | Errors.OK x' -> match traverseacc f xs x' with | Errors.Error msg -> Errors.Error msg | Errors.OK xs' -> Errors.OK xs' let rec translate_all edge c s res = let c_bb, translated = res in if List.exists (fun x -> P.eq x s) translated then Errors.OK (c_bb, translated) else (match PTree.get s c with | None -> Errors.Error (Errors.msg (coqstring_of_camlstring "Could not translate all.")) | Some i -> match next_bblock_from_RTL true edge c s i with | Errors.Error msg -> Errors.Error msg | Errors.OK {bb_body = bb; bb_exit = e} -> let succ = List.filter (fun x -> P.lt x s) (successors_instr e) in (match traverseacc (translate_all edge c) succ (c_bb, s :: translated) with | Errors.Error msg -> Errors.Error msg | Errors.OK (c', t') -> Errors.OK (PTree.set s {bb_body = bb; bb_exit = e} c', t'))) (* Partition a function and transform it into RTLBlock. *) let function_from_RTL f = let e = find_edges f.RTL.fn_code in match translate_all e f.RTL.fn_code f.RTL.fn_entrypoint (PTree.empty, []) with | Errors.Error msg -> Errors.Error msg | Errors.OK (c, _) -> Errors.OK { fn_sig = f.RTL.fn_sig; fn_stacksize = f.RTL.fn_stacksize; fn_params = f.RTL.fn_params; fn_entrypoint = f.RTL.fn_entrypoint; fn_code = c } let partition = function_from_RTL #+end_src * License #+name: license #+begin_src coq :tangle no (* * Vericert: Verified high-level synthesis. * Copyright (C) 2020-2022 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) #+end_src