(* * Vericert: Verified high-level synthesis. * Copyright (C) 2021-2022 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import Coq.Logic.Decidable. Require Import Coq.Structures.Equalities. Require Import compcert.backend.Registers. Require Import compcert.common.AST. Require Import compcert.common.Globalenvs. Require Import compcert.common.Memory. Require Import compcert.common.Values. Require Import compcert.lib.Floats. Require Import compcert.lib.Integers. Require Import compcert.lib.Maps. Require compcert.verilog.Op. Require Import vericert.common.Vericertlib. Require Import vericert.hls.GibleSeq. Require Import vericert.hls.GiblePar. Require Import vericert.hls.Gible. Require Import vericert.hls.HashTree. Require Import vericert.hls.Predicate. Require Import vericert.common.DecEq. Require vericert.common.NonEmpty. Module NE := NonEmpty. Import NE.NonEmptyNotation. #[local] Open Scope non_empty_scope. #[local] Open Scope positive. #[local] Open Scope pred_op. (*| Schedule Oracle =============== This oracle determines if a schedule was valid by performing symbolic execution on the input and output and showing that these behave the same. This acts on each basic block separately, as the rest of the functions should be equivalent. |*) Definition reg := positive. (*| Resource -------- A resource is either a register ``Reg`` or memory ``Mem``. There used to be two more, which were predicates ``Pred`` and exits ``Exit``, however, these are not actively used inside of other expressions, so it was better to factor them out. They are kept track of in a different forest, because they will be pointing to different types of operations. Exits will point to predicated syntactic control-flow instructions. Predicates will point to (maybe predicated) set-predicate operations. |*) Variant resource : Set := | Reg : reg -> resource | Mem : resource. (*| The following defines quite a few equality comparisons automatically, however, these can be optimised heavily if written manually, as their proofs are not needed. |*) Lemma resource_eq : forall (r1 r2 : resource), {r1 = r2} + {r1 <> r2}. Proof. decide equality; apply Pos.eq_dec. Defined. (*| We then create equality lemmas for a resource and a module to index resources uniquely. The indexing is done by setting Mem to 1, whereas all other infinitely many registers will all be shifted right by 1. This means that they will never overlap. |*) Module R_indexed. Definition t := resource. Definition index (rs: resource) : positive := match rs with | Reg r => (xO r) | Mem => 1 end. Lemma index_inj: forall (x y: t), index x = index y -> x = y. Proof. destruct x; destruct y; crush. Qed. Definition eq := resource_eq. End R_indexed. (*| We can then create expressions that mimic the expressions defined in RTLBlock and RTLPar, which use expressions instead of registers as their inputs and outputs. This means that we can accumulate all the results of the operations as general expressions that will be present in those registers. - Ebase: the starting value of the register. - Eop: Some arithmetic operation on a number of registers. - Eload: A load from a memory location into a register. - Estore: A store from a register to a memory location. Then, to make recursion over expressions easier, expression_list is also defined in the datatype, as that enables mutual recursive definitions over the datatypes. They used to contain ``Esetpred`` and ``Eexit``, however, it is just simpler to factor these out because they are not used by other expressions inside of the tree. |*) Inductive expression : Type := | Ebase : resource -> expression | Eop : Op.operation -> expression_list -> expression | Eload : AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression | Estore : expression -> AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression with expression_list : Type := | Enil : expression_list | Econs : expression -> expression_list -> expression_list. Variant exit_expression : Type := | EEbase : exit_expression | EEexit : cf_instr -> exit_expression. Definition pred_op := @Predicate.pred_op positive. Definition predicate := positive. Definition predicated A := NE.non_empty (pred_op * A). Variant pred_expression : Type := | PEbase : positive -> pred_expression | PEsetpred : Op.condition -> expression_list -> pred_expression. Definition pred_expr := predicated expression. Definition pred_pexpr := @Predicate.pred_op pred_expression. Definition pred_eexpr := predicated exit_expression. (*| Using ``IMap`` we can create a map from resources to any other type, as resources can be uniquely identified as positive numbers. |*) Module RTree := ITree(R_indexed). Record forest : Type := mk_forest { forest_regs : RTree.t pred_expr; forest_preds : PTree.t pred_pexpr; forest_exit : pred_eexpr }. Definition empty : forest := mk_forest (RTree.empty _) (PTree.empty _) (NE.singleton (Ptrue, EEbase)). Definition get_forest v (f: forest) := match RTree.get v f.(forest_regs) with | None => NE.singleton (Ptrue, (Ebase v)) | Some v' => v' end. Definition set_forest r v (f: forest) := mk_forest (RTree.set r v f.(forest_regs)) f.(forest_preds) f.(forest_exit). Definition get_forest_p' p (f: PTree.t pred_pexpr) := match PTree.get p f with | None => Plit (true, PEbase p) | Some v' => v' end. Definition get_forest_p p (f: forest) := get_forest_p' p f.(forest_preds). Definition set_forest_p p v (f: forest) := mk_forest f.(forest_regs) (PTree.set p v f.(forest_preds)) f.(forest_exit). Definition set_forest_e e (f: forest) := mk_forest f.(forest_regs) f.(forest_preds) e. Declare Scope forest. Notation "a '#r' b" := (get_forest b a) (at level 1) : forest. Notation "a '#r' b <- c" := (set_forest b c a) (at level 1, b at next level) : forest. Notation "a '#p' b" := (get_forest_p b a) (at level 1) : forest. Notation "a '#p' b <- c" := (set_forest_p b c a) (at level 1, b at next level) : forest. Notation "a '<-e' e" := (set_forest_e e a) (at level 1) : forest. #[local] Open Scope forest. Definition maybe {A: Type} (vo: A) (pr: predset) p (v: A) := match p with | Some p' => if eval_predf pr p' then v else vo | None => v end. Definition get_pr i := match i with mk_instr_state a b c => b end. Definition get_m i := match i with mk_instr_state a b c => c end. Definition eval_predf_opt pr p := match p with Some p' => eval_predf pr p' | None => true end. (*| Finally we want to define the semantics of execution for the expressions with symbolic values, so the result of executing the expressions will be an expressions. |*) Section SEMANTICS. Context {A : Type}. Record ctx : Type := mk_ctx { ctx_is: instr_state; ctx_sp: val; ctx_ge: Genv.t A unit; }. Definition ctx_rs ctx := is_rs (ctx_is ctx). Definition ctx_ps ctx := is_ps (ctx_is ctx). Definition ctx_mem ctx := is_mem (ctx_is ctx). Inductive sem_value : ctx -> expression -> val -> Prop := | Sbase_reg: forall r ctx, sem_value ctx (Ebase (Reg r)) ((ctx_rs ctx) !! r) | Sop: forall ctx op args v lv, sem_val_list ctx args lv -> Op.eval_operation (ctx_ge ctx) (ctx_sp ctx) op lv (ctx_mem ctx) = Some v -> sem_value ctx (Eop op args) v | Sload : forall ctx mexp addr chunk args a v m' lv, sem_mem ctx mexp m' -> sem_val_list ctx args lv -> Op.eval_addressing (ctx_ge ctx) (ctx_sp ctx) addr lv = Some a -> Memory.Mem.loadv chunk m' a = Some v -> sem_value ctx (Eload chunk addr args mexp) v with sem_mem : ctx -> expression -> Memory.mem -> Prop := | Sstore : forall ctx mexp vexp chunk addr args lv v a m' m'', sem_mem ctx mexp m' -> sem_value ctx vexp v -> sem_val_list ctx args lv -> Op.eval_addressing (ctx_ge ctx) (ctx_sp ctx) addr lv = Some a -> Memory.Mem.storev chunk m' a v = Some m'' -> sem_mem ctx (Estore vexp chunk addr args mexp) m'' | Sbase_mem : forall ctx, sem_mem ctx (Ebase Mem) (ctx_mem ctx) with sem_val_list : ctx -> expression_list -> list val -> Prop := | Snil : forall ctx, sem_val_list ctx Enil nil | Scons : forall ctx e v l lv, sem_value ctx e v -> sem_val_list ctx l lv -> sem_val_list ctx (Econs e l) (v :: lv) . Variant sem_exit : ctx -> exit_expression -> option cf_instr -> Prop := | Sexit : forall ctx cf, sem_exit ctx (EEexit cf) (Some cf) | Sbase_exit : forall ctx, sem_exit ctx EEbase None. (*| ``sem_pred`` is the semantics for evaluating a single predicate expression to a boolean value, which will later be used to evaluate predicate expressions to booleans. |*) Variant sem_pred : ctx -> pred_expression -> bool -> Prop := | Spred: forall ctx args c lv v, sem_val_list ctx args lv -> Op.eval_condition c lv (ctx_mem ctx) = Some v -> sem_pred ctx (PEsetpred c args) v | Sbase_pred: forall ctx p, sem_pred ctx (PEbase p) ((ctx_ps ctx) !! p). (*| I was trying to avoid such rich semantics for pred_pexpr (by not having the type in the first place), but I think it is needed to model predicates properly. The main problem is that these semantics are quite strict, and they state that one must be able to execute the left and right hand sides of an ``Pand``, for example, to be able to show that the ``Pand`` itself has a value. Otherwise it is not possible to evaluate the ``Pand``. |*) Inductive sem_pexpr (c: ctx) : pred_pexpr -> bool -> Prop := | sem_pexpr_Ptrue : sem_pexpr c Ptrue true | sem_pexpr_Pfalse : sem_pexpr c Pfalse false | sem_pexpr_Plit : forall p (b: bool) bres, sem_pred c p (if b then bres else negb bres) -> sem_pexpr c (Plit (b, p)) bres | sem_pexpr_Pand_false : forall p1 p2, sem_pexpr c p1 false \/ sem_pexpr c p2 false -> sem_pexpr c (Pand p1 p2) false | sem_pexpr_Pand_true : forall p1 p2, sem_pexpr c p1 true -> sem_pexpr c p2 true -> sem_pexpr c (Pand p1 p2) true | sem_pexpr_Por_true : forall p1 p2, sem_pexpr c p1 true \/ sem_pexpr c p2 true -> sem_pexpr c (Por p1 p2) true | sem_pexpr_Por_false : forall p1 p2, sem_pexpr c p1 false -> sem_pexpr c p2 false -> sem_pexpr c (Por p1 p2) false. Lemma sem_pexpr_Pand : forall ctx p1 p2 a b, sem_pexpr ctx p1 a -> sem_pexpr ctx p2 b -> sem_pexpr ctx (p1 ∧ p2) (a && b). Proof. intros. destruct a; cbn; try destruct b; solve [constructor; auto]. Qed. Lemma sem_pexpr_Por : forall ctx p1 p2 a b, sem_pexpr ctx p1 a -> sem_pexpr ctx p2 b -> sem_pexpr ctx (p1 ∨ p2) (a || b). Proof. intros. destruct a; cbn; try destruct b; try solve [constructor; auto]. Qed. (*| ``from_pred_op`` translates a ``pred_op`` into a ``pred_pexpr``. The main difference between the two is that ``pred_op`` contains register that predicate registers that speak about the current state of predicates, whereas ``pred_pexpr`` have been expanded into expressions. |*) Fixpoint from_pred_op (f: PTree.t pred_pexpr) (p: pred_op): pred_pexpr := match p with | Ptrue => Ptrue | Pfalse => Pfalse | Plit (b, p') => if b then get_forest_p' p' f else negate (get_forest_p' p' f) | Pand a b => Pand (from_pred_op f a) (from_pred_op f b) | Por a b => Por (from_pred_op f a) (from_pred_op f b) end. Inductive sem_pred_expr {A B: Type} (f: PTree.t pred_pexpr) (sem: ctx -> A -> B -> Prop): ctx -> predicated A -> B -> Prop := | sem_pred_expr_cons_true : forall ctx e pr p' v, sem_pexpr ctx (from_pred_op f pr) true -> sem ctx e v -> sem_pred_expr f sem ctx ((pr, e) ::| p') v | sem_pred_expr_cons_false : forall ctx e pr p' v, sem_pexpr ctx (from_pred_op f pr) false -> sem_pred_expr f sem ctx p' v -> sem_pred_expr f sem ctx ((pr, e) ::| p') v | sem_pred_expr_single : forall ctx e pr v, sem_pexpr ctx (from_pred_op f pr) true -> sem ctx e v -> sem_pred_expr f sem ctx (NE.singleton (pr, e)) v . Definition collapse_pe (p: pred_expr) : option expression := (* unused *) match p with | NE.singleton (APtrue, p) => Some p | _ => None end. Inductive sem_predset : ctx -> forest -> predset -> Prop := | Spredset: forall ctx f rs', (forall x, sem_pexpr ctx (f #p x) (rs' !! x)) -> sem_predset ctx f rs'. Inductive sem_regset : ctx -> forest -> regset -> Prop := | Sregset: forall ctx f rs', (forall x, sem_pred_expr f.(forest_preds) sem_value ctx (f #r (Reg x)) (rs' !! x)) -> sem_regset ctx f rs'. (*| Talking about the actual generation of the forest, to make this work one has to be able to make the assumption that ``forall i, eval (f #p i) = eval (f' #p i)``, which should then allow for the equivalences of registers and expressions. |*) Inductive sem : ctx -> forest -> instr_state * option cf_instr -> Prop := | Sem: forall ctx rs' m' f pr' cf, sem_regset ctx f rs' -> sem_predset ctx f pr' -> sem_pred_expr f.(forest_preds) sem_mem ctx (f #r Mem) m' -> sem_pred_expr f.(forest_preds) sem_exit ctx f.(forest_exit) cf -> sem ctx f (mk_instr_state rs' pr' m', cf). End SEMANTICS. Fixpoint beq_expression (e1 e2: expression) {struct e1}: bool := match e1, e2 with | Ebase r1, Ebase r2 => if resource_eq r1 r2 then true else false | Eop op1 el1, Eop op2 el2 => if operation_eq op1 op2 then beq_expression_list el1 el2 else false | Eload chk1 addr1 el1 e1, Eload chk2 addr2 el2 e2 => if memory_chunk_eq chk1 chk2 then if addressing_eq addr1 addr2 then if beq_expression_list el1 el2 then beq_expression e1 e2 else false else false else false | Estore e1 chk1 addr1 el1 m1, Estore e2 chk2 addr2 el2 m2 => if memory_chunk_eq chk1 chk2 then if addressing_eq addr1 addr2 then if beq_expression_list el1 el2 then if beq_expression m1 m2 then beq_expression e1 e2 else false else false else false else false | _, _ => false end with beq_expression_list (el1 el2: expression_list) {struct el1} : bool := match el1, el2 with | Enil, Enil => true | Econs e1 t1, Econs e2 t2 => beq_expression e1 e2 && beq_expression_list t1 t2 | _, _ => false end . Scheme expression_ind2 := Induction for expression Sort Prop with expression_list_ind2 := Induction for expression_list Sort Prop. Definition beq_pred_expression (e1 e2: pred_expression) : bool := match e1, e2 with | PEbase p1, PEbase p2 => if peq p1 p2 then true else false | PEsetpred c1 el1, PEsetpred c2 el2 => if condition_eq c1 c2 then beq_expression_list el1 el2 else false | _, _ => false end. Definition beq_exit_expression (e1 e2: exit_expression) : bool := match e1, e2 with | EEbase, EEbase => true | EEexit cf1, EEexit cf2 => if cf_instr_eq cf1 cf2 then true else false | _, _ => false end. Lemma beq_expression_correct: forall e1 e2, beq_expression e1 e2 = true -> e1 = e2. Proof. intro e1; apply expression_ind2 with (P := fun (e1 : expression) => forall e2, beq_expression e1 e2 = true -> e1 = e2) (P0 := fun (e1 : expression_list) => forall e2, beq_expression_list e1 e2 = true -> e1 = e2); simplify; try solve [repeat match goal with | [ H : context[match ?x with _ => _ end] |- _ ] => destruct x eqn:? | [ H : context[if ?x then _ else _] |- _ ] => destruct x eqn:? end; subst; f_equal; crush; eauto using Peqb_true_eq]. Qed. Lemma beq_expression_refl: forall e, beq_expression e e = true. Proof. intros. induction e using expression_ind2 with (P0 := fun el => beq_expression_list el el = true); crush; repeat (destruct_match; crush); []. crush. rewrite IHe. rewrite IHe0. auto. Qed. Lemma beq_expression_list_refl: forall e, beq_expression_list e e = true. Proof. induction e; auto. simplify. rewrite beq_expression_refl. auto. Qed. Lemma beq_expression_correct2: forall e1 e2, beq_expression e1 e2 = false -> e1 <> e2. Proof. induction e1 using expression_ind2 with (P0 := fun el1 => forall el2, beq_expression_list el1 el2 = false -> el1 <> el2). - intros. simplify. repeat (destruct_match; crush). - intros. simplify. repeat (destruct_match; crush). subst. apply IHe1 in H. unfold not in *. intros. apply H. inv H0. auto. - intros. simplify. repeat (destruct_match; crush); subst. unfold not in *; intros. inv H0. rewrite beq_expression_refl in H. discriminate. unfold not in *; intros. inv H. rewrite beq_expression_list_refl in Heqb. discriminate. - simplify. repeat (destruct_match; crush); subst; unfold not in *; intros. inv H0. rewrite beq_expression_refl in H; crush. inv H. rewrite beq_expression_refl in Heqb0; crush. inv H. rewrite beq_expression_list_refl in Heqb; crush. (* - simplify. repeat (destruct_match; crush); subst. *) (* unfold not in *; intros. inv H0. rewrite beq_expression_list_refl in H; crush. *) - simplify. repeat (destruct_match; crush); subst. - simplify. repeat (destruct_match; crush); subst. apply andb_false_iff in H. inv H. unfold not in *; intros. inv H. rewrite beq_expression_refl in H0; discriminate. unfold not in *; intros. inv H. rewrite beq_expression_list_refl in H0; discriminate. Qed. Lemma expression_dec: forall e1 e2: expression, {e1 = e2} + {e1 <> e2}. Proof. intros. destruct (beq_expression e1 e2) eqn:?. apply beq_expression_correct in Heqb. auto. apply beq_expression_correct2 in Heqb. auto. Defined. Lemma beq_expression_list_correct: forall e1 e2, beq_expression_list e1 e2 = true -> e1 = e2. Proof. induction e1; crush. - destruct_match; crush. - destruct_match; crush. apply IHe1 in H1; subst. apply beq_expression_correct in H0; subst. trivial. Qed. Lemma beq_expression_list_correct2: forall e1 e2, beq_expression_list e1 e2 = false -> e1 <> e2. Proof. induction e1; crush. - destruct_match; crush. - destruct_match; crush. apply andb_false_iff in H. inv H. apply beq_expression_correct2 in H0. unfold not in *; intros. apply H0. inv H. auto. apply IHe1 in H0. unfold not in *; intros. apply H0. inv H. auto. Qed. Lemma beq_pred_expression_correct: forall e1 e2, beq_pred_expression e1 e2 = true -> e1 = e2. Proof. destruct e1, e2; crush. - destruct_match; crush. - destruct_match; subst; crush. apply beq_expression_list_correct in H; subst. trivial. Qed. Lemma beq_pred_expression_refl: forall e, beq_pred_expression e e = true. Proof. destruct e; crush; destruct_match; crush. apply beq_expression_list_refl. Qed. Lemma beq_pred_expression_correct2: forall e1 e2, beq_pred_expression e1 e2 = false -> e1 <> e2. Proof. destruct e1, e2; unfold not; crush. + destruct_match; crush. + destruct_match; crush. inv H0. now rewrite beq_expression_list_refl in H. Qed. Lemma beq_exit_expression_correct: forall e1 e2, beq_exit_expression e1 e2 = true <-> e1 = e2. Proof. destruct e1, e2; split; crush; destruct_match; subst; crush. Qed. Definition pred_expr_item_eq (pe1 pe2: pred_op * expression) : bool := @equiv_dec _ SATSetoid _ (fst pe1) (fst pe2) && beq_expression (snd pe1) (snd pe2). Lemma pred_expr_dec: forall (pe1 pe2: pred_op * expression), {pred_expr_item_eq pe1 pe2 = true} + {pred_expr_item_eq pe1 pe2 = false}. Proof. intros; destruct (pred_expr_item_eq pe1 pe2) eqn:?; unfold not; [tauto | now right]. Qed. Lemma pred_expr_dec2: forall (pe1 pe2: pred_op * expression), {pred_expr_item_eq pe1 pe2 = true} + {~ pred_expr_item_eq pe1 pe2 = true}. Proof. intros; destruct (pred_expr_item_eq pe1 pe2) eqn:?; unfold not; [tauto | now right]. Qed. Lemma pred_expression_dec: forall e1 e2: pred_expression, {e1 = e2} + {e1 <> e2}. Proof. intros. destruct (beq_pred_expression e1 e2) eqn:?. eauto using beq_pred_expression_correct. eauto using beq_pred_expression_correct2. Qed. Lemma exit_expression_refl: forall e, beq_exit_expression e e = true. Proof. destruct e; crush; destruct_match; crush. Qed. Lemma exit_expression_dec: forall e1 e2: exit_expression, {e1 = e2} + {e1 <> e2}. Proof. intros. destruct (beq_exit_expression e1 e2) eqn:?. - left. eapply beq_exit_expression_correct; eauto. - right. unfold not; intros. assert (X: ~ (beq_exit_expression e1 e2 = true)) by eauto with bool. subst. apply X. apply exit_expression_refl. Qed. Module HashExpr' <: MiniDecidableType. Definition t := expression. Definition eq_dec := expression_dec. End HashExpr'. Module HashExpr := Make_UDT(HashExpr'). Module Import HT := HashTree(HashExpr). Module PHashExpr' <: MiniDecidableType. Definition t := pred_expression. Definition eq_dec := pred_expression_dec. End PHashExpr'. Module PHashExpr := Make_UDT(PHashExpr'). Module PHT := HashTree(PHashExpr). Module EHashExpr' <: MiniDecidableType. Definition t := exit_expression. Definition eq_dec := exit_expression_dec. End EHashExpr'. Module EHashExpr := Make_UDT(EHashExpr'). Module EHT := HashTree(EHashExpr). Fixpoint hash_predicate (max: predicate) (ap: pred_pexpr) (h: PHT.hash_tree) : pred_op * PHT.hash_tree := match ap with | Ptrue => (Ptrue, h) | Pfalse => (Pfalse, h) | Plit (b, ap') => let (p', h') := PHT.hash_value max ap' h in (Plit (b, p'), h') | Pand p1 p2 => let (p1', h') := hash_predicate max p1 h in let (p2', h'') := hash_predicate max p2 h' in (Pand p1' p2', h'') | Por p1 p2 => let (p1', h') := hash_predicate max p1 h in let (p2', h'') := hash_predicate max p2 h' in (Por p1' p2', h'') end. Module HashExprNorm(H: Hashable). Module H := HashTree(H). Definition norm_tree: Type := PTree.t pred_op * H.hash_tree. Fixpoint norm_expression (max: predicate) (pe: predicated H.t) (h: H.hash_tree) : norm_tree := match pe with | NE.singleton (p, e) => let (hashed_e, h') := H.hash_value max e h in (PTree.set hashed_e p (PTree.empty _), h') | (p, e) ::| pr => let (hashed_e, h') := H.hash_value max e h in let (norm_pr, h'') := norm_expression max pr h' in match norm_pr ! hashed_e with | Some pr_op => (PTree.set hashed_e (pr_op ∨ p) norm_pr, h'') | None => (PTree.set hashed_e p norm_pr, h'') end end. Definition mk_pred_stmnt' (e: predicate) p_e := ¬ p_e ∨ Plit (true, e). Definition mk_pred_stmnt t := PTree.fold (fun x a b => mk_pred_stmnt' a b ∧ x) t T. Definition mk_pred_stmnt_l (t: list (predicate * pred_op)) := fold_left (fun x a => uncurry mk_pred_stmnt' a ∧ x) t T. Definition encode_expression max pe h := let (tree, h) := norm_expression max pe h in (mk_pred_stmnt tree, h). Definition sem_adapter {G A: Type} (ht: H.hash_tree) (default: H.t) (sem: @ctx G -> H.t -> A -> Prop) : @ctx G -> positive -> A -> Prop := fun c p a => match ht ! p with | Some res => sem c res a | None => sem c default a end. Definition predicated_of_hashed (default: pred_op * positive) (nt: PTree.t pred_op): predicated positive := NE.of_list_def default (map (fun a: positive * pred_op => let (f, s) := a in (s, f)) (PTree.elements nt)). Definition sem_norm_expr {G A: Type} (f: PTree.t pred_pexpr) (default: H.t) (sem: @ctx G -> H.t -> A -> Prop) (c: @ctx G) (nt: norm_tree) (res: A): Prop := let (nt', ht) := nt in let adapter := sem_adapter ht default sem in let new_predicated := predicated_of_hashed (Ptrue, 1%positive) nt' in sem_pred_expr f adapter c new_predicated res. Lemma sem_norm_expr1 : forall A G f max default (sem: @ctx G -> H.t -> A -> Prop) c pred res, sem_pred_expr f sem c pred res -> sem_norm_expr f default sem c (norm_expression max pred (PTree.empty _)) res. Proof. Admitted. Lemma sem_norm_expr2 : forall A G f max default (sem: @ctx G -> H.t -> A -> Prop) c pred res, sem_norm_expr f default sem c (norm_expression max pred (PTree.empty _)) res -> sem_pred_expr f sem c pred res. Proof. Admitted. End HashExprNorm. Module HN := HashExprNorm(HashExpr). Module EHN := HashExprNorm(EHashExpr). (*Fixpoint encode_expression_ne (max: predicate) (pe: pred_expr_ne) (h: hash_tree) : (PTree.t pred_op) * hash_tree := match pe with | NE.singleton (p, e) => let (p', h') := hash_value max e h in (Por (Pnot p) (Pvar p'), h') | (p, e) ::| pr => let (p', h') := hash_value max e h in let (p'', h'') := encode_expression_ne max pr h' in (Pand (Por (Pnot p) (Pvar p')) p'', h'') end.*) Fixpoint max_pred_expr (pe: pred_expr) : positive := match pe with | NE.singleton (p, e) => max_predicate p | (p, e) ::| pe' => Pos.max (max_predicate p) (max_pred_expr pe') end. Definition ge_preserved {A B C D: Type} (ge: Genv.t A B) (tge: Genv.t C D) : Prop := (forall sp op vl m, Op.eval_operation ge sp op vl m = Op.eval_operation tge sp op vl m) /\ (forall sp addr vl, Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl). Lemma ge_preserved_same: forall A B ge, @ge_preserved A B A B ge ge. Proof. unfold ge_preserved; auto. Qed. #[local] Hint Resolve ge_preserved_same : core. Inductive match_states : instr_state -> instr_state -> Prop := | match_states_intro: forall ps ps' rs rs' m m', (forall x, rs !! x = rs' !! x) -> (forall x, ps !! x = ps' !! x) -> m = m' -> match_states (mk_instr_state rs ps m) (mk_instr_state rs' ps' m'). Lemma match_states_refl x : match_states x x. Proof. destruct x; constructor; crush. Qed. Lemma match_states_commut x y : match_states x y -> match_states y x. Proof. inversion 1; constructor; crush. Qed. Lemma match_states_trans x y z : match_states x y -> match_states y z -> match_states x z. Proof. repeat inversion 1; constructor; crush. Qed. #[global] Instance match_states_Equivalence : Equivalence match_states := { Equivalence_Reflexive := match_states_refl ; Equivalence_Symmetric := match_states_commut ; Equivalence_Transitive := match_states_trans ; }. Inductive similar {A B} : @ctx A -> @ctx B -> Prop := | similar_intro : forall ist ist' sp ge tge, ge_preserved ge tge -> match_states ist ist' -> similar (mk_ctx ist sp ge) (mk_ctx ist' sp tge). Definition beq_pred_expr_once (pe1 pe2: pred_expr) : bool := let (p1, h) := HN.encode_expression 1%positive pe1 (PTree.empty _) in let (p2, h') := HN.encode_expression 1%positive pe2 h in equiv_check p1 p2. Definition pred_eexpr_eqb: forall pe1 pe2: pred_eexpr, {pe1 = pe2} + {pe1 <> pe2}. Admitted. Definition beq_pred_eexpr (pe1 pe2: pred_eexpr) : bool := if pred_eexpr_eqb pe1 pe2 then true else let (p1, h) := EHN.encode_expression 1%positive pe1 (PTree.empty _) in let (p2, h') := EHN.encode_expression 1%positive pe2 h in equiv_check p1 p2. Definition tree_equiv_check_el (np2: PTree.t pred_op) (n: positive) (p: pred_op): bool := match np2 ! n with | Some p' => equiv_check p p' | None => equiv_check p ⟂ end. Definition tree_equiv_check_None_el (np2: PTree.t pred_op) (n: positive) (p: pred_op): bool := match np2 ! n with | Some p' => true | None => equiv_check p ⟂ end. Variant sem_pred_tree {A B: Type} (sem: ctx -> expression -> B -> Prop): @ctx A -> PTree.t expression -> PTree.t pred_op -> B -> Prop := | sem_pred_tree_intro : forall ctx expr e pr v et pt, eval_predf (ctx_ps ctx) pr = true -> sem ctx expr v -> pt ! e = Some pr -> et ! e = Some expr -> sem_pred_tree sem ctx et pt v. Definition predicated_mutexcl {A: Type} (pe: predicated A): Prop := forall x y, NE.In x pe -> NE.In y pe -> x <> y -> fst x ⇒ ¬ fst y. Lemma norm_expr_constant : forall x m h t h' e p, HN.norm_expression m x h = (t, h') -> h ! e = Some p -> h' ! e = Some p. Proof. Admitted. Lemma predicated_cons : forall A (a: pred_op * A) x, predicated_mutexcl (a ::| x) -> predicated_mutexcl x. Proof. unfold predicated_mutexcl; intros. apply H; auto; constructor; tauto. Qed. Definition sat_aequiv ap1 ap2 := exists h p1 p2, sat_equiv p1 p2 /\ hash_predicate 1 ap1 h = (p1, h) /\ hash_predicate 1 ap2 h = (p2, h). Lemma aequiv_symm : forall a b, sat_aequiv a b -> sat_aequiv b a. Proof. unfold sat_aequiv; simplify; do 3 eexists; simplify; [symmetry | |]; eauto. Qed. Lemma existsh : forall ap1, exists h p1, hash_predicate 1 ap1 h = (p1, h). Proof. Admitted. Lemma aequiv_refl : forall a, sat_aequiv a a. Proof. unfold sat_aequiv; intros. pose proof (existsh a); simplify. do 3 eexists; simplify; eauto. reflexivity. Qed. Lemma aequiv_trans : forall a b c, sat_aequiv a b -> sat_aequiv b c -> sat_aequiv a c. Proof. unfold sat_aequiv; intros. simplify. Abort. Lemma norm_expr_mutexcl : forall m pe h t h' e e' p p', HN.norm_expression m pe h = (t, h') -> predicated_mutexcl pe -> t ! e = Some p -> t ! e' = Some p' -> e <> e' -> p ⇒ ¬ p'. Proof. Abort. Lemma sem_pexpr_determ : forall A c p b1 b2, @sem_pexpr A c p b1 -> sem_pexpr c p b2 -> b1 = b2. Proof. Admitted. (** This requires proof of determinism for all of sem *) Lemma sem_pexpr_negate : forall A ctx p b, sem_pexpr ctx p b -> @sem_pexpr A ctx (¬ p) (negb b). Proof. induction p; crush. - destruct_match. destruct b0; crush. inv Heqp0. constructor. inv H. rewrite negb_involutive. auto. constructor. inv H. auto. - inv H. constructor. - inv H. constructor. - inv H. inv H3. + apply IHp1 in H. solve [constructor; auto]. + apply IHp2 in H. solve [constructor; auto]. + apply IHp1 in H2. apply IHp2 in H4. solve [constructor; auto]. - inv H. inv H3. + apply IHp1 in H. solve [constructor; auto]. + apply IHp2 in H. solve [constructor; auto]. + apply IHp1 in H2. apply IHp2 in H4. solve [constructor; auto]. Qed. Lemma sem_pexpr_negate2 : forall A ctx p b, @sem_pexpr A ctx (¬ p) (negb b) -> sem_pexpr ctx p b. Proof. induction p; crush. - destruct_match. destruct b0; crush. inv Heqp0. constructor. inv H. rewrite negb_involutive in *. auto. constructor. inv H. auto. - inv H. destruct b; try discriminate. constructor. - inv H. destruct b; try discriminate. constructor. - inv H. destruct b; try discriminate. + constructor. inv H1; eauto. + destruct b; try discriminate. constructor; eauto. - inv H. destruct b; try discriminate. + constructor. inv H1; eauto. + destruct b; try discriminate. constructor; eauto. Qed. Lemma sem_pexpr_forward_eval1 : forall A ctx f_p ps, (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) -> forall p, @sem_pexpr A ctx (from_pred_op f_p p) false -> eval_predf ps p = false. Proof. induction p; crush. - destruct_match. inv Heqp0. destruct b. cbn. specialize (H p0). apply sem_pexpr_determ with (b2 := false) in H; auto. specialize (H p0). apply sem_pexpr_determ with (b2 := true) in H; auto. cbn. rewrite H. auto. replace false with (negb true) in H0 by trivial. apply sem_pexpr_negate2 in H0. auto. - inv H0. - inv H0. inv H2. rewrite eval_predf_Pand. rewrite IHp1; eauto. rewrite eval_predf_Pand. rewrite IHp2; eauto with bool. - inv H0. rewrite eval_predf_Por. rewrite IHp1; eauto. Qed. Lemma sem_pexpr_forward_eval2 : forall A ctx f_p ps, (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) -> forall p, @sem_pexpr A ctx (from_pred_op f_p p) true -> eval_predf ps p = true. Proof. induction p; crush. - destruct_match. inv Heqp0. destruct b. cbn. specialize (H p0). apply sem_pexpr_determ with (b2 := true) in H; auto. specialize (H p0). apply sem_pexpr_determ with (b2 := false) in H; auto. cbn. rewrite H. auto. replace true with (negb false) in H0 by trivial. apply sem_pexpr_negate2 in H0. auto. - inv H0. - inv H0. rewrite eval_predf_Pand. rewrite IHp1; eauto. - inv H0. inv H2. rewrite eval_predf_Por. rewrite IHp1; eauto. rewrite eval_predf_Por. rewrite IHp2; eauto with bool. Qed. Lemma sem_pexpr_forward_eval : forall A ctx f_p ps, (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) -> forall p b, @sem_pexpr A ctx (from_pred_op f_p p) b -> eval_predf ps p = b. Proof. intros; destruct b; eauto using sem_pexpr_forward_eval1, sem_pexpr_forward_eval2. Qed. Lemma norm_expression_sem_pred : forall A B f sem ctx pe v, sem_pred_expr f sem ctx pe v -> (forall x : positive, sem_pexpr ctx (get_forest_p' x f) (ctx_ps ctx) !! x) -> forall pt et et' max, predicated_mutexcl pe -> max_pred_expr pe <= max -> HN.norm_expression max pe et = (pt, et') -> @sem_pred_tree A B sem ctx et' pt v. Proof. induction 1; crush; repeat (destruct_match; []); try destruct_match; match goal with | H: (_, _) = (_, _) |- _ => inv H end. { econstructor. 3: { apply PTree.gss. } 2: { eassumption. } { simplify. pose proof Heqp as Y1. apply hash_value_in in Y1. eapply norm_expr_constant in Heqn; [|eassumption]. eapply sem_pexpr_forward_eval in H. rewrite eval_predf_Por. rewrite H. eauto with bool. assumption. } (* { apply hash_value_in in Heqp. eapply norm_expr_constant in Heqp0; eauto. } } { econstructor; eauto. apply PTree.gss. apply hash_value_in in Heqp. eapply norm_expr_constant in Heqp0; eauto. } { assert (sem_pred_tree sem0 ctx0 et' t v). eapply IHsem_pred_expr. eapply predicated_cons; eauto. instantiate (1 := max). lia. eassumption. inv H3. destruct (Pos.eq_dec e0 h); subst. rewrite H6 in Heqo. simplify. econstructor; try apply PTree.gss; eauto. unfold eval_predf in *. simplify. auto with bool. econstructor; eauto. now rewrite PTree.gso. } { assert (X: sem_pred_tree sem0 ctx0 et' t v). eapply IHsem_pred_expr. eapply predicated_cons; eauto. instantiate (1 := max). lia. eassumption. inv X. destruct (Pos.eq_dec e0 h); crush. econstructor; eauto. now rewrite PTree.gso. } { econstructor; eauto. apply PTree.gss. eapply hash_value_in; eassumption. } Qed.*) Admitted. Lemma norm_expression_sem_pred2 : forall A B f sem ctx v pt et et', @sem_pred_tree A B sem ctx et' pt v -> (forall x : positive, sem_pexpr ctx (get_forest_p' x f) (ctx_ps ctx) !! x) -> forall pe, predicated_mutexcl pe -> HN.norm_expression (max_pred_expr pe) pe et = (pt, et') -> sem_pred_expr f sem ctx pe v. Proof. Admitted. Definition pred_expr_eqb: forall pe1 pe2: pred_expr, {pe1 = pe2} + {pe1 <> pe2}. Admitted. Definition beq_pred_expr (pe1 pe2: pred_expr) : bool := if pred_expr_eqb pe1 pe2 then true else let (np1, h) := HN.norm_expression 1 pe1 (PTree.empty _) in let (np2, h') := HN.norm_expression 1 pe2 h in forall_ptree (tree_equiv_check_el np2) np1 && forall_ptree (tree_equiv_check_None_el np1) np2. Definition pred_pexpr_eqb: forall pe1 pe2: pred_pexpr, {pe1 = pe2} + {pe1 <> pe2}. Admitted. Definition beq_pred_pexpr (pe1 pe2: pred_pexpr): bool := if pred_pexpr_eqb pe1 pe2 then true else let (np1, h) := hash_predicate 1 pe1 (PTree.empty _) in let (np2, h') := hash_predicate 1 pe2 h in equiv_check np1 np2. Definition check f1 f2 := RTree.beq beq_pred_expr f1.(forest_regs) f2.(forest_regs) && PTree.beq beq_pred_pexpr f1.(forest_preds) f2.(forest_preds) && beq_pred_eexpr f1.(forest_exit) f2.(forest_exit). Lemma inj_asgn_eg : forall a b, (a =? b)%positive = (a =? a)%positive -> a = b. Proof. intros. destruct (peq a b); subst. auto. rewrite OrdersEx.Positive_as_OT.eqb_refl in H. now apply Peqb_true_eq. Qed. Lemma inj_asgn : forall a b, (forall (f: positive -> bool), f a = f b) -> a = b. Proof. intros. apply inj_asgn_eg. eauto. Qed. Lemma inj_asgn_false: forall n1 n2 , ~ (forall c: positive -> bool, c n1 = negb (c n2)). Proof. unfold not; intros. specialize (H (fun x => true)). simplify. discriminate. Qed. Lemma negb_inj: forall a b, negb a = negb b -> a = b. Proof. destruct a, b; crush. Qed. Lemma sat_predicate_Plit_inj : forall p1 p2, Plit p1 == Plit p2 -> p1 = p2. Proof. simplify. destruct p1, p2. destruct b, b0. f_equal. unfold sat_equiv in H. cbn in H. now apply inj_asgn. solve [exfalso; eapply inj_asgn_false; eauto]. solve [exfalso; eapply inj_asgn_false; eauto]. assert (p = p0). eapply inj_asgn. intros. specialize (H f). apply negb_inj in H. auto. rewrite H0; auto. Qed. Definition ind_preds t := forall e1 e2 p1 p2 c, e1 <> e2 -> t ! e1 = Some p1 -> t ! e2 = Some p2 -> sat_predicate p1 c = true -> sat_predicate p2 c = false. Definition ind_preds_l t := forall (e1: predicate) e2 p1 p2 c, e1 <> e2 -> In (e1, p1) t -> In (e2, p2) t -> sat_predicate p1 c = true -> sat_predicate p2 c = false. (*Lemma pred_equivalence_Some' : forall ta tb e pe pe', list_norepet (map fst ta) -> list_norepet (map fst tb) -> In (e, pe) ta -> In (e, pe') tb -> fold_right (fun p a => mk_pred_stmnt' (fst p) (snd p) ∧ a) T ta == fold_right (fun p a => mk_pred_stmnt' (fst p) (snd p) ∧ a) T tb -> pe == pe'. Proof. induction ta as [|hd tl Hta]; try solve [crush]. - intros * NRP1 NRP2 IN1 IN2 FOLD. inv NRP1. inv IN1. simpl in FOLD. Lemma pred_equivalence_Some : forall (ta tb: PTree.t pred_op) e pe pe', ta ! e = Some pe -> tb ! e = Some pe' -> mk_pred_stmnt ta == mk_pred_stmnt tb -> pe == pe'. Proof. intros * SMEA SMEB EQ. unfold mk_pred_stmnt in *. repeat rewrite PTree.fold_spec in EQ. Lemma pred_equivalence_None : forall (ta tb: PTree.t pred_op) e pe, (mk_pred_stmnt ta) == (mk_pred_stmnt tb) -> ta ! e = Some pe -> tb ! e = None -> equiv pe ⟂. Abort. Lemma pred_equivalence : forall (ta tb: PTree.t pred_op) e pe, equiv (mk_pred_stmnt ta) (mk_pred_stmnt tb) -> ta ! e = Some pe -> equiv pe ⟂ \/ (exists pe', tb ! e = Some pe' /\ equiv pe pe'). Proof. intros * EQ SME. destruct (tb ! e) eqn:HTB. { right. econstructor. split; eauto. eapply pred_equivalence_Some; eauto. } { left. eapply pred_equivalence_None; eauto. } Qed.*) Section CORRECT. Definition fd := GibleSeq.fundef. Definition tfd := GiblePar.fundef. Context (ictx: @ctx fd) (octx: @ctx tfd) (HSIM: similar ictx octx). Lemma sem_value_mem_det: forall e v v' m m', (sem_value ictx e v -> sem_value octx e v' -> v = v') /\ (sem_mem ictx e m -> sem_mem octx e m' -> m = m'). Proof using HSIM. induction e using expression_ind2 with (P0 := fun p => forall v v', sem_val_list ictx p v -> sem_val_list octx p v' -> v = v'); inv HSIM; match goal with H: context [match_states] |- _ => inv H end; repeat progress simplify; try solve [match goal with | H: sem_value _ _ _, H2: sem_value _ _ _ |- _ => inv H; inv H2; auto | H: sem_mem _ _ _, H2: sem_mem _ _ _ |- _ => inv H; inv H2; auto | H: sem_val_list _ _ _, H2: sem_val_list _ _ _ |- _ => inv H; inv H2; auto end]. - repeat match goal with | H: sem_value _ _ _ |- _ => inv H | H: sem_val_list {| ctx_ge := ge; |} ?e ?l1, H2: sem_val_list {| ctx_ge := tge |} ?e ?l2, IH: forall _ _, sem_val_list _ _ _ -> sem_val_list _ _ _ -> _ = _ |- _ => assert (X: l1 = l2) by (apply IH; auto) | H: ge_preserved _ _ |- _ => inv H | |- context [ctx_rs] => unfold ctx_rs; cbn | H: context [ctx_mem] |- _ => unfold ctx_mem in H; cbn end; crush. - repeat match goal with H: sem_value _ _ _ |- _ => inv H end; simplify; assert (lv0 = lv) by (apply IHe; eauto); subst; match goal with H: ge_preserved _ _ |- _ => inv H end; match goal with H: context [Op.eval_addressing _ _ _ _ = Op.eval_addressing _ _ _ _] |- _ => rewrite H in * end; assert (a0 = a1) by crush; assert (m'2 = m'1) by (apply IHe0; eauto); crush. - inv H0; inv H3. simplify. assert (lv = lv0) by ( apply IHe2; eauto). subst. assert (a1 = a0). { inv H. rewrite H3 in *. crush. } assert (v0 = v1). { apply IHe1; auto. } assert (m'1 = m'2). { apply IHe3; auto. } crush. - inv H0. inv H3. f_equal. apply IHe; auto. apply IHe0; auto. Qed. Lemma sem_value_mem_corr: forall e v m, (sem_value ictx e v -> sem_value octx e v) /\ (sem_mem ictx e m -> sem_mem octx e m). Proof using HSIM. induction e using expression_ind2 with (P0 := fun p => forall v, sem_val_list ictx p v -> sem_val_list octx p v); inv HSIM; match goal with H: context [match_states] |- _ => inv H end; repeat progress simplify. - inv H0. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn. rewrite H1. constructor. - inv H0. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn. constructor. - inv H0. apply IHe in H6. econstructor; try eassumption. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H. crush. - inv H0. - inv H0. eapply IHe in H10. eapply IHe0 in H8; auto. econstructor; try eassumption. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H; crush. - inv H0. - inv H0. - inv H0. eapply IHe1 in H11; auto. eapply IHe2 in H12; auto. eapply IHe3 in H9; auto. econstructor; try eassumption. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H; crush. - inv H0. econstructor. - inv H0. eapply IHe in H6; auto. eapply IHe0 in H8. econstructor; eassumption. Qed. Lemma sem_value_det: forall e v v', sem_value ictx e v -> sem_value octx e v' -> v = v'. Proof using HSIM. intros. eapply sem_value_mem_det; eauto; apply Mem.empty. Qed. Lemma sem_value_corr: forall e v, sem_value ictx e v -> sem_value octx e v. Proof using HSIM. intros. eapply sem_value_mem_corr; eauto; apply Mem.empty. Qed. Lemma sem_mem_det: forall e v v', sem_mem ictx e v -> sem_mem octx e v' -> v = v'. Proof using HSIM. intros. eapply sem_value_mem_det; eauto; apply (Vint (Int.repr 0%Z)). Qed. Lemma sem_mem_corr: forall e v, sem_mem ictx e v -> sem_mem octx e v. Proof using HSIM. intros. eapply sem_value_mem_corr; eauto; apply (Vint (Int.repr 0%Z)). Qed. Lemma sem_val_list_det: forall e l l', sem_val_list ictx e l -> sem_val_list octx e l' -> l = l'. Proof using HSIM. induction e; simplify. - inv H; inv H0; auto. - inv H; inv H0. f_equal. eapply sem_value_det; eauto; try apply Mem.empty. apply IHe; eauto. Qed. Lemma sem_val_list_corr: forall e l, sem_val_list ictx e l -> sem_val_list octx e l. Proof using HSIM. induction e; simplify. - inv H; constructor. - inv H. apply sem_value_corr in H3; auto; try apply Mem.empty; apply IHe in H5; constructor; assumption. Qed. Lemma sem_pred_det: forall e v v', sem_pred ictx e v -> sem_pred octx e v' -> v = v'. Proof using HSIM. try solve [inversion 1]; pose proof sem_value_det; pose proof sem_val_list_det; inv HSIM; match goal with H: match_states _ _ |- _ => inv H end; simplify. inv H2; inv H5; auto. assert (lv = lv0) by (eapply H0; eauto). subst. unfold ctx_mem in *. crush. Qed. Lemma sem_pred_corr: forall e v, sem_pred ictx e v -> sem_pred octx e v. Proof using HSIM. try solve [inversion 1]; pose proof sem_value_corr; pose proof sem_val_list_corr; inv HSIM; match goal with H: match_states _ _ |- _ => inv H end; simplify. inv H2; auto. apply H0 in H5. econstructor; eauto. unfold ctx_ps; cbn. rewrite H4. constructor. Qed. #[local] Opaque PTree.set. Lemma exists_norm_expr : forall x pe expr m t h h', NE.In (pe, expr) x -> HN.norm_expression m x h = (t, h') -> exists e pe', t ! e = Some pe' /\ pe ⇒ pe' /\ h' ! e = Some expr. Proof. Admitted. (* Lemma exists_norm_expr3 : forall e x pe expr m t h h', t ! e = None -> norm_expression m x h = (t, h') -> ~ NE.In (pe, expr) x. Proof. Abort.*) (* Lemma norm_expr_implies : forall x m h t h' e expr p, norm_expression m x h = (t, h') -> h' ! e = Some expr -> t ! e = Some p -> exists p', NE.In (p', expr) x /\ p' ⇒ p. Proof. Admitted. Lemma norm_expr_In : forall A B sem ctx x pe expr v, @sem_pred_expr A B sem ctx x v -> NE.In (pe, expr) x -> eval_predf (ctx_ps ctx) pe = true -> sem ctx expr v. Proof. Admitted. Lemma norm_expr_forall_impl : forall m x h t h' e1 e2 p1 p2, predicated_mutexcl x -> norm_expression m x h = (t, h') -> t ! e1 = Some p1 -> t ! e2 = Some p2 -> e1 <> e2 -> p1 ⇒ ¬ p2. Admitted. Lemma norm_expr_replace : forall A B sem ctx x pe expr v, @sem_pred_expr A B sem ctx x v -> eval_predf (ctx_ps ctx) pe = false -> @sem_pred_expr A B sem ctx (NE.replace pred_expr_item_eq (pe, expr) (⟂, expr) x) v. Proof using. induction x; simplify; destruct_match; auto; destruct a; unfold pred_expr_item_eq in Heqb; simplify; try (destruct (equiv_dec pe p) eqn:?; [|discriminate]; []). - rewrite e0 in H0; inv H; crush. - apply beq_expression_correct in H2; subst; pose proof H0; rewrite e0 in H2; apply sem_pred_expr_cons_false; auto; inv H; crush. - inv H; constructor; auto; now apply sem_pred_expr_cons_false. Qed.*) Section SEM_PRED. Context (B: Type). Context (isem: @ctx fd -> expression -> B -> Prop). Context (osem: @ctx tfd -> expression -> B -> Prop). Context (SEMSIM: forall e v v', isem ictx e v -> osem octx e v' -> v = v'). Ltac simplify' l := intros; unfold_constants; cbn -[l] in *; repeat (nicify_hypotheses; nicify_goals; kill_bools; substpp); cbn -[l] in *. Lemma check_correct_sem_value: forall x x' v v' t t' h h', beq_pred_expr x x' = true -> predicated_mutexcl x -> predicated_mutexcl x' -> HN.norm_expression (Pos.max (max_pred_expr x) (max_pred_expr x')) x (PTree.empty _) = (t, h) -> HN.norm_expression (Pos.max (max_pred_expr x) (max_pred_expr x')) x' h = (t', h') -> sem_pred_tree isem ictx h t v -> sem_pred_tree osem octx h' t' v' -> v = v'. Proof using HSIM SEMSIM. intros. inv H4. inv H5. destruct (Pos.eq_dec e e0); subst. { eapply norm_expr_constant in H3; [|eassumption]. assert (expr = expr0) by (setoid_rewrite H3 in H12; crush); subst. eapply SEMSIM; eauto. } { destruct (t ! e0) eqn:?. { assert (p == pr0). { unfold beq_pred_expr in H. destruct_match. subst. assert (t = t') by admit. subst. setoid_rewrite Heqo in H11. inv H11. reflexivity. repeat (destruct_match; []). (*rewrite Heqp1 in H3. inv H3. simplify. eapply forall_ptree_true in H2. 2: { eapply Heqo. } unfold tree_equiv_check_el in H2. rewrite H11 in H2. now apply equiv_check_correct in H2. } pose proof H0. eapply norm_expr_forall_impl in H0; [| | | |eassumption]; try eassumption. unfold "⇒" in H0. unfold eval_predf in *. apply H0 in H6. rewrite negate_correct in H6. apply negb_true_iff in H6. inv HSIM. match goal with H: match_states _ _ |- _ => inv H end. unfold ctx_ps, ctx_mem, ctx_rs in *. simplify. pose proof eval_predf_pr_equiv pr0 ps ps' H17. unfold eval_predf in *. rewrite H5 in H6. crush. } { unfold beq_pred_expr in H. repeat (destruct_match; []). inv H2. rewrite Heqp0 in H3. inv H3. simplify. eapply forall_ptree_true in H3. 2: { eapply H11. } unfold tree_equiv_check_None_el in H3. rewrite Heqo in H3. apply equiv_check_correct in H3. rewrite H3 in H4. unfold eval_predf in H4. crush. } } Qed.*) Admitted. Lemma check_correct_sem_value2: forall f x x' v v', (forall x : positive, sem_pexpr ictx (get_forest_p' x f) (ctx_ps ictx) !! x) -> (forall x : positive, sem_pexpr octx (get_forest_p' x f) (ctx_ps octx) !! x) -> beq_pred_expr x x' = true -> predicated_mutexcl x -> predicated_mutexcl x' -> sem_pred_expr f isem ictx x v -> sem_pred_expr f osem octx x' v' -> v = v'. Proof. intros * FRL1 FRL2 **. pose proof H. unfold beq_pred_expr in H. intros. repeat (destruct_match; try discriminate; []). eapply check_correct_sem_value; try eassumption. admit. admit. eapply norm_expression_sem_pred; eauto. (*lia.*) admit. admit. eapply norm_expression_sem_pred; eauto. (*lia.*) admit. admit. Admitted. Lemma check_correct_sem_value3: forall f x x' v v', beq_pred_expr x x' = true -> sem_pred_expr f isem ictx x v -> sem_pred_expr f osem octx x' v' -> v = v'. Proof. induction x. - intros * BEQ SEM1 SEM2. unfold beq_pred_expr in *. destruct_match; subst. (* det argument *) admit. repeat (destruct_match; try discriminate; []); subst. rename Heqn0 into HNORM1. rename Heqn1 into HNORM2. inv SEM1. rename H0 into HEVAL. rename H2 into ISEM. pose HNORM1 as X. eapply exists_norm_expr in X; [|constructor]. cbn in *. simplify. (* simplify' norm_expression.*) rename H0 into HT1. rename H1 into HH1. rename H into HFORALL1. rename H2 into HFORALL2. destruct (t0 ! x) eqn:DSTR. (* { eapply forall_ptree_true in HT1; eauto. unfold tree_equiv_check_el in *. rewrite DSTR in HT1. apply equiv_check_dec in HT1. eapply exists_norm_expr2 in DSTR; try solve [eapply norm_expr_constant; eassumption | eassumption]. eapply norm_expr_In in DSTR; try eassumption. eauto. inv HSIM; simplify. now setoid_rewrite <- HT1. } { eapply forall_ptree_true in HT1; [|eassumption]. unfold tree_equiv_check_el in *. rewrite DSTR in HT1. apply equiv_check_dec in HT1. now setoid_rewrite HT1 in HEVAL. } - intros. unfold beq_pred_expr in H. intros. repeat (destruct_match; try discriminate; []); subst. destruct a. inv H0. { pose Heqp as X. eapply exists_norm_expr in X; [|constructor; tauto]. simplify' norm_expression. eapply forall_ptree_true in H0; [|eassumption]. destruct (t0 ! x0) eqn:DSTR. { unfold tree_equiv_check_el in H0. rewrite DSTR in H0. apply equiv_check_dec in H0. eapply exists_norm_expr2 in DSTR; try solve [eapply norm_expr_constant; eassumption | eassumption]. eapply norm_expr_In in DSTR; try eassumption; eauto. rewrite <- H0. inv HSIM; eauto. } { unfold tree_equiv_check_el in *. rewrite DSTR in H0. apply equiv_check_dec in H0. now rewrite H0 in H7. } } { (* This is the inductive argument, which says that if the element is in the list, then taking it out will result in two equivalent lists, otherwise just taking the current element results in equivalent lists.*) simplify' norm_expression. eapply exists_norm_expr in Heqp; [|constructor]; eauto. simplify' norm_expression. eapply forall_ptree_true in H0; [|eassumption]. unfold tree_equiv_check_el in H0. destruct (t0 ! x0) eqn:DSTR. { apply equiv_check_dec in H0. eapply exists_norm_expr2 in DSTR; try solve [eapply norm_expr_constant; eassumption | eassumption]. } } Admitted.*) Abort. End SEM_PRED. Section SEM_PRED_CORR. Context (B: Type). Context (isem: @ctx fd -> expression -> B -> Prop). Context (osem: @ctx tfd -> expression -> B -> Prop). Context (SEMCORR: forall e v, isem ictx e v -> osem octx e v). (* Lemma sem_pred_tree_corr: forall x x' v t t' h h', beq_pred_expr x x' = true -> predicated_mutexcl x -> predicated_mutexcl x' -> norm_expression (Pos.max (max_pred_expr x) (max_pred_expr x')) x (PTree.empty _) = (t, h) -> norm_expression (Pos.max (max_pred_expr x) (max_pred_expr x')) x' h = (t', h') -> sem_pred_tree isem ictx h t v -> sem_pred_tree osem octx h' t' v. Proof using SEMCORR. Admitted.*) End SEM_PRED_CORR. Lemma check_correct: forall (fa fb : forest) i i', check fa fb = true -> sem ictx fa i -> sem octx fb i' -> match_states (fst i) (fst i') /\ snd i = snd i'. Proof using HSIM. Admitted. Lemma check_correct2: forall (fa fb : forest) i, check fa fb = true -> sem ictx fa i -> exists i', sem octx fb i' /\ match_states (fst i) (fst i') /\ snd i = snd i'. Proof. Admitted. End CORRECT. Lemma get_empty: forall r, empty#r r = NE.singleton (Ptrue, Ebase r). Proof. unfold "#r"; intros. rewrite RTree.gempty. trivial. Qed. Section BOOLEAN_EQUALITY. Context {A B: Type}. Context (beqA: A -> B -> bool). Fixpoint beq2' (m1: PTree.tree' A) (m2: PTree.tree' B) {struct m1} : bool := match m1, m2 with | PTree.Node001 r1, PTree.Node001 r2 => beq2' r1 r2 | PTree.Node010 x1, PTree.Node010 x2 => beqA x1 x2 | PTree.Node011 x1 r1, PTree.Node011 x2 r2 => beqA x1 x2 && beq2' r1 r2 | PTree.Node100 l1, PTree.Node100 l2 => beq2' l1 l2 | PTree.Node101 l1 r1, PTree.Node101 l2 r2 => beq2' l1 l2 && beq2' r1 r2 | PTree.Node110 l1 x1, PTree.Node110 l2 x2 => beqA x1 x2 && beq2' l1 l2 | PTree.Node111 l1 x1 r1, PTree.Node111 l2 x2 r2 => beqA x1 x2 && beq2' l1 l2 && beq2' r1 r2 | _, _ => false end. Definition beq2 (m1: PTree.t A) (m2 : PTree.t B) : bool := match m1, m2 with | PTree.Empty, PTree.Empty => true | PTree.Nodes m1', PTree.Nodes m2' => beq2' m1' m2' | _, _ => false end. Let beq2_optA (o1: option A) (o2: option B) : bool := match o1, o2 with | None, None => true | Some a1, Some a2 => beqA a1 a2 | _, _ => false end. Lemma beq_correct_bool: forall m1 m2, beq2 m1 m2 = true <-> (forall x, beq2_optA (m1 ! x) (m2 ! x) = true). Proof. Local Transparent PTree.Node. assert (beq_NN: forall l1 o1 r1 l2 o2 r2, PTree.not_trivially_empty l1 o1 r1 -> PTree.not_trivially_empty l2 o2 r2 -> beq2 (PTree.Node l1 o1 r1) (PTree.Node l2 o2 r2) = beq2 l1 l2 && beq2_optA o1 o2 && beq2 r1 r2). { intros. destruct l1, o1, r1; try contradiction; destruct l2, o2, r2; try contradiction; simpl; rewrite ? andb_true_r, ? andb_false_r; auto. rewrite andb_comm; auto. f_equal; rewrite andb_comm; auto. } induction m1 using PTree.tree_ind; [|induction m2 using PTree.tree_ind]. - intros. simpl; split; intros. + destruct m2; try discriminate. simpl; auto. + replace m2 with (@PTree.Empty B); auto. apply PTree.extensionality; intros x. specialize (H x). destruct (m2 ! x); simpl; easy. - split; intros. + destruct (PTree.Node l o r); try discriminate. simpl; auto. + replace (PTree.Node l o r) with (@PTree.Empty A); auto. apply PTree.extensionality; intros x. specialize (H0 x). destruct ((PTree.Node l o r) ! x); simpl in *; easy. - rewrite beq_NN by auto. split; intros. + InvBooleans. rewrite ! PTree.gNode. destruct x. * apply IHm0; auto. * apply IHm1; auto. * auto. + apply andb_true_intro; split; [apply andb_true_intro; split|]. * apply IHm1. intros. specialize (H1 (xO x)); rewrite ! PTree.gNode in H1; auto. * specialize (H1 xH); rewrite ! PTree.gNode in H1; auto. * apply IHm0. intros. specialize (H1 (xI x)); rewrite ! PTree.gNode in H1; auto. Qed. Theorem beq2_correct: forall m1 m2, beq2 m1 m2 = true <-> (forall (x: PTree.elt), match m1 ! x, m2 ! x with | None, None => True | Some y1, Some y2 => beqA y1 y2 = true | _, _ => False end). Proof. intros. rewrite beq_correct_bool. unfold beq2_optA. split; intros. - specialize (H x). destruct (m1 ! x), (m2 ! x); intuition congruence. - specialize (H x). destruct (m1 ! x), (m2 ! x); intuition auto. Qed. End BOOLEAN_EQUALITY. Lemma forest_reg_gso: forall (f : forest) w dst dst', dst <> dst' -> (f #r dst <- w) #r dst' = f #r dst'. Proof. unfold "#r"; intros. unfold forest_regs. unfold set_forest. rewrite RTree.gso; auto. Qed. Lemma forest_reg_pred: forall (f : forest) w dst dst', (f #r dst <- w) #p dst' = f #p dst'. Proof. auto. Qed. Lemma forest_reg_gss: forall (f : forest) w dst, (f #r dst <- w) #r dst = w. Proof. unfold "#r"; intros. unfold forest_regs. unfold set_forest. rewrite RTree.gss; auto. Qed. Lemma forest_pred_gso: forall (f : forest) w dst dst', dst <> dst' -> (f #p dst <- w) #p dst' = f #p dst'. Proof. unfold "#p"; intros. unfold forest_preds, set_forest_p, get_forest_p'. rewrite PTree.gso; auto. Qed. Lemma forest_pred_reg: forall (f : forest) w dst dst', (f #p dst <- w) #r dst' = f #r dst'. Proof. auto. Qed. Lemma forest_pred_gss: forall (f : forest) w dst, (f #p dst <- w) #p dst = w. Proof. unfold "#p"; intros. unfold forest_preds, set_forest_p, get_forest_p'. rewrite PTree.gss; auto. Qed. Lemma forest_pred_gss2 : forall (f : forest) r p, (forest_preds (f #p r <- p)) ! r = Some p. Proof. intros. unfold set_forest_p. simpl. now rewrite PTree.gss. Qed. Lemma forest_pred_gso2 : forall (f : forest) r w p, r <> w -> (forest_preds (f #p w <- p)) ! r = (forest_preds f) ! r. Proof. intros. unfold set_forest_p. simpl. now rewrite PTree.gso by auto. Qed. Inductive state_lessdef : instr_state -> instr_state -> Prop := state_lessdef_intro : forall rs1 rs2 ps1 ps2 m1, (forall x, rs1 !! x = rs2 !! x) -> (forall x, ps1 !! x = ps2 !! x) -> state_lessdef (mk_instr_state rs1 ps1 m1) (mk_instr_state rs2 ps2 m1). Lemma state_lessdef_refl x : state_lessdef x x. Proof. destruct x; constructor; auto. Qed. Lemma state_lessdef_symm x y : state_lessdef x y -> state_lessdef y x. Proof. destruct x; destruct y; inversion 1; subst; simplify; constructor; auto. Qed. Lemma state_lessdef_trans : forall a b c, state_lessdef a b -> state_lessdef b c -> state_lessdef a c. Proof. inversion 1; inversion 1; subst; simplify. constructor; eauto; intros. rewrite H0. auto. Qed. #[global] Instance Equivalence_state_lessdef : Equivalence state_lessdef := { Equivalence_Reflexive := state_lessdef_refl; Equivalence_Symmetric := state_lessdef_symm; Equivalence_Transitive := state_lessdef_trans; }. Section CORRECT. Context (prog: GibleSeq.program) (tprog : GiblePar.program). Context (sp: val). Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog. Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog. Definition mkctx a := mk_ctx a sp ge. Lemma sem_pred_exec_beq_correct : forall A B (sem: ctx -> A -> B -> Prop) a b i p r, PTree.beq beq_pred_pexpr a b = true -> sem_pred_expr a sem (mkctx i) p r -> sem_pred_expr b sem (mkctx i) p r. Proof. Admitted. Lemma sem_pred_exec_beq_correct2 : forall A B (sem: ctx -> A -> B -> Prop) a i ti p r, state_lessdef i ti -> sem_pred_expr a sem (mkctx i) p r -> sem_pred_expr a sem (mkctx ti) p r. Proof. Admitted. Lemma sem_expr_beq_correct : forall pt i a b v, beq_pred_expr a b = true -> sem_pred_expr pt sem_value (mkctx i) a v -> sem_pred_expr pt sem_value (mkctx i) b v. Proof. intros. unfold beq_pred_expr in H. destruct_match; subst; auto. repeat (destruct_match; []). simplify. Admitted. Lemma sem_expr_beq_correct_mem : forall pt i a b v, beq_pred_expr a b = true -> sem_pred_expr pt sem_mem (mkctx i) a v -> sem_pred_expr pt sem_mem (mkctx i) b v. Proof. Admitted. Lemma sem_expr_beq_correct_exit : forall pt i a b v, beq_pred_eexpr a b = true -> sem_pred_expr pt sem_exit (mkctx i) a v -> sem_pred_expr pt sem_exit (mkctx i) b v. Proof. Admitted. Lemma sem_eexpr_beq_correct : forall pt i a b v, beq_pred_eexpr a b = true -> sem_pred_expr pt sem_exit (mkctx i) a v -> sem_pred_expr pt sem_exit (mkctx i) b v. Proof. Admitted. Lemma sem_pexpr_state_lessdef : forall i i' a v, state_lessdef i i' -> sem_pexpr (mkctx i) a v -> sem_pexpr (mkctx i') a v. Proof. Admitted. Lemma sem_pexpr_beq_correct : forall i p1 p2 b, beq_pred_pexpr p1 p2 = true -> sem_pexpr (mkctx i) p1 b -> sem_pexpr (mkctx i) p2 b. Proof. Admitted. Lemma tree_beq_pred_pexpr : forall a b x, RTree.beq beq_pred_pexpr (forest_preds a) (forest_preds b) = true -> beq_pred_pexpr a #p x b #p x = true. Proof. intros. unfold "#p". unfold get_forest_p'. apply PTree.beq_correct with (x := x) in H. destruct_match; destruct_match; auto. unfold beq_pred_pexpr. destruct_match; auto. Qed. Lemma tree_beq_pred_expr : forall a b x, RTree.beq beq_pred_expr (forest_regs a) (forest_regs b) = true -> beq_pred_expr a #r x b #r x = true. Proof. intros. unfold "#r". apply PTree.beq_correct with (x := (R_indexed.index x)) in H. unfold RTree.get in *. destruct_match; destruct_match; auto. unfold beq_pred_expr. destruct_match; auto. Qed. Lemma abstr_check_correct : forall i i' a b cf ti, check a b = true -> sem (mkctx i) a (i', cf) -> state_lessdef i ti -> exists ti', sem (mkctx ti) b (ti', cf) /\ state_lessdef i' ti'. Proof. intros. unfold check in H. simplify. inv H0. inv H6. inv H7. eexists. split. { constructor. - constructor. intros. eapply sem_pred_exec_beq_correct; eauto. eapply sem_pred_exec_beq_correct2; eauto. eapply sem_expr_beq_correct. eapply tree_beq_pred_expr; eauto. eauto. - constructor. intros. apply sem_pexpr_beq_correct with (p1 := a #p x). apply tree_beq_pred_pexpr; auto. apply sem_pexpr_state_lessdef with (i := i); auto. - eapply sem_pred_exec_beq_correct; eauto. eapply sem_pred_exec_beq_correct2; eauto. eapply sem_expr_beq_correct_mem. eapply tree_beq_pred_expr; eauto. eauto. - eapply sem_pred_exec_beq_correct; eauto. eapply sem_pred_exec_beq_correct2; eauto. eapply sem_expr_beq_correct_exit; eauto. } constructor; auto. Qed. (*| Proof Sketch: Two abstract states can be equivalent, without it being obvious that they can actually both be executed assuming one can be executed. One will therefore have to add a few more assumptions to makes it possible to execute the other. |*) End CORRECT.