(* * Vericert: Verified high-level synthesis. * Copyright (C) 2023 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import compcert.backend.Registers. Require Import compcert.common.AST. Require Import compcert.common.Errors. Require Import compcert.common.Linking. Require Import compcert.common.Globalenvs. Require Import compcert.common.Memory. Require Import compcert.common.Values. Require Import compcert.lib.Maps. Require Import vericert.common.Vericertlib. Require Import vericert.hls.GibleSeq. Require Import vericert.hls.GiblePar. Require Import vericert.hls.Gible. Require Import vericert.hls.GiblePargenproofEquiv. Require Import vericert.hls.GiblePargenproofCommon. Require Import vericert.hls.GiblePargen. Require Import vericert.hls.Predicate. Require Import vericert.hls.Abstr. Require Import vericert.hls.AbstrSemIdent. Require Import vericert.common.Monad. Require Import Optionmonad. Module Import OptionExtra := MonadExtra(Option). #[local] Open Scope positive. #[local] Open Scope forest. #[local] Open Scope pred_op. #[local] Opaque simplify. #[local] Opaque deep_simplify. #[local] Ltac destr := destruct_match; try discriminate; []. Definition state_lessdef := GiblePargenproofEquiv.match_states. (* Set Nested Proofs Allowed. *) (*| =================================== GiblePar to Abstr Translation Proof =================================== This proof is for the correctness of the translation from the parallel Gible program into the Abstr language, which is the symbolic execution language. The main characteristic of this proof is that it has to be performed backwards, as the translation goes from GiblePar to Abstr, whereas the correctness proof is needed from Abstr to GiblePar to get the proper direction of the proof. |*) Section CORRECTNESS. Context (prog: GibleSeq.program) (tprog : GiblePar.program). Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog. Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog. (*Lemma sem_equiv_execution : forall sp x i i' ti cf x' ti', abstract_sequence x = Some x' -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf) -> state_lessdef i ti -> state_lessdef i' ti'. Proof. Admitted. Lemma sem_exists_execution : forall sp x i i' ti cf x', abstract_sequence x = Some x' -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf). Proof. Admitted. *) Definition update' (s: pred_op * forest * list pred_expr) (i: instr): option (pred_op * forest * list pred_expr) := let '(p, f, l) := s in Option.bind2 (fun p' f' => Option.ret (p', f', remember_expr f l i)) (update (p, f) i). Definition abstract_sequence' (b : list instr) : option (forest * list pred_expr) := Option.map (fun x => let '(_, y, z) := x in (y, z)) (mfold_left update' b (Some (Ptrue, empty, nil))). Definition i_state (s: istate): instr_state := match s with | Iexec t => t | Iterm t _ => t end. Definition cf_state (s: istate): option cf_instr := match s with | Iexec _ => None | Iterm _ cf => Some cf end. Definition evaluable_pred_expr {G} (ctx: @Abstr.ctx G) pr p := exists r, sem_pred_expr pr sem_value ctx p r. Definition evaluable_pred_list {G} ctx pr l := forall p, In p l -> @evaluable_pred_expr G ctx pr p. (* Lemma evaluable_pred_expr_exists : *) (* forall sp pr f i0 exit_p exit_p' f' cf i ti p op args dst, *) (* update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') -> *) (* sem (mk_ctx i0 sp ge) f (i, cf) -> *) (* evaluable_pred_expr (mk_ctx i0 sp ge) pr (f' #r (Reg dst)) -> *) (* state_lessdef i ti -> *) (* exists i', sem (mk_ctx i0 sp ge) f' (i', cf). *) (* Proof. *) (* intros. cbn in H. unfold Option.bind in H. destr. inv H. *) (* destruct ti. econstructor. econstructor. *) (* unfold evaluable_pred_expr in H1. Admitted. *) Lemma evaluable_pred_expr_exists : forall sp pr f i0 exit_p exit_p' f' i ti p op args dst, (forall x, sem_pexpr (mk_ctx i0 sp ge) (get_forest_p' x f'.(forest_preds)) (pr !! x)) -> eval_predf pr exit_p = true -> valid_mem (is_mem i0) (is_mem i) -> update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') -> sem (mk_ctx i0 sp ge) f (i, None) -> evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r (Reg dst)) -> state_lessdef i ti -> exists ti', step_instr ge sp (Iexec ti) (RBop p op args dst) (Iexec ti'). Proof. intros * HPRED HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H. destruct ti. unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval). rewrite forest_reg_gss in Heval. exploit sem_pred_expr_prune_predicated2; eauto; intros. cbn in HPRED. pose proof (truthy_dec pr p) as YH. inversion_clear YH as [YH'|YH']. - assert (eval_predf pr (dfltp p ∧ exit_p') = true). { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand. rewrite H1. now rewrite HEVAL. } exploit sem_pred_expr_app_predicated2; eauto; intros. exploit sem_pred_expr_seq_app_val2; eauto; simplify. unfold pred_ret in *. inv H4. inv H12. destruct i. exploit sem_merge_list; eauto; intros. instantiate (1 := args) in H4. eapply sem_pred_expr_ident2 in H4. simplify. exploit sem_pred_expr_ident_det. eapply H5. eapply H4. intros. subst. inv H7. eapply sem_val_list_det in H8; eauto; [|reflexivity]. subst. inv H2. econstructor. constructor. + cbn in *. eapply eval_operation_valid_pointer. symmetry; eauto. unfold ctx_mem in H14. cbn in H14. erewrite <- match_states_list; eauto. + inv H0. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f pr) by (now constructor). pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H0 H17). assert (truthy is_ps0 p). { eapply truthy_match_state; eassumption. } eapply truthy_match_state; eassumption. - inv YH'. cbn -[seq_app] in H. assert (eval_predf pr (p0 ∧ exit_p') = false). { rewrite eval_predf_Pand. now rewrite H1. } eapply sem_pred_expr_app_predicated_false2 in H; eauto. eexists. eapply exec_RB_falsy. constructor. auto. cbn. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f pr) by (now constructor). inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8). inv H2. erewrite <- eval_predf_pr_equiv by exact H16. now erewrite <- eval_predf_pr_equiv by exact H0. Qed. Lemma remember_expr_in : forall x l f a, In x l -> In x (remember_expr f l a). Proof. unfold remember_expr; destruct a; eauto using in_cons. Qed. Lemma in_mfold_left_abstr : forall instrs p f l p' f' l' x, mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> In x l -> In x l'. Proof. induction instrs; intros. - cbn in *; now inv H. - cbn -[update] in *. pose proof H as Y. apply OptionExtra.mfold_left_Some in Y. inv Y. rewrite H1 in H. destruct x0 as ((p_int & f_int) & l_int). exploit IHinstrs; eauto. unfold Option.bind2, Option.ret in H1; repeat destr. inv H1. auto using remember_expr_in. Qed. Lemma not_remembered_in_forest : forall a p f p_mid f_mid l x, update (p, f) a = Some (p_mid, f_mid) -> ~ In f #r (Reg x) (remember_expr f l a) -> f #r (Reg x) = f_mid #r (Reg x). Proof. intros; destruct a; cbn in *; unfold Option.bind in H; repeat destr; inv H; try easy. - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto. inv H. destruct (resource_eq (Reg r) (Reg x)); try (rewrite e in *; contradiction). now rewrite forest_reg_gso by auto. - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto. inv H. destruct (resource_eq (Reg r) (Reg x)); try (rewrite e in *; contradiction). now rewrite forest_reg_gso by auto. - destruct (resource_eq Mem (Reg x)); try discriminate. now rewrite forest_reg_gso by auto. Qed. Lemma in_forest_or_remembered : forall instrs p f l p' f' l', mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> forall x, In (f #r (Reg x)) l' \/ f #r (Reg x) = f' #r (Reg x). Proof. induction instrs; try solve [crush]; []; intros. cbn -[update] in H. pose proof H as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H0 in H. destruct x0 as ((p_mid & f_mid) & l_mid). pose proof (IHinstrs _ _ _ _ _ _ H). unfold Option.bind2, Option.ret in H0; cbn -[update] in H0; repeat destr. inv H0. specialize (H1 x). pose proof H as Y. destruct (in_dec pred_expr_eqb (f #r (Reg x)) (remember_expr f l a)); eauto using in_mfold_left_abstr. inv H1; eapply not_remembered_in_forest with (f_mid := f_mid) in n; eauto; rewrite n in *; tauto. Qed. Lemma in_forest_evaluable : forall G sp ge i' cf instrs p f l p' f' l' x i0, mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> sem (mk_ctx i0 sp ge) f' (i', cf) -> @evaluable_pred_list G (mk_ctx i0 sp ge) f'.(forest_preds) l' -> evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f #r (Reg x)). Proof. intros. pose proof H as Y. apply in_forest_or_remembered with (x := x) in Y. inv Y; eauto. inv H0. inv H5. rewrite H2. unfold evaluable_pred_expr. eauto. Qed. Definition gather_predicates (preds : PTree.t unit) (i : instr): option (PTree.t unit) := match i with | RBop (Some p) _ _ _ | RBload (Some p) _ _ _ _ | RBstore (Some p) _ _ _ _ | RBexit (Some p) _ => Some (fold_right (fun x => PTree.set x tt) preds (predicate_use p)) | RBsetpred p' c args p => let preds' := match p' with | Some p'' => fold_right (fun x => PTree.set x tt) preds (predicate_use p'') | None => preds end in match preds' ! p with | Some _ => None | None => Some preds' end | _ => Some preds end. Lemma abstr_seq_revers_correct_fold_sem_pexpr : forall instrs p f l p' f' l' preds preds', mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> forall pred, preds ! pred = Some tt -> f #p pred = f' #p pred. Proof. Admitted. Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval : forall G instrs p f l p' f' l' i0 sp ge ps preds preds' ps', mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> forall pred, preds ! pred = Some tt -> sem_predset (mk_ctx i0 sp ge) f ps -> sem_predset (@mk_ctx G i0 sp ge) f' ps' -> ps !! pred = ps' !! pred. Proof. Admitted. (* [[id:5e6486bb-fda2-4558-aed8-243a9698de85]] *) Lemma abstr_seq_reverse_correct_fold : forall sp instrs i0 i i' ti cf f' l p p' l' f, sem (mk_ctx i0 sp ge) f (i, None) -> mfold_left update' instrs (Some (p, f, l)) = Some (p', f', l') -> evaluable_pred_list (mk_ctx i0 sp ge) f'.(forest_preds) l' -> sem (mk_ctx i0 sp ge) f' (i', Some cf) -> state_lessdef i ti -> exists ti', SeqBB.step ge sp (Iexec ti) instrs (Iterm ti' cf) /\ state_lessdef i' ti'. Proof. induction instrs; intros * Y3 Y Y0 Y1 Y2. - cbn in *. inv Y. assert (similar {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |}) by reflexivity. now eapply sem_det in H; [| eapply Y1 | eapply Y3 ]. - cbn -[update] in Y. pose proof Y as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H in Y. destruct x as ((p_mid & f_mid) & l_mid). unfold Option.bind2, Option.ret in H. repeat destr. inv H. (* Assume we are in RBop for now*) assert (exists pred op args dst, a = RBop pred op args dst) by admit; destruct H as (pred & op & args & dst & EQ); subst a. exploit evaluable_pred_expr_exists; eauto. (* I have the pred already from sem. *) admit. admit. admit. intros [t step]. (* unfold evaluable_pred_list in Y0. *) (* instantiate (1 := forest_preds f'). *) (* eapply in_forest_evaluable; eauto. *) (* (* provable using evaluability in list *) intros [t step]. *) exploit IHinstrs. 2: { eapply Y. } eauto. auto. eauto. reflexivity. intros (ti_mid' & Hseq & Hstate). assert (state_lessdef ti_mid t) by admit. exists ti_mid'; split; auto. econstructor; eauto. Admitted. Lemma sem_empty : forall G (ctx: @Abstr.ctx G), sem ctx empty (ctx_is ctx, None). Proof. intros. destruct ctx. cbn. destruct ctx_is. constructor. constructor. cbn. intros. rewrite get_empty. constructor. cbn. constructor. constructor. constructor. intros. rewrite get_empty_p. constructor. constructor. rewrite get_empty. constructor. cbn. constructor. constructor. constructor. cbn. constructor. constructor. Qed. Lemma abstr_seq_reverse_correct: forall sp x i i' ti cf x' l, abstract_sequence' x = Some (x', l) -> (forall p, In p l -> exists r, sem_pred_expr x'.(forest_preds) sem_value (mk_ctx i sp ge) p r) -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> state_lessdef i ti -> exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf) /\ state_lessdef i' ti'. Proof. (* intros. exploit sem_exists_execution; eauto; simplify. eauto using sem_equiv_execution. Qed. *) intros. unfold abstract_sequence' in H. unfold Option.map in H. repeat destr. inv H. eapply abstr_seq_reverse_correct_fold. 2: { eauto. } all: eauto. apply sem_empty. Qed. (*| Proof Sketch: We do an induction over the list of instructions ``x``. This is trivial for the empty case and then for the inductive case we know that there exists an execution that matches the abstract execution, so we need to know that adding another instructions to it will still mean that the execution will result in the same value. Arithmetic operations will be a problem because we will have to show that these can be executed. However, this should mostly be a problem in the abstract state comparison, because there two abstract states can be equal without one being evaluable. |*) End CORRECTNESS.