(* * Vericert: Verified high-level synthesis. * Copyright (C) 2023 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import compcert.backend.Registers. Require Import compcert.common.AST. Require Import compcert.common.Errors. Require Import compcert.common.Linking. Require Import compcert.common.Globalenvs. Require Import compcert.common.Memory. Require Import compcert.common.Values. Require Import compcert.lib.Maps. Require Import vericert.common.Vericertlib. Require Import vericert.hls.GibleSeq. Require Import vericert.hls.GiblePar. Require Import vericert.hls.Gible. Require Import vericert.hls.GiblePargenproofEquiv. Require Import vericert.hls.GiblePargenproofCommon. Require Import vericert.hls.GiblePargenproofForward. Require Import vericert.hls.GiblePargen. Require Import vericert.hls.Predicate. Require Import vericert.hls.Abstr. Require Import vericert.hls.AbstrSemIdent. Require Import vericert.common.Monad. Require Import Optionmonad. Module Import OptionExtra := MonadExtra(Option). #[local] Open Scope positive. #[local] Open Scope forest. #[local] Open Scope pred_op. #[local] Opaque simplify. #[local] Opaque deep_simplify. #[local] Ltac destr := destruct_match; try discriminate; []. Definition state_lessdef := GiblePargenproofEquiv.match_states. (* Set Nested Proofs Allowed. *) (*| =================================== GiblePar to Abstr Translation Proof =================================== This proof is for the correctness of the translation from the parallel Gible program into the Abstr language, which is the symbolic execution language. The main characteristic of this proof is that it has to be performed backwards, as the translation goes from GiblePar to Abstr, whereas the correctness proof is needed from Abstr to GiblePar to get the proper direction of the proof. |*) Section CORRECTNESS. Context (prog: GibleSeq.program) (tprog : GiblePar.program). Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog. Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog. (*Lemma sem_equiv_execution : forall sp x i i' ti cf x' ti', abstract_sequence x = Some x' -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf) -> state_lessdef i ti -> state_lessdef i' ti'. Proof. Admitted. Lemma sem_exists_execution : forall sp x i i' ti cf x', abstract_sequence x = Some x' -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf). Proof. Admitted. *) Definition remember_expr (f : forest) (lst: list pred_expr) (i : instr): list pred_expr := match i with | RBnop => lst | RBop p op rl r => (f #r (Reg r)) :: lst | RBload p chunk addr rl r => (f #r (Reg r)) :: lst | RBstore p chunk addr rl r => lst | RBsetpred p' c args p => lst | RBexit p c => lst end. Definition remember_expr_m (f : forest) (lst: list pred_expr) (i : instr): list pred_expr := match i with | RBnop => lst | RBop p op rl r => lst | RBload p chunk addr rl r => lst | RBstore p chunk addr rl r => (f #r Mem) :: lst | RBsetpred p' c args p => lst | RBexit p c => lst end. Definition update' (s: pred_op * forest * list pred_expr * list pred_expr) (i: instr): option (pred_op * forest * list pred_expr * list pred_expr) := let '(p, f, l, lm) := s in Option.bind2 (fun p' f' => Option.ret (p', f', remember_expr f l i, remember_expr_m f lm i)) (update (p, f) i). Definition gather_predicates (preds : PTree.t unit) (i : instr): option (PTree.t unit) := match i with | RBop (Some p) _ _ _ | RBload (Some p) _ _ _ _ | RBstore (Some p) _ _ _ _ | RBexit (Some p) _ => Some (fold_right (fun x => PTree.set x tt) preds (predicate_use p)) | RBsetpred p' c args p => let preds' := match p' with | Some p'' => fold_right (fun x => PTree.set x tt) preds (predicate_use p'') | None => preds end in match preds' ! p with | Some _ => None | None => Some preds' end | _ => Some preds end. Definition abstract_sequence' (b : list instr) : option (forest * list pred_expr * list pred_expr) := Option.bind (fun x => Option.bind (fun _ => Some x) (mfold_left gather_predicates b (Some (PTree.empty _)))) (Option.map (fun x => let '(_, y, z, zm) := x in (y, z, zm)) (mfold_left update' b (Some (Ptrue, empty, nil, nil)))). Definition i_state (s: istate): instr_state := match s with | Iexec t => t | Iterm t _ => t end. Definition cf_state (s: istate): option cf_instr := match s with | Iexec _ => None | Iterm _ cf => Some cf end. Definition evaluable_pred_expr {G} (ctx: @Abstr.ctx G) pr p := exists r, sem_pred_expr pr sem_value ctx p r. Definition evaluable_pred_expr_m {G} (ctx: @Abstr.ctx G) pr p := exists r, sem_pred_expr pr sem_mem ctx p r. Definition evaluable_pred_list {G} ctx pr l := forall p, In p l -> @evaluable_pred_expr G ctx pr p. Definition evaluable_pred_list_m {G} ctx pr l := forall p, In p l -> @evaluable_pred_expr_m G ctx pr p. (* Lemma evaluable_pred_expr_exists : *) (* forall sp pr f i0 exit_p exit_p' f' cf i ti p op args dst, *) (* update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') -> *) (* sem (mk_ctx i0 sp ge) f (i, cf) -> *) (* evaluable_pred_expr (mk_ctx i0 sp ge) pr (f' #r (Reg dst)) -> *) (* state_lessdef i ti -> *) (* exists i', sem (mk_ctx i0 sp ge) f' (i', cf). *) (* Proof. *) (* intros. cbn in H. unfold Option.bind in H. destr. inv H. *) (* destruct ti. econstructor. econstructor. *) (* unfold evaluable_pred_expr in H1. Admitted. *) Lemma evaluable_pred_expr_exists_RBop : forall sp f i0 exit_p exit_p' f' i ti p op args dst, eval_predf (is_ps i) exit_p = true -> valid_mem (is_mem i0) (is_mem i) -> update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') -> sem (mk_ctx i0 sp ge) f (i, None) -> evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r (Reg dst)) -> state_lessdef i ti -> exists ti', step_instr ge sp (Iexec ti) (RBop p op args dst) (Iexec ti'). Proof. intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H. assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by now inv H0. inversion_clear HPRED' as [? ? ? HPRED]. destruct ti as [is_trs is_tps is_tm]. unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval). rewrite forest_reg_gss in Heval. exploit sem_pred_expr_prune_predicated2; eauto; intros. pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH']. - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true). { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand. rewrite H1. now rewrite HEVAL. } exploit sem_pred_expr_app_predicated2; eauto; intros. exploit sem_pred_expr_seq_app_val2; eauto; simplify. unfold pred_ret in *. inv H4. inv H12. destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros. instantiate (1 := args) in H4. eapply sem_pred_expr_ident2 in H4. simplify. exploit sem_pred_expr_ident_det. eapply H5. eapply H4. intros. subst. inv H7. eapply sem_val_list_det in H8; eauto; [|reflexivity]. subst. inv H2. econstructor. constructor. + cbn in *. eapply eval_operation_valid_pointer. symmetry; eauto. unfold ctx_mem in H14. cbn in H14. erewrite <- match_states_list; eauto. + inv H0. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1)) by (now constructor). pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H0 H17). assert (truthy is_ps_1 p). { eapply truthy_match_state; eassumption. } eapply truthy_match_state; eassumption. - inv YH'. cbn -[seq_app] in H. assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false). { rewrite eval_predf_Pand. now rewrite H1. } eapply sem_pred_expr_app_predicated_false2 in H; eauto. eexists. eapply exec_RB_falsy. constructor. auto. cbn. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by (now constructor). inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8). inv H2. erewrite <- eval_predf_pr_equiv by exact H16. now erewrite <- eval_predf_pr_equiv by exact H0. Qed. Lemma evaluable_pred_expr_exists_RBload : forall sp f i0 exit_p exit_p' f' i ti p chunk addr args dst, eval_predf (is_ps i) exit_p = true -> valid_mem (is_mem i0) (is_mem i) -> update (exit_p, f) (RBload p chunk addr args dst) = Some (exit_p', f') -> sem (mk_ctx i0 sp ge) f (i, None) -> evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r (Reg dst)) -> state_lessdef i ti -> exists ti', step_instr ge sp (Iexec ti) (RBload p chunk addr args dst) (Iexec ti'). Proof. intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H. assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by now inv H0. inversion_clear HPRED' as [? ? ? HPRED]. destruct ti as [is_trs is_tps is_tm]. unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval). rewrite forest_reg_gss in Heval. exploit sem_pred_expr_prune_predicated2; eauto; intros. pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH']. - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true). { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand. rewrite H1. now rewrite HEVAL. } exploit sem_pred_expr_app_predicated2; eauto; intros. exploit sem_pred_expr_seq_app_val2; eauto; simplify. exploit sem_pred_expr_seq_app_val2; eauto; simplify. unfold pred_ret in *. inv H6. inv H15. clear H13. inv H10. destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros. instantiate (1 := args) in H6. eapply sem_pred_expr_ident2 in H6. simplify. exploit sem_pred_expr_ident_det. eapply H8. eapply H6. intros. subst. inv H7. eapply sem_val_list_det in H10; eauto; [|reflexivity]. subst. cbn in *. inv H2. econstructor. econstructor; eauto. + erewrite <- match_states_list; eauto. + inv H0. exploit sem_pred_expr_ident. eapply H5. eapply H15. intros. eapply sem_pred_expr_det in H0. rewrite H0. eassumption. reflexivity. eapply sem_mem_det. reflexivity. auto. + inv H0. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1)) by (now constructor). pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H0 H20). assert (truthy is_ps_1 p). { eapply truthy_match_state; eassumption. } eapply truthy_match_state; eassumption. - inv YH'. cbn -[seq_app] in H. assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false). { rewrite eval_predf_Pand. now rewrite H1. } eapply sem_pred_expr_app_predicated_false2 in H; eauto. eexists. eapply exec_RB_falsy. constructor. auto. cbn. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by (now constructor). inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8). inv H2. erewrite <- eval_predf_pr_equiv by exact H16. now erewrite <- eval_predf_pr_equiv by exact H0. Qed. Lemma evaluable_pred_expr_exists_RBstore : forall sp f i0 exit_p exit_p' f' i ti p chunk addr args src, eval_predf (is_ps i) exit_p = true -> valid_mem (is_mem i0) (is_mem i) -> update (exit_p, f) (RBstore p chunk addr args src) = Some (exit_p', f') -> sem (mk_ctx i0 sp ge) f (i, None) -> evaluable_pred_expr_m (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r Mem) -> state_lessdef i ti -> exists ti', step_instr ge sp (Iexec ti) (RBstore p chunk addr args src) (Iexec ti'). Proof. intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H. assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by now inv H0. inversion_clear HPRED' as [? ? ? HPRED]. destruct ti as [is_trs is_tps is_tm]. unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval). rewrite forest_reg_gss in Heval. exploit sem_pred_expr_prune_predicated2; eauto; intros. pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH']. - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true). { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand. rewrite H1. now rewrite HEVAL. } exploit sem_pred_expr_app_predicated2; eauto; intros. exploit sem_pred_expr_seq_app_val2; eauto; simplify. exploit sem_pred_expr_seq_app_val2; eauto; simplify. exploit sem_pred_expr_flap2_2; eauto; simplify. exploit sem_pred_expr_seq_app_val2; eauto; simplify. unfold pred_ret in *. inv H14. inv H11. inv H18. clear H16. inv H10. inv H7. destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros. instantiate (1 := args) in H7. eapply sem_pred_expr_ident2 in H7. simplify. exploit sem_pred_expr_ident_det. eapply H8. eapply H7. intros. subst. eapply sem_val_list_det in H20; eauto; [|reflexivity]. subst. cbn in *. inv H2. inv H0. inv H20. pose proof H0 as YH0. specialize (YH0 src). exploit sem_pred_expr_ident. eapply H5. eauto. intros. exploit sem_pred_expr_ident. eapply H12. eauto. intros. eapply sem_pred_expr_det in H25; eauto; [|reflexivity|eapply sem_mem_det; reflexivity]. eapply sem_pred_expr_det in YH0; eauto; [|reflexivity|eapply sem_value_det; reflexivity]. subst. econstructor. econstructor; eauto. + erewrite <- match_states_list; eauto. + rewrite <- H16. eassumption. + assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1)) by (now constructor). pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H24 H13). assert (truthy is_ps_1 p). { eapply truthy_match_state; eassumption. } eapply truthy_match_state; eassumption. - inv YH'. cbn -[seq_app] in H. assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false). { rewrite eval_predf_Pand. now rewrite H1. } eapply sem_pred_expr_app_predicated_false2 in H; eauto. eexists. eapply exec_RB_falsy. constructor. auto. cbn. assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by (now constructor). inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8). inv H2. erewrite <- eval_predf_pr_equiv by exact H16. now erewrite <- eval_predf_pr_equiv by exact H0. Qed. Lemma evaluable_pred_expr_exists_RBsetpred : forall sp f i0 exit_p exit_p' f' i ti p c args src ps', eval_predf (is_ps i) exit_p = true -> valid_mem (is_mem i0) (is_mem i) -> update (exit_p, f) (RBsetpred p c args src) = Some (exit_p', f') -> sem (mk_ctx i0 sp ge) f (i, None) -> sem_predset (mk_ctx i0 sp ge) f' ps' -> state_lessdef i ti -> exists ti', step_instr ge sp (Iexec ti) (RBsetpred p c args src) (Iexec ti'). Proof. intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H. assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i)) by now inv H0. inversion_clear HPRED' as [? ? ? HPRED]. destruct ti as [is_trs is_tps is_tm]. destr. inv H4. inv H1. pose proof H as YH. specialize (YH src). rewrite forest_pred_gss in YH. inv YH; try inv H3. + inv H1. inv H6. replace false with (negb true) in H4 by auto. replace false with (negb true) in H8 by auto. eapply sem_pexpr_negate2 in H4. eapply sem_pexpr_negate2 in H8. destruct i. exploit from_predicated_sem_pred_expr2; eauto; intros. exploit sem_pred_expr_seq_app_val2. eapply HPRED. eauto. simplify. inv H3. inv H15. clear H13. exploit sem_merge_list; eauto; intros. instantiate (1:=args) in H3. eapply sem_pred_expr_ident2 in H3; simplify. exploit sem_pred_expr_ident_det. eapply H6. eauto. intros. subst. intros. inv H10. eapply sem_val_list_det in H11; eauto. subst. inv H2. econstructor. econstructor. erewrite <- match_states_list; eauto. erewrite <- storev_eval_condition; eauto. assert (truthy is_ps p). { destruct p. cbn in H4. constructor. eapply sem_pexpr_forward_eval; eauto. constructor. } eapply truthy_match_state; eassumption. reflexivity. + inv H1. inv H6. inv H3. * replace false with (negb true) in H1 by auto. eapply sem_pexpr_negate2 in H1. eapply sem_pexpr_forward_eval in H1; eauto. rewrite eval_predf_negate in H1. assert ((eval_predf (is_ps i) (dfltp p)) = false). { replace false with (negb true) by auto. rewrite <- H1. now rewrite negb_involutive. } econstructor. apply exec_RB_falsy. cbn. destruct p. constructor; auto. inv H2. erewrite <- eval_predf_pr_equiv; eauto. now cbn in H3. * replace false with (negb true) in H1 by auto. eapply sem_pexpr_negate2 in H1. eapply sem_pexpr_forward_eval in H1; eauto. rewrite eval_predf_negate in H1. now rewrite HEVAL in H1. + inv H5. inv H3. * inv H1. inv H5. -- replace true with (negb false) in H1 by auto. eapply sem_pexpr_negate2 in H1. eapply sem_pexpr_forward_eval in H1; eauto. econstructor. apply exec_RB_falsy. cbn. destruct p. constructor; auto. inv H2. erewrite <- eval_predf_pr_equiv; eauto. now cbn in H1. -- replace true with (negb false) in H1 by auto. eapply sem_pexpr_negate2 in H1. eapply sem_pexpr_forward_eval in H1; eauto. now rewrite HEVAL in H1. * case_eq (eval_predf (is_ps i) (dfltp p)); intros. -- eapply sem_pexpr_eval in H3; eauto. destruct i. exploit from_predicated_sem_pred_expr2; eauto; intros. exploit sem_pred_expr_seq_app_val2. eapply HPRED. eauto. simplify. inv H7. inv H15. clear H13. exploit sem_merge_list; eauto; intros. instantiate (1:=args) in H7. eapply sem_pred_expr_ident2 in H7; simplify. exploit sem_pred_expr_ident_det. eapply H8. eauto. intros. subst. inv H10. clear H8. eapply sem_val_list_det in H11; eauto. subst. inv H2. econstructor. econstructor. erewrite <- match_states_list; eauto. erewrite <- storev_eval_condition; eauto. assert (truthy is_ps p). { destruct p. cbn in H4. constructor. eapply sem_pexpr_forward_eval; eauto. constructor. } eapply truthy_match_state; eassumption. reflexivity. -- econstructor. apply exec_RB_falsy. destruct p. constructor. inv H2. erewrite <- eval_predf_pr_equiv; eauto. easy. Qed. Lemma evaluable_pred_expr_exists_RBexit : forall sp i ti p cf, eval_predf (is_ps i) (dfltp p) = false -> state_lessdef i ti -> step_instr ge sp (Iexec ti) (RBexit p cf) (Iexec ti). Proof. intros. constructor. destruct p; [|now cbn in *]. inv H0. constructor. erewrite <- eval_predf_pr_equiv; eauto. Qed. Lemma evaluable_pred_expr_exists_RBexit2 : forall sp i ti p cf, eval_predf (is_ps i) (dfltp p) = true -> state_lessdef i ti -> step_instr ge sp (Iexec ti) (RBexit p cf) (Iterm ti cf). Proof. intros. econstructor. inv H0. cbn. destruct p; try constructor. erewrite <- eval_predf_pr_equiv; eauto. Qed. Lemma remember_expr_in : forall x l f a, In x l -> In x (remember_expr f l a). Proof. unfold remember_expr; destruct a; eauto using in_cons. Qed. Lemma remember_expr_in_m : forall x l f a, In x l -> In x (remember_expr_m f l a). Proof. unfold remember_expr; destruct a; eauto using in_cons. Qed. Lemma in_mfold_left_abstr : forall instrs p f l p' f' l' x lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> In x l -> In x l'. Proof. induction instrs; intros. - cbn in *; now inv H. - cbn -[update] in *. pose proof H as Y. apply OptionExtra.mfold_left_Some in Y. inv Y. rewrite H1 in H. destruct x0 as (((p_int & f_int) & l_int) & lm_int). exploit IHinstrs; eauto. unfold Option.bind2, Option.ret in H1; repeat destr. inv H1. auto using remember_expr_in. Qed. Lemma in_mfold_left_abstr_m : forall instrs p f l p' f' l' x lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> In x lm -> In x lm'. Proof. induction instrs; intros. - cbn in *; now inv H. - cbn -[update] in *. pose proof H as Y. apply OptionExtra.mfold_left_Some in Y. inv Y. rewrite H1 in H. destruct x0 as (((p_int & f_int) & l_int) & lm_int). exploit IHinstrs; eauto. unfold Option.bind2, Option.ret in H1; repeat destr. inv H1. auto using remember_expr_in_m. Qed. Lemma not_remembered_in_forest : forall a p f p_mid f_mid l x, update (p, f) a = Some (p_mid, f_mid) -> ~ In f #r (Reg x) (remember_expr f l a) -> f #r (Reg x) = f_mid #r (Reg x). Proof. intros; destruct a; cbn in *; unfold Option.bind in H; repeat destr; inv H; try easy. - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto. inv H. destruct (resource_eq (Reg r) (Reg x)); try (rewrite e in *; contradiction). now rewrite forest_reg_gso by auto. - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto. inv H. destruct (resource_eq (Reg r) (Reg x)); try (rewrite e in *; contradiction). now rewrite forest_reg_gso by auto. - destruct (resource_eq Mem (Reg x)); try discriminate. now rewrite forest_reg_gso by auto. Qed. Lemma not_remembered_in_forest_m : forall a p f p_mid f_mid l, update (p, f) a = Some (p_mid, f_mid) -> ~ In f #r Mem (remember_expr_m f l a) -> f #r Mem = f_mid #r Mem. Proof. intros; destruct a; cbn in *; unfold Option.bind in H; repeat destr; inv H; try easy. - rewrite forest_reg_gso; auto. easy. - rewrite forest_reg_gso; auto. easy. - assert (~ (f #r Mem = f #r Mem) /\ ~ (In f #r Mem l)) by tauto. inv H. contradiction. Qed. Lemma in_forest_or_remembered : forall instrs p f l p' f' l' lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> forall x, In (f #r (Reg x)) l' \/ f #r (Reg x) = f' #r (Reg x). Proof. induction instrs; try solve [crush]; []; intros. cbn -[update] in H. pose proof H as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H0 in H. destruct x0 as (((p_mid & f_mid) & l_mid) & lm_mid). pose proof (IHinstrs _ _ _ _ _ _ _ _ H). unfold Option.bind2, Option.ret in H0; cbn -[update] in H0; repeat destr. inv H0. specialize (H1 x). pose proof H as Y. destruct (in_dec pred_expr_eqb (f #r (Reg x)) (remember_expr f l a)); eauto using in_mfold_left_abstr. inv H1; eapply not_remembered_in_forest with (f_mid := f_mid) in n; eauto; rewrite n in *; tauto. Qed. Lemma in_forest_or_remembered_m : forall instrs p f l p' f' l' lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> In (f #r Mem) lm' \/ f #r Mem = f' #r Mem. Proof. induction instrs; try solve [crush]; []; intros. cbn -[update] in H. pose proof H as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H0 in H. destruct x as (((p_mid & f_mid) & l_mid) & lm_mid). pose proof (IHinstrs _ _ _ _ _ _ _ _ H). unfold Option.bind2, Option.ret in H0; cbn -[update] in H0; repeat destr. inv H0. pose proof H as Y. destruct (in_dec pred_expr_eqb (f #r Mem) (remember_expr_m f lm a)); eauto using in_mfold_left_abstr_m. inv H1; eapply not_remembered_in_forest_m with (f_mid := f_mid) in n; eauto; rewrite n in *; tauto. Qed. Lemma in_forest_evaluable : forall G sp ge i' cf instrs p f l p' f' l' x i0 lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> sem (mk_ctx i0 sp ge) f' (i', cf) -> @evaluable_pred_list G (mk_ctx i0 sp ge) f'.(forest_preds) l' -> evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f #r (Reg x)). Proof. intros. pose proof H as Y. apply in_forest_or_remembered with (x := x) in Y. inv Y; eauto. inv H0. inv H5. rewrite H2. unfold evaluable_pred_expr. eauto. Qed. Lemma in_forest_evaluable_m : forall G sp ge i' cf instrs p f l p' f' l' i0 lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> sem (mk_ctx i0 sp ge) f' (i', cf) -> @evaluable_pred_list_m G (mk_ctx i0 sp ge) f'.(forest_preds) lm' -> evaluable_pred_expr_m (mk_ctx i0 sp ge) f'.(forest_preds) (f #r Mem). Proof. intros. pose proof H as Y. apply in_forest_or_remembered_m in Y. inv Y; eauto. inv H0. inv H5. rewrite H2. unfold evaluable_pred_expr_m. eauto. Qed. Lemma abstr_seq_revers_correct_fold_sem_pexpr : forall instrs p f l p' f' l' preds preds' lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> forall pred, preds ! pred = Some tt -> f #p pred = f' #p pred. Proof. Admitted. Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval : forall G instrs p f l p' f' l' i0 sp ge ps preds preds' ps' lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> forall pred, preds ! pred = Some tt -> sem_predset (mk_ctx i0 sp ge) f ps -> sem_predset (@mk_ctx G i0 sp ge) f' ps' -> ps !! pred = ps' !! pred. Proof. Admitted. Definition all_preds_in f preds := (forall x, NE.Forall (fun x => forall pred, PredIn pred (fst x) -> PTree.get pred preds = Some tt) (f #r x)) /\ NE.Forall (fun x => forall pred, PredIn pred (fst x) -> PTree.get pred preds = Some tt) f.(forest_exit). Lemma gather_predicates_in_forest : forall p i f p' f' preds preds', update (p, f) i = Some (p', f') -> gather_predicates preds i = Some preds' -> all_preds_in f preds -> all_preds_in f' preds'. Proof. Admitted. Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval3 : forall A B G a_sem instrs p f l p' f' l' i0 sp ge preds preds' pe pe_val lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> @sem_pred_expr G A B f'.(forest_preds) a_sem (mk_ctx i0 sp ge) pe pe_val -> NE.Forall (fun x => forall pred, PredIn pred (fst x) -> PTree.get pred preds = Some tt) pe -> sem_pred_expr f.(forest_preds) a_sem (mk_ctx i0 sp ge) pe pe_val. Proof. induction instrs; try solve [crush]; intros. cbn -[update] in *. exploit OptionExtra.mfold_left_Some. eapply H. intros [[[[p_mid f_mid] l_mid] lm_mid] HBind]. rewrite HBind in H. exploit OptionExtra.mfold_left_Some. eapply H0. intros [preds_mid HGather]. rewrite HGather in H0. exploit IHinstrs. eassumption. eassumption. eassumption. admit. intros. Admitted. (* exploit exists_sem_pred. exact H1. *) (* intros [[p_val e_val] [HIN HSEM]]. *) Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval2 : forall G instrs p f l p' f' l' i0 sp ge preds preds' pe lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> @evaluable_pred_expr G (mk_ctx i0 sp ge) f'.(forest_preds) pe -> NE.Forall (fun x => forall pred, PredIn pred (fst x) -> PTree.get pred preds = Some tt) pe -> evaluable_pred_expr (mk_ctx i0 sp ge) f.(forest_preds) pe. Proof. unfold evaluable_pred_expr in *. intros. inv H1. exists x. eapply abstr_seq_revers_correct_fold_sem_pexpr_eval3; eauto. Qed. Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval4 : forall G instrs p f l p' f' l' i0 sp ge preds preds' pe lm lm', mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> @evaluable_pred_expr_m G (mk_ctx i0 sp ge) f'.(forest_preds) pe -> NE.Forall (fun x => forall pred, PredIn pred (fst x) -> PTree.get pred preds = Some tt) pe -> evaluable_pred_expr_m (mk_ctx i0 sp ge) f.(forest_preds) pe. Proof. unfold evaluable_pred_expr in *. intros. inv H1. exists x. eapply abstr_seq_revers_correct_fold_sem_pexpr_eval3; eauto. Qed. Lemma state_lessdef_state_equiv : forall x y, state_lessdef x y <-> state_equiv x y. Proof. split; intros; inv H; constructor; auto. Qed. (* [[id:5e6486bb-fda2-4558-aed8-243a9698de85]] *) Lemma abstr_seq_reverse_correct_fold : forall sp instrs i0 i i' ti cf f' l p p' l' f preds preds' lm lm', valid_mem (is_mem i0) (is_mem i) -> all_preds_in f preds -> eval_predf (is_ps i) p = true -> sem (mk_ctx i0 sp ge) f (i, None) -> mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') -> mfold_left gather_predicates instrs (Some preds) = Some preds' -> evaluable_pred_list (mk_ctx i0 sp ge) f'.(forest_preds) l' -> evaluable_pred_list_m (mk_ctx i0 sp ge) f'.(forest_preds) lm' -> sem (mk_ctx i0 sp ge) f' (i', Some cf) -> state_lessdef i ti -> exists ti', SeqBB.step ge sp (Iexec ti) instrs (Iterm ti' cf) /\ state_lessdef i' ti'. Proof. induction instrs; intros * YVALID YALL YEVAL Y3 Y YGATHER Y0 YEVALUABLE Y1 Y2. - cbn in *. inv Y. assert (X: similar {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |}) by reflexivity. now eapply sem_det in X; [| exact Y1 | exact Y3 ]. - cbn -[update] in Y. pose proof Y as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. cbn in YGATHER. pose proof YGATHER as YX. apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H0 in YGATHER. pose proof H0 as YGATHER_SINGLE. clear H0. rewrite H in Y. destruct x as ((p_mid & f_mid) & l_mid). unfold Option.bind2, Option.ret in H. repeat destr. inv H. destruct a. + cbn in Heqo. inv Heqo. cbn in YGATHER_SINGLE. inv YGATHER_SINGLE. exploit IHinstrs; eauto; simplify. exists x; split; auto. econstructor. constructor. auto. + exploit evaluable_pred_expr_exists_RBop; eauto. eapply abstr_seq_revers_correct_fold_sem_pexpr_eval2; eauto. unfold evaluable_pred_list in Y0. eapply in_forest_evaluable; eauto. eapply gather_predicates_in_forest in YALL; eauto. unfold all_preds_in in YALL. inv YALL. eauto. intros [ti_mid HSTEP]. pose proof Y3 as YH. pose proof HSTEP as YHSTEP. pose proof Y2 as Y2SPLIT; inv Y2SPLIT. eapply step_exists in YHSTEP. 2: { symmetry. econstructor; try eassumption; auto. } inv YHSTEP. inv H1. exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros. exploit IHinstrs. 4: { eauto. } cbn in YVALID. transitivity m'; auto. replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto. eapply sem_update_valid_mem; eauto. eapply gather_predicates_in_forest; eauto. eapply eval_predf_update_true; eauto. eauto. eauto. eauto. eauto. eauto. symmetry. eapply state_lessdef_state_equiv; eauto. intros [ti' [YHH HLD]]. exists ti'; split; eauto. econstructor; eauto. + exploit evaluable_pred_expr_exists_RBload; eauto. eapply abstr_seq_revers_correct_fold_sem_pexpr_eval2; eauto. unfold evaluable_pred_list in Y0. eapply in_forest_evaluable; eauto. eapply gather_predicates_in_forest in YALL; eauto. unfold all_preds_in in YALL. inv YALL. eauto. intros [ti_mid HSTEP]. pose proof Y3 as YH. pose proof HSTEP as YHSTEP. pose proof Y2 as Y2SPLIT; inv Y2SPLIT. eapply step_exists in YHSTEP. 2: { symmetry. econstructor; try eassumption; auto. } inv YHSTEP. inv H1. exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros. exploit IHinstrs. 4: { eauto. } cbn in YVALID. transitivity m'; auto. replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto. eapply sem_update_valid_mem; eauto. eapply gather_predicates_in_forest; eauto. eapply eval_predf_update_true; eauto. eauto. eauto. eauto. eauto. eauto. symmetry. eapply state_lessdef_state_equiv; eauto. intros [ti' [YHH HLD]]. exists ti'; split; eauto. econstructor; eauto. + exploit evaluable_pred_expr_exists_RBstore; eauto. eapply abstr_seq_revers_correct_fold_sem_pexpr_eval4; eauto. unfold evaluable_pred_list in Y0. eapply in_forest_evaluable_m; eauto. eapply gather_predicates_in_forest in YALL; eauto. unfold all_preds_in in YALL. inv YALL. eauto. intros [ti_mid HSTEP]. pose proof Y3 as YH. pose proof HSTEP as YHSTEP. pose proof Y2 as Y2SPLIT; inv Y2SPLIT. eapply step_exists in YHSTEP. 2: { symmetry. econstructor; try eassumption; auto. } inv YHSTEP. inv H1. exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros. exploit IHinstrs. 4: { eauto. } cbn in YVALID. transitivity m'; auto. replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto. eapply sem_update_valid_mem; eauto. eapply gather_predicates_in_forest; eauto. eapply eval_predf_update_true; eauto. eauto. eauto. eauto. eauto. eauto. symmetry. eapply state_lessdef_state_equiv; eauto. intros [ti' [YHH HLD]]. exists ti'; split; eauto. econstructor; eauto. + exploit evaluable_pred_expr_exists_RBsetpred; eauto. admit. intros [ti_mid HSTEP]. pose proof Y3 as YH. pose proof HSTEP as YHSTEP. pose proof Y2 as Y2SPLIT; inv Y2SPLIT. eapply step_exists in YHSTEP. 2: { symmetry. econstructor; try eassumption; auto. } inv YHSTEP. inv H1. exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros. exploit IHinstrs. 4: { eauto. } cbn in YVALID. transitivity m'; auto. replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto. eapply sem_update_valid_mem; eauto. eapply gather_predicates_in_forest; eauto. eapply eval_predf_update_true; eauto. eauto. eauto. eauto. eauto. eauto. symmetry. eapply state_lessdef_state_equiv; eauto. intros [ti' [YHH HLD]]. exists ti'; split; eauto. econstructor; eauto. + case_eq (eval_predf (is_ps i) (dfltp o)); intros. * admit. * exploit evaluable_pred_expr_exists_RBexit; eauto; intros HSTEP. instantiate (1:=cf) in HSTEP. instantiate (1:=sp) in HSTEP. pose proof Y3 as YH. pose proof HSTEP as YHSTEP. pose proof Y2 as Y2SPLIT; inv Y2SPLIT. eapply step_exists in YHSTEP. 2: { symmetry. econstructor; try eassumption; auto. } inv YHSTEP. inv H2. exploit sem_update_instr. auto. eauto. eauto. eauto. eapply Heqo. eauto. auto. intros. exploit IHinstrs. 4: { eauto. } cbn in YVALID. transitivity m'; auto. replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto. reflexivity. eauto. eauto. eapply gather_predicates_in_forest; eauto. eapply eval_predf_update_true; eauto. eauto. eauto. eauto. eauto. eauto. symmetry. eapply state_lessdef_state_equiv; eauto. intros [ti' [YHH HLD]]. exists ti'; split; eauto. econstructor; eauto. Admitted. Lemma sem_empty : forall G (ctx: @Abstr.ctx G), sem ctx empty (ctx_is ctx, None). Proof. intros. destruct ctx. cbn. destruct ctx_is. constructor. constructor. cbn. intros. rewrite get_empty. constructor. cbn. constructor. constructor. constructor. intros. rewrite get_empty_p. constructor. constructor. rewrite get_empty. constructor. cbn. constructor. constructor. constructor. cbn. constructor. constructor. Qed. Lemma abstr_seq_reverse_correct: forall sp x i i' ti cf x' l, abstract_sequence' x = Some (x', l) -> evaluable_pred_list (mk_ctx i sp ge) x'.(forest_preds) l -> sem (mk_ctx i sp ge) x' (i', (Some cf)) -> state_lessdef i ti -> exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf) /\ state_lessdef i' ti'. Proof. intros. unfold abstract_sequence' in H. unfold Option.map, Option.bind in H. repeat destr. inv H. inv Heqo. eapply abstr_seq_reverse_correct_fold; try eassumption; try reflexivity; apply sem_empty. Qed. (*| Proof Sketch: We do an induction over the list of instructions ``x``. This is trivial for the empty case and then for the inductive case we know that there exists an execution that matches the abstract execution, so we need to know that adding another instructions to it will still mean that the execution will result in the same value. Arithmetic operations will be a problem because we will have to show that these can be executed. However, this should mostly be a problem in the abstract state comparison, because there two abstract states can be equal without one being evaluable. |*) End CORRECTNESS.