(* * Vericert: Verified high-level synthesis. * Copyright (C) 2020 Yann Herklotz * 2020 James Pollard * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import Coq.FSets.FMapPositive. Require compcert.common.Events. Require compcert.common.Globalenvs. Require compcert.common.Smallstep. Require compcert.common.Values. Require compcert.lib.Integers. Require Import compcert.lib.Maps. Require Import vericert.common.Vericertlib. Require Import vericert.hls.ValueInt. Require Import vericert.hls.AssocMap. Require Import vericert.hls.Array. Require vericert.hls.Verilog. (** The purpose of the hardware transfer language (HTL) is to create a more hardware-like layout that is still similar to the register transfer language (RTL) that it came from. The main change is that function calls become module instantiations and that we now describe a state machine instead of a control-flow graph. *) Local Open Scope assocmap. Definition reg := positive. Definition node := positive. Definition ident := positive. Definition datapath_stmnt := Verilog.stmnt. Definition datapath := PTree.t datapath_stmnt. Definition control_stmnt := Verilog.stmnt. Definition controllogic := PTree.t control_stmnt. Definition map_well_formed {A : Type} (m : PTree.t A) : Prop := forall p0 : positive, In p0 (map fst (Maps.PTree.elements m)) -> Z.pos p0 <= Integers.Int.max_unsigned. Inductive controlsignal : Type := | ctrl_finish : controlsignal | ctrl_return : controlsignal | ctrl_start : controlsignal | ctrl_reset : controlsignal | ctrl_clk : controlsignal | ctrl_param (idx : nat) : controlsignal. Definition controlsignal_sz (s : controlsignal) : nat := match s with | ctrl_param _ => 32 | ctrl_return => 32 | _ => 1 end. Record module: Type := mkmodule { mod_params : list reg; mod_datapath : datapath; mod_controllogic : controllogic; mod_entrypoint : node; mod_st : reg; mod_stk : reg; mod_stk_len : nat; mod_finish : reg; mod_return : reg; mod_start : reg; mod_reset : reg; mod_clk : reg; mod_scldecls : AssocMap.t (option Verilog.io * Verilog.scl_decl); mod_arrdecls : AssocMap.t (option Verilog.io * Verilog.arr_decl); (** Map from registers in this module to control registers in other modules. These will be mapped to the same verilog register. *) mod_externctrl : AssocMap.t (ident * controlsignal); mod_wf : (map_well_formed mod_controllogic /\ map_well_formed mod_datapath); }. Definition fundef := AST.fundef module. Definition program := AST.program fundef unit. Fixpoint init_regs (vl : list value) (rl : list reg) {struct rl} := match rl, vl with | r :: rl', v :: vl' => AssocMap.set r v (init_regs vl' rl') | _, _ => empty_assocmap end. Definition empty_stack (m : module) : Verilog.assocmap_arr := (AssocMap.set m.(mod_stk) (Array.arr_repeat None m.(mod_stk_len)) (AssocMap.empty Verilog.arr)). (** * Operational Semantics *) Definition genv := Globalenvs.Genv.t fundef unit. Definition find_module (i: ident) (ge : genv) : option module := match Globalenvs.Genv.find_symbol ge i with | None => None | Some b => match Globalenvs.Genv.find_funct_ptr ge b with | Some (AST.Internal f) => Some f | _ => None end end. Inductive stackframe : Type := Stackframe : forall (mid : ident) (m : module) (st : node) (reg_assoc : Verilog.assocmap_reg) (arr_assoc : Verilog.assocmap_arr), stackframe. Inductive state : Type := | State : forall (stack : list stackframe) (mid : ident) (m : module) (st : node) (reg_assoc : Verilog.assocmap_reg) (arr_assoc : Verilog.assocmap_arr), state | Returnstate : forall (res : list stackframe) (mid : ident) (** Name of the callee *) (v : value), state | Callstate : forall (stack : list stackframe) (mid : ident) (m : module) (args : list value), state. Inductive step : genv -> state -> Events.trace -> state -> Prop := | step_module : forall g mid m st sf ctrl_stmnt data_stmnt asr asa basr1 basa1 nasr1 nasa1 basr2 basa2 nasr2 nasa2 asr' asa' f pstval, asr!(mod_reset m) = Some (ZToValue 0) -> asr!(mod_finish m) = Some (ZToValue 0) -> asr!(m.(mod_st)) = Some (posToValue st) -> m.(mod_controllogic)!st = Some ctrl_stmnt -> m.(mod_datapath)!st = Some data_stmnt -> Verilog.stmnt_runp f (Verilog.mkassociations asr empty_assocmap) (Verilog.mkassociations asa (empty_stack m)) ctrl_stmnt (Verilog.mkassociations basr1 nasr1) (Verilog.mkassociations basa1 nasa1) -> basr1!(m.(mod_st)) = Some (posToValue st) -> Verilog.stmnt_runp f (Verilog.mkassociations basr1 nasr1) (Verilog.mkassociations basa1 nasa1) data_stmnt (Verilog.mkassociations basr2 nasr2) (Verilog.mkassociations basa2 nasa2) -> asr' = Verilog.merge_regs nasr2 basr2 -> asa' = Verilog.merge_arrs nasa2 basa2 -> asr'!(m.(mod_st)) = Some (posToValue pstval) -> Z.pos pstval <= Integers.Int.max_unsigned -> step g (State sf mid m st asr asa) Events.E0 (State sf mid m pstval asr' asa') | step_finish : forall g m st asr asa retval sf mid, asr!(m.(mod_finish)) = Some (ZToValue 1) -> asr!(m.(mod_return)) = Some retval -> step g (State sf mid m st asr asa) Events.E0 (Returnstate sf mid retval) | step_initcall : forall g callerid caller st asr asa sf callee_id callee callee_reset callee_params callee_param_vals, find_module callee_id g = Some callee -> caller.(mod_externctrl)!callee_reset = Some (callee_id, ctrl_reset) -> (forall n param, nth_error callee_params n = Some param -> caller.(mod_externctrl)!param = Some (callee_id, ctrl_param n)) -> (* The fact that this is the only condition on the current state to trigger a call introduces non-determinism into the semantics. The semantics permit initiating a call from any state where a reset has been set to 0. *) asr!callee_reset = Some (ZToValue 0) -> callee_param_vals = List.map (fun p => asr#p) callee_params -> step g (State sf callerid caller st asr asa) Events.E0 (Callstate (Stackframe callerid caller st asr asa :: sf) callee_id callee callee_param_vals) | step_call : forall g mid m args res, step g (Callstate res mid m args) Events.E0 (State res mid m m.(mod_entrypoint) (AssocMap.set (mod_reset m) (ZToValue 0) (AssocMap.set (mod_finish m) (ZToValue 0) (AssocMap.set (mod_st m) (posToValue m.(mod_entrypoint)) (init_regs args m.(mod_params))))) (empty_stack m)) | step_return : forall g callerid caller asr asa callee_id callee_return callee_finish i sf pc mst, mst = mod_st caller -> caller.(mod_externctrl)!callee_return = Some (callee_id, ctrl_return) -> caller.(mod_externctrl)!callee_finish = Some (callee_id, ctrl_finish) -> step g (Returnstate (Stackframe callerid caller pc asr asa :: sf) callee_id i) Events.E0 (State sf callerid caller pc (asr # mst <- (posToValue pc) # callee_finish <- (ZToValue 1) # callee_return <- i) asa). Hint Constructors step : htl. Inductive initial_state (p: program): state -> Prop := | initial_state_intro: forall b m0 m, let ge := Globalenvs.Genv.globalenv p in Globalenvs.Genv.init_mem p = Some m0 -> Globalenvs.Genv.find_symbol ge p.(AST.prog_main) = Some b -> Globalenvs.Genv.find_funct_ptr ge b = Some (AST.Internal m) -> initial_state p (Callstate nil p.(AST.prog_main) m nil). Inductive final_state : state -> Integers.int -> Prop := | final_state_intro : forall retval mid retvali, retvali = valueToInt retval -> final_state (Returnstate nil mid retval) retvali. Definition semantics (m : program) := Smallstep.Semantics step (initial_state m) final_state (Globalenvs.Genv.globalenv m).