(* * Vericert: Verified high-level synthesis. * Copyright (C) 2023 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import Coq.micromega.Lia. Require Import compcert.lib.Maps. Require Import compcert.common.Errors. Require Import compcert.common.Globalenvs. Require compcert.backend.Registers. Require Import compcert.common.Linking. Require Import compcert.common.Memory. Require compcert.common.Globalenvs. Require Import compcert.lib.Integers. Require Import compcert.common.AST. Require Import vericert.common.IntegerExtra. Require Import vericert.common.Vericertlib. Require Import vericert.common.ZExtra. Require Import vericert.hls.Array. Require Import vericert.hls.AssocMap. Require Import vericert.hls.DHTL. Require Import vericert.hls.Gible. Require Import vericert.hls.GiblePar. Require Import vericert.hls.HTLPargen. Require Import vericert.hls.HTLPargen. Require Import vericert.hls.Predicate. Require Import vericert.hls.ValueInt. Require Import vericert.hls.Verilog. Require vericert.hls.Verilog. Require Import vericert.common.Errormonad. Import ErrorMonad. Import ErrorMonadExtra. Require Import Lia. Local Open Scope assocmap. #[local] Hint Resolve AssocMap.gss : htlproof. #[local] Hint Resolve AssocMap.gso : htlproof. #[local] Hint Unfold find_assocmap AssocMapExt.get_default : htlproof. Inductive match_assocmaps : positive -> positive -> Gible.regset -> Gible.predset -> assocmap -> Prop := match_assocmap : forall rs pr am max_reg max_pred, (forall r, Ple r max_reg -> val_value_lessdef (Registers.Regmap.get r rs) (find_assocmap 32 (reg_enc r) am)) -> (forall r, Ple r max_pred -> find_assocmap 1 (pred_enc r) am = boolToValue (PMap.get r pr)) -> match_assocmaps max_reg max_pred rs pr am. #[local] Hint Constructors match_assocmaps : htlproof. Inductive match_arrs (stack_size: Z) (stk: positive) (stk_len: nat) (sp : Values.val) (mem : mem) : Verilog.assocmap_arr -> Prop := | match_arr : forall asa stack, asa ! stk = Some stack /\ stack.(arr_length) = Z.to_nat (stack_size / 4) /\ stack.(arr_length) = stk_len /\ (forall ptr, 0 <= ptr < Z.of_nat stack.(arr_length) -> opt_val_value_lessdef (Mem.loadv AST.Mint32 mem (Values.Val.offset_ptr sp (Ptrofs.repr (4 * ptr)))) (Option.default (NToValue 0) (Option.join (array_get_error (Z.to_nat ptr) stack)))) -> match_arrs stack_size stk stk_len sp mem asa. Definition stack_based (v : Values.val) (sp : Values.block) : Prop := match v with | Values.Vptr sp' off => sp' = sp | _ => True end. Definition reg_stack_based_pointers (sp : Values.block) (rs : Registers.Regmap.t Values.val) : Prop := forall r, stack_based (Registers.Regmap.get r rs) sp. Definition arr_stack_based_pointers (spb : Values.block) (m : mem) (stack_length : Z) (sp : Values.val) : Prop := forall ptr, 0 <= ptr < (stack_length / 4) -> stack_based (Option.default Values.Vundef (Mem.loadv AST.Mint32 m (Values.Val.offset_ptr sp (Ptrofs.repr (4 * ptr))))) spb. Definition stack_bounds (sp : Values.val) (hi : Z) (m : mem) : Prop := forall ptr v, hi <= ptr <= Ptrofs.max_unsigned -> Z.modulo ptr 4 = 0 -> Mem.loadv AST.Mint32 m (Values.Val.offset_ptr sp (Ptrofs.repr ptr )) = None /\ Mem.storev AST.Mint32 m (Values.Val.offset_ptr sp (Ptrofs.repr ptr )) v = None. Inductive match_frames : list GiblePar.stackframe -> list DHTL.stackframe -> Prop := | match_frames_nil : match_frames nil nil. Inductive match_constants (rst fin: reg) (asr: assocmap) : Prop := match_constant : asr!rst = Some (ZToValue 0) -> asr!fin = Some (ZToValue 0) -> match_constants rst fin asr. Definition state_st_wf (asr: assocmap) (st_reg: reg) (st: positive) := asr!st_reg = Some (posToValue st). #[local] Hint Unfold state_st_wf : htlproof. Inductive match_states : GiblePar.state -> DHTL.state -> Prop := | match_state : forall asa asr sf f sp sp' rs mem m st res ps (MASSOC : match_assocmaps (max_reg_function f) (max_pred_function f) rs ps asr) (TF : transl_module f = Errors.OK m) (WF : state_st_wf asr m.(DHTL.mod_st) st) (MF : match_frames sf res) (MARR : match_arrs f.(fn_stacksize) m.(DHTL.mod_stk) m.(DHTL.mod_stk_len) sp mem asa) (SP : sp = Values.Vptr sp' (Ptrofs.repr 0)) (RSBP : reg_stack_based_pointers sp' rs) (ASBP : arr_stack_based_pointers sp' mem (f.(GiblePar.fn_stacksize)) sp) (BOUNDS : stack_bounds sp (f.(GiblePar.fn_stacksize)) mem) (CONST : match_constants m.(DHTL.mod_reset) m.(DHTL.mod_finish) asr), (* Add a relation about ps compared with the state register. *) match_states (GiblePar.State sf f sp st rs ps mem) (DHTL.State res m st asr asa) | match_returnstate : forall v v' stack mem res (MF : match_frames stack res), val_value_lessdef v v' -> match_states (GiblePar.Returnstate stack v mem) (DHTL.Returnstate res v') | match_initial_call : forall f m m0 (TF : transl_module f = Errors.OK m), match_states (GiblePar.Callstate nil (AST.Internal f) nil m0) (DHTL.Callstate nil m nil). #[local] Hint Constructors match_states : htlproof. Inductive match_states_reduced : nat -> GiblePar.state -> DHTL.state -> Prop := | match_states_reduced_intro : forall asa asr sf f sp sp' rs mem m st res ps n (MASSOC : match_assocmaps (max_reg_function f) (max_pred_function f) rs ps asr) (TF : transl_module f = Errors.OK m) (WF : state_st_wf asr m.(DHTL.mod_st) (Pos.of_nat (Pos.to_nat st - n)%nat)) (MF : match_frames sf res) (MARR : match_arrs f.(fn_stacksize) m.(DHTL.mod_stk) m.(DHTL.mod_stk_len) sp mem asa) (SP : sp = Values.Vptr sp' (Ptrofs.repr 0)) (RSBP : reg_stack_based_pointers sp' rs) (ASBP : arr_stack_based_pointers sp' mem (f.(GiblePar.fn_stacksize)) sp) (BOUNDS : stack_bounds sp (f.(GiblePar.fn_stacksize)) mem) (CONST : match_constants m.(DHTL.mod_reset) m.(DHTL.mod_finish) asr), (* Add a relation about ps compared with the state register. *) match_states_reduced n (GiblePar.State sf f sp st rs ps mem) (DHTL.State res m (Pos.of_nat (Pos.to_nat st - n)%nat) asr asa). Definition match_prog (p: GiblePar.program) (tp: DHTL.program) := Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq p tp /\ main_is_internal p = true. Ltac unfold_match H := match type of H with | context[match ?g with _ => _ end] => destruct g eqn:?; try discriminate end. #[global] Instance TransfHTLLink (tr_fun: GiblePar.program -> Errors.res DHTL.program): TransfLink (fun (p1: GiblePar.program) (p2: DHTL.program) => match_prog p1 p2). Proof. red. intros. exfalso. destruct (link_linkorder _ _ _ H) as [LO1 LO2]. apply link_prog_inv in H. unfold match_prog in *. unfold main_is_internal in *. simplify. repeat (unfold_match H4). repeat (unfold_match H3). simplify. subst. rewrite H0 in *. specialize (H (AST.prog_main p2)). exploit H. apply Genv.find_def_symbol. exists b. split. assumption. apply Genv.find_funct_ptr_iff. eassumption. apply Genv.find_def_symbol. exists b0. split. assumption. apply Genv.find_funct_ptr_iff. eassumption. intros. inv H3. inv H5. destruct H6. inv H5. Qed. Definition match_prog' (p: GiblePar.program) (tp: DHTL.program) := Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq p tp. Lemma match_prog_matches : forall p tp, match_prog p tp -> match_prog' p tp. Proof. unfold match_prog. tauto. Qed. Lemma transf_program_match: forall p tp, HTLPargen.transl_program p = Errors.OK tp -> match_prog p tp. Proof. intros. unfold transl_program in H. destruct (main_is_internal p) eqn:?; try discriminate. unfold match_prog. split. apply Linking.match_transform_partial_program; auto. assumption. Qed. Lemma max_reg_lt_resource : forall f n, Plt (max_resource_function f) n -> Plt (reg_enc (max_reg_function f)) n. Proof. unfold max_resource_function, Plt, reg_enc, pred_enc in *; intros. lia. Qed. Lemma max_pred_lt_resource : forall f n, Plt (max_resource_function f) n -> Plt (pred_enc (max_pred_function f)) n. Proof. unfold max_resource_function, Plt, reg_enc, pred_enc in *; intros. lia. Qed. Lemma plt_reg_enc : forall a b, Ple a b -> Ple (reg_enc a) (reg_enc b). Proof. unfold Ple, reg_enc, pred_enc in *; intros. lia. Qed. Lemma plt_pred_enc : forall a b, Ple a b -> Ple (pred_enc a) (pred_enc b). Proof. unfold Ple, reg_enc, pred_enc in *; intros. lia. Qed. Lemma reg_enc_inj : forall a b, reg_enc a = reg_enc b -> a = b. Proof. unfold reg_enc; intros; lia. Qed. Lemma pred_enc_inj : forall a b, pred_enc a = pred_enc b -> a = b. Proof. unfold pred_enc; intros; lia. Qed. (* Lemma regs_lessdef_add_greater : *) (* forall n m rs1 ps1 rs2 n v, *) (* Plt (max_resource_function f) n -> *) (* match_assocmaps n m rs1 ps1 rs2 -> *) (* match_assocmaps n m rs1 ps1 (AssocMap.set n v rs2). *) (* Proof. *) (* inversion 2; subst. *) (* intros. constructor. *) (* - apply max_reg_lt_resource in H. intros. unfold find_assocmap. unfold AssocMapExt.get_default. *) (* rewrite AssocMap.gso. eauto. apply plt_reg_enc in H3. unfold Ple, Plt in *. lia. *) (* - apply max_pred_lt_resource in H. intros. unfold find_assocmap. unfold AssocMapExt.get_default. *) (* rewrite AssocMap.gso. eauto. apply plt_pred_enc in H3. unfold Ple, Plt in *. lia. *) (* Qed. *) (* #[local] Hint Resolve regs_lessdef_add_greater : htlproof. *) Lemma pred_enc_reg_enc_ne : forall a b, pred_enc a <> reg_enc b. Proof. unfold not, pred_enc, reg_enc; lia. Qed. Lemma regs_lessdef_add_match : forall m n rs ps am r v v', val_value_lessdef v v' -> match_assocmaps m n rs ps am -> match_assocmaps m n (Registers.Regmap.set r v rs) ps (AssocMap.set (reg_enc r) v' am). Proof. inversion 2; subst. constructor. intros. destruct (peq r0 r); subst. rewrite Registers.Regmap.gss. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gss. assumption. rewrite Registers.Regmap.gso; try assumption. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gso; eauto. unfold not in *; intros; apply n0. apply reg_enc_inj; auto. intros. pose proof (pred_enc_reg_enc_ne r0 r) as HNE. rewrite assocmap_gso by auto. now apply H2. Qed. #[local] Hint Resolve regs_lessdef_add_match : htlproof. Lemma list_combine_none : forall n l, length l = n -> list_combine Verilog.merge_cell (list_repeat None n) l = l. Proof. induction n; intros; crush. - symmetry. apply length_zero_iff_nil. auto. - destruct l; crush. rewrite list_repeat_cons. crush. f_equal. eauto. Qed. Lemma combine_none : forall n a, a.(arr_length) = n -> arr_contents (combine Verilog.merge_cell (arr_repeat None n) a) = arr_contents a. Proof. intros. unfold combine. crush. rewrite <- (arr_wf a) in H. apply list_combine_none. assumption. Qed. Lemma list_combine_lookup_first : forall l1 l2 n, length l1 = length l2 -> nth_error l1 n = Some None -> nth_error (list_combine Verilog.merge_cell l1 l2) n = nth_error l2 n. Proof. induction l1; intros; crush. rewrite nth_error_nil in H0. discriminate. destruct l2 eqn:EQl2. crush. simpl in H. inv H. destruct n; simpl in *. inv H0. simpl. reflexivity. eauto. Qed. Lemma combine_lookup_first : forall a1 a2 n, a1.(arr_length) = a2.(arr_length) -> array_get_error n a1 = Some None -> array_get_error n (combine Verilog.merge_cell a1 a2) = array_get_error n a2. Proof. intros. unfold array_get_error in *. apply list_combine_lookup_first; eauto. rewrite a1.(arr_wf). rewrite a2.(arr_wf). assumption. Qed. Lemma list_combine_lookup_second : forall l1 l2 n x, length l1 = length l2 -> nth_error l1 n = Some (Some x) -> nth_error (list_combine Verilog.merge_cell l1 l2) n = Some (Some x). Proof. induction l1; intros; crush; auto. destruct l2 eqn:EQl2. crush. simpl in H. inv H. destruct n; simpl in *. inv H0. simpl. reflexivity. eauto. Qed. Lemma combine_lookup_second : forall a1 a2 n x, a1.(arr_length) = a2.(arr_length) -> array_get_error n a1 = Some (Some x) -> array_get_error n (combine Verilog.merge_cell a1 a2) = Some (Some x). Proof. intros. unfold array_get_error in *. apply list_combine_lookup_second; eauto. rewrite a1.(arr_wf). rewrite a2.(arr_wf). assumption. Qed. Ltac unfold_func H := match type of H with | ?f = _ => unfold f in H; repeat (unfold_match H) | ?f _ = _ => unfold f in H; repeat (unfold_match H) | ?f _ _ = _ => unfold f in H; repeat (unfold_match H) | ?f _ _ _ = _ => unfold f in H; repeat (unfold_match H) | ?f _ _ _ _ = _ => unfold f in H; repeat (unfold_match H) end. Lemma init_reg_assoc_empty : forall n m l, match_assocmaps n m (Gible.init_regs nil l) (PMap.init false) (DHTL.init_regs nil l). Proof. induction l; simpl; constructor; intros. - rewrite Registers.Regmap.gi. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gempty. constructor. - rewrite Registers.Regmap.gi. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gempty. constructor. - rewrite Registers.Regmap.gi. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gempty. constructor. - rewrite Registers.Regmap.gi. unfold find_assocmap. unfold AssocMapExt.get_default. rewrite AssocMap.gempty. constructor. Qed. Lemma arr_lookup_some: forall (z : Z) (r0 : Registers.reg) (r : Verilog.reg) (asr : assocmap) (asa : Verilog.assocmap_arr) (stack : Array (option value)) (H5 : asa ! r = Some stack) n, exists x, Verilog.arr_assocmap_lookup asa r n = Some x. Proof. intros z r0 r asr asa stack H5 n. eexists. unfold Verilog.arr_assocmap_lookup. rewrite H5. reflexivity. Qed. #[local] Hint Resolve arr_lookup_some : htlproof. Section CORRECTNESS. Variable prog : GiblePar.program. Variable tprog : DHTL.program. Hypothesis TRANSL : match_prog prog tprog. Lemma TRANSL' : Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog. Proof. intros; apply match_prog_matches; assumption. Qed. Let ge : GiblePar.genv := Globalenvs.Genv.globalenv prog. Let tge : DHTL.genv := Globalenvs.Genv.globalenv tprog. Lemma symbols_preserved: forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s. Proof. intros. eapply (Genv.find_symbol_match TRANSL'). Qed. Lemma function_ptr_translated: forall (b: Values.block) (f: GiblePar.fundef), Genv.find_funct_ptr ge b = Some f -> exists tf, Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf. Proof. intros. exploit (Genv.find_funct_ptr_match TRANSL'); eauto. intros (cu & tf & P & Q & R); exists tf; auto. Qed. Lemma functions_translated: forall (v: Values.val) (f: GiblePar.fundef), Genv.find_funct ge v = Some f -> exists tf, Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf. Proof. intros. exploit (Genv.find_funct_match TRANSL'); eauto. intros (cu & tf & P & Q & R); exists tf; auto. Qed. Lemma senv_preserved: Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge). Proof (Genv.senv_transf_partial TRANSL'). #[local] Hint Resolve senv_preserved : htlproof. Lemma ptrofs_inj : forall a b, Ptrofs.unsigned a = Ptrofs.unsigned b -> a = b. Proof. intros. rewrite <- Ptrofs.repr_unsigned. symmetry. rewrite <- Ptrofs.repr_unsigned. rewrite H. auto. Qed. Lemma op_stack_based : forall F V sp v m args rs op ge ver, translate_instr op args = Errors.OK ver -> reg_stack_based_pointers sp rs -> @Op.eval_operation F V ge (Values.Vptr sp Ptrofs.zero) op (List.map (fun r : positive => Registers.Regmap.get r rs) args) m = Some v -> stack_based v sp. Proof. Ltac solve_no_ptr := match goal with | H: reg_stack_based_pointers ?sp ?rs |- stack_based (Registers.Regmap.get ?r ?rs) _ => solve [apply H] | H1: reg_stack_based_pointers ?sp ?rs, H2: Registers.Regmap.get _ _ = Values.Vptr ?b ?i |- context[Values.Vptr ?b _] => let H := fresh "H" in assert (H: stack_based (Values.Vptr b i) sp) by (rewrite <- H2; apply H1); simplify; solve [auto] | |- context[Registers.Regmap.get ?lr ?lrs] => destruct (Registers.Regmap.get lr lrs) eqn:?; simplify; auto | |- stack_based (?f _) _ => unfold f | |- stack_based (?f _ _) _ => unfold f | |- stack_based (?f _ _ _) _ => unfold f | |- stack_based (?f _ _ _ _) _ => unfold f | H: ?f _ _ = Some _ |- _ => unfold f in H; repeat (unfold_match H); inv H | H: ?f _ _ _ _ _ _ = Some _ |- _ => unfold f in H; repeat (unfold_match H); inv H | H: map (fun r : positive => Registers.Regmap.get r _) ?args = _ |- _ => destruct args; inv H | |- context[if ?c then _ else _] => destruct c; try discriminate | H: match _ with _ => _ end = Some _ |- _ => repeat (unfold_match H; try discriminate) | H: match _ with _ => _ end = OK _ _ _ |- _ => repeat (unfold_match H; try discriminate) | |- context[match ?g with _ => _ end] => destruct g; try discriminate | |- _ => simplify; solve [auto] end. intros **. unfold translate_instr in *. unfold_match H; repeat (unfold_match H); simplify; try solve [repeat solve_no_ptr]. subst. unfold translate_eff_addressing in H. repeat (unfold_match H; try discriminate); simplify; try solve [repeat solve_no_ptr]. Qed. Lemma int_inj : forall x y, Int.unsigned x = Int.unsigned y -> x = y. Proof. intros. rewrite <- Int.repr_unsigned at 1. rewrite <- Int.repr_unsigned. rewrite <- H. trivial. Qed. Lemma Ptrofs_compare_correct : forall a b, Ptrofs.ltu (valueToPtr a) (valueToPtr b) = Int.ltu a b. Proof. intros. unfold valueToPtr. unfold Ptrofs.ltu. unfold Ptrofs.of_int. unfold Int.ltu. rewrite !Ptrofs.unsigned_repr in *; auto using Int.unsigned_range_2. Qed. Lemma eval_cond_correct : forall stk f sp pc rs m res ml st asr asa e b f' args cond pr, match_states (GiblePar.State stk f sp pc rs pr m) (DHTL.State res ml st asr asa) -> (forall v, In v args -> Ple v (max_reg_function f)) -> Op.eval_condition cond (List.map (fun r : positive => Registers.Regmap.get r rs) args) m = Some b -> translate_condition cond args = OK e -> Verilog.expr_runp f' asr asa e (boolToValue b). Proof. intros * MSTATE MAX_FUN EVAL TR_INSTR. unfold translate_condition, translate_comparison, translate_comparisonu, translate_comparison_imm, translate_comparison_immu in TR_INSTR. repeat (destruct_match; try discriminate); subst; unfold ret in *; match goal with H: OK _ = OK _ |- _ => inv H end; unfold bop in *; cbn in *; try (solve [econstructor; try econstructor; eauto; unfold binop_run; unfold Values.Val.cmp_bool, Values.Val.cmpu_bool in EVAL; repeat (destruct_match; try discriminate); inv EVAL; inv MSTATE; inv MASSOC; assert (X: Ple p (max_reg_function f)) by eauto; assert (X1: Ple p0 (max_reg_function f)) by eauto; apply H in X; apply H in X1; rewrite Heqv in X; rewrite Heqv0 in X1; inv X; inv X1; auto; try (rewrite Ptrofs_compare_correct; auto)| econstructor; try econstructor; eauto; unfold binop_run; unfold Values.Val.cmp_bool, Values.Val.cmpu_bool in EVAL; repeat (destruct_match; try discriminate); inv EVAL; inv MSTATE; inv MASSOC; assert (X: Ple p (max_reg_function f)) by eauto; apply H in X; rewrite Heqv in X; inv X; auto]). Qed. Lemma eval_cond_correct' : forall e stk f sp pc rs m res ml st asr asa v f' args cond pr, match_states (GiblePar.State stk f sp pc rs pr m) (DHTL.State res ml st asr asa) -> (forall v, In v args -> Ple v (max_reg_function f)) -> Values.Val.of_optbool None = v -> translate_condition cond args = OK e -> exists v', Verilog.expr_runp f' asr asa e v' /\ val_value_lessdef v v'. Proof. intros * MSTATE MAX_FUN EVAL TR_INSTR. unfold translate_condition, translate_comparison, translate_comparisonu, translate_comparison_imm, translate_comparison_immu, bop, boplit in *. repeat unfold_match TR_INSTR; inv TR_INSTR; repeat econstructor. Qed. Ltac eval_correct_tac := match goal with | |- context[valueToPtr] => unfold valueToPtr | |- context[valueToInt] => unfold valueToInt | |- context[bop] => unfold bop | H : context[bop] |- _ => unfold bop in H | |- context[boplit] => unfold boplit | H : context[boplit] |- _ => unfold boplit in H | |- context[boplitz] => unfold boplitz | H : context[boplitz] |- _ => unfold boplitz in H | |- val_value_lessdef Values.Vundef _ => solve [constructor] | H : val_value_lessdef _ _ |- val_value_lessdef (Values.Vint _) _ => constructor; inv H | |- val_value_lessdef (Values.Vint _) _ => constructor; auto | H : ret _ _ = OK _ _ _ |- _ => inv H | H : _ :: _ = _ :: _ |- _ => inv H | |- context[match ?d with _ => _ end] => destruct d eqn:?; try discriminate | H : match ?d with _ => _ end = _ |- _ => repeat unfold_match H | H : match ?d with _ => _ end _ = _ |- _ => repeat unfold_match H | |- Verilog.expr_runp _ _ _ ?f _ => match f with | Verilog.Vternary _ _ _ => idtac | _ => econstructor end | |- val_value_lessdef (?f _ _) _ => unfold f | |- val_value_lessdef (?f _) _ => unfold f | H : ?f (Registers.Regmap.get _ _) _ = Some _ |- _ => unfold f in H; repeat (unfold_match H) | H1 : Registers.Regmap.get ?r ?rs = Values.Vint _, H2 : val_value_lessdef (Registers.Regmap.get ?r ?rs) _ |- _ => rewrite H1 in H2; inv H2 | |- _ => eexists; split; try constructor; solve [eauto] | |- context[if ?c then _ else _] => destruct c eqn:?; try discriminate | H : ?b = _ |- _ = boolToValue ?b => rewrite H end. Lemma eval_correct_Oshrximm : forall sp rs m v e asr asa f f' stk pc args res ml st n pr, match_states (GiblePar.State stk f sp pc rs pr m) (DHTL.State res ml st asr asa) -> Forall (fun x => (Ple x (max_reg_function f))) args -> Op.eval_operation ge sp (Op.Oshrximm n) (List.map (fun r : BinNums.positive => Registers.Regmap.get r rs) args) m = Some v -> translate_instr (Op.Oshrximm n) args = OK e -> exists v', Verilog.expr_runp f' asr asa e v' /\ val_value_lessdef v v'. Proof. intros * MSTATE INSTR EVAL TR_INSTR. pose proof MSTATE as MSTATE_2. inv MSTATE. inv MASSOC. unfold translate_instr in TR_INSTR; repeat (unfold_match TR_INSTR); inv TR_INSTR; unfold Op.eval_operation in EVAL; repeat (unfold_match EVAL); inv EVAL. (*repeat (simplify; eval_correct_tac; unfold valueToInt in * ). destruct (Z_lt_ge_dec (Int.signed i0) 0). econstructor.*) unfold Values.Val.shrx in *. destruct v0; try discriminate. destruct (Int.ltu n (Int.repr 31)) eqn:?; try discriminate. inversion H2. clear H2. assert (Int.unsigned n <= 30). { unfold Int.ltu in *. destruct (zlt (Int.unsigned n) (Int.unsigned (Int.repr 31))); try discriminate. rewrite Int.unsigned_repr in l by (simplify; lia). replace 31 with (Z.succ 30) in l by auto. apply Zlt_succ_le in l. auto. } rewrite IntExtra.shrx_shrx_alt_equiv in H3 by auto. unfold IntExtra.shrx_alt in *. destruct (zlt (Int.signed i) 0). - repeat econstructor; unfold valueToBool, boolToValue, uvalueToZ, natToValue; repeat (simplify; eval_correct_tac). unfold valueToInt in *. inv INSTR. apply H in H5. rewrite H4 in H5. inv H5. clear H6. unfold Int.lt in *. rewrite zlt_true in Heqb0. simplify. rewrite Int.unsigned_repr in Heqb0. discriminate. simplify; lia. unfold ZToValue. rewrite Int.signed_repr by (simplify; lia). auto. rewrite IntExtra.shrx_shrx_alt_equiv; auto. unfold IntExtra.shrx_alt. rewrite zlt_true; try lia. simplify. inv INSTR. clear H6. apply H in H5. rewrite H4 in H5. inv H5. auto. - econstructor; econstructor; [eapply Verilog.erun_Vternary_false|idtac]; repeat econstructor; unfold valueToBool, boolToValue, uvalueToZ, natToValue; repeat (simplify; eval_correct_tac). inv INSTR. clear H6. apply H in H5. rewrite H4 in H5. inv H5. unfold Int.lt in *. rewrite zlt_false in Heqb0. simplify. rewrite Int.unsigned_repr in Heqb0. lia. simplify; lia. unfold ZToValue. rewrite Int.signed_repr by (simplify; lia). auto. rewrite IntExtra.shrx_shrx_alt_equiv; auto. unfold IntExtra.shrx_alt. rewrite zlt_false; try lia. simplify. inv INSTR. apply H in H5. unfold valueToInt in *. rewrite H4 in H5. inv H5. auto. Qed. Lemma max_reg_function_use: forall l y m, Forall (fun x => Ple x m) l -> In y l -> Ple y m. Proof. intros. eapply Forall_forall in H; eauto. Qed. Ltac eval_correct_tac' := match goal with | |- context[valueToPtr] => unfold valueToPtr | |- context[valueToInt] => unfold valueToInt | |- context[bop] => unfold bop | H : context[bop] |- _ => unfold bop in H | |- context[boplit] => unfold boplit | H : context[boplit] |- _ => unfold boplit in H | |- context[boplitz] => unfold boplitz | H : context[boplitz] |- _ => unfold boplitz in H | |- val_value_lessdef Values.Vundef _ => solve [constructor] | H : val_value_lessdef _ _ |- val_value_lessdef (Values.Vint _) _ => constructor; inv H | |- val_value_lessdef (Values.Vint _) _ => constructor; auto | H : ret _ _ = OK _ _ _ |- _ => inv H | H : context[max_reg_function ?f] |- context[_ (Registers.Regmap.get ?r ?rs) (Registers.Regmap.get ?r0 ?rs)] => let HPle1 := fresh "HPle" in let HPle2 := fresh "HPle" in assert (HPle1 : Ple r (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); assert (HPle2 : Ple r0 (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); apply H in HPle1; apply H in HPle2; eexists; split; [econstructor; eauto; constructor; trivial | inv HPle1; inv HPle2; try (constructor; auto)] | H : context[max_reg_function ?f] |- context[_ (Registers.Regmap.get ?r ?rs) _] => let HPle1 := fresh "HPle" in assert (HPle1 : Ple r (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); apply H in HPle1; eexists; split; [econstructor; eauto; constructor; trivial | inv HPle1; try (constructor; auto)] | H : _ :: _ = _ :: _ |- _ => inv H | |- context[match ?d with _ => _ end] => destruct d eqn:?; try discriminate | H : match ?d with _ => _ end = _ |- _ => repeat unfold_match H | H : match ?d with _ => _ end _ = _ |- _ => repeat unfold_match H | |- Verilog.expr_runp _ _ _ ?f _ => match f with | Verilog.Vternary _ _ _ => idtac | _ => econstructor end | |- val_value_lessdef (?f _ _) _ => unfold f | |- val_value_lessdef (?f _) _ => unfold f | H : ?f (Registers.Regmap.get _ _) _ = Some _ |- _ => unfold f in H; repeat (unfold_match H) | H1 : Registers.Regmap.get ?r ?rs = Values.Vint _, H2 : val_value_lessdef (Registers.Regmap.get ?r ?rs) _ |- _ => rewrite H1 in H2; inv H2 | |- _ => eexists; split; try constructor; solve [eauto] | H : context[max_reg_function ?f] |- context[_ (Verilog.Vvar ?r) (Verilog.Vvar ?r0)] => let HPle1 := fresh "H" in let HPle2 := fresh "H" in assert (HPle1 : Ple r (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); assert (HPle2 : Ple r0 (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); apply H in HPle1; apply H in HPle2; eexists; split; try constructor; eauto | H : context[max_reg_function ?f] |- context[Verilog.Vvar ?r] => let HPle := fresh "H" in assert (HPle : Ple r (max_reg_function f)) by (eapply max_reg_function_use; eauto; simpl; auto; repeat (apply in_cons; try solve [constructor; auto])); apply H in HPle; eexists; split; try constructor; eauto | |- context[if ?c then _ else _] => destruct c eqn:?; try discriminate | H : ?b = _ |- _ = boolToValue ?b => rewrite H end. Lemma int_unsigned_lt_ptrofs_max : forall a, 0 <= Int.unsigned a <= Ptrofs.max_unsigned. Proof. intros. pose proof (Int.unsigned_range_2 a). assert (Int.max_unsigned = Ptrofs.max_unsigned) by auto. lia. Qed. Lemma ptrofs_unsigned_lt_int_max : forall a, 0 <= Ptrofs.unsigned a <= Int.max_unsigned. Proof. intros. pose proof (Ptrofs.unsigned_range_2 a). assert (Int.max_unsigned = Ptrofs.max_unsigned) by auto. lia. Qed. Hint Resolve int_unsigned_lt_ptrofs_max : int_ptrofs. Hint Resolve ptrofs_unsigned_lt_int_max : int_ptrofs. Hint Resolve Ptrofs.unsigned_range_2 : int_ptrofs. Hint Resolve Int.unsigned_range_2 : int_ptrofs. (* Ptrofs.agree32_of_int_eq: forall (a : ptrofs) (b : int), Ptrofs.agree32 a b -> Ptrofs.of_int b = a *) (* Ptrofs.agree32_of_int: Archi.ptr64 = false -> forall b : int, Ptrofs.agree32 (Ptrofs.of_int b) b *) (* Ptrofs.agree32_sub: *) (* Archi.ptr64 = false -> *) (* forall (a1 : ptrofs) (b1 : int) (a2 : ptrofs) (b2 : int), *) (* Ptrofs.agree32 a1 b1 -> Ptrofs.agree32 a2 b2 -> Ptrofs.agree32 (Ptrofs.sub a1 a2) (Int.sub b1 b2) *) Lemma eval_correct_sub : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.sub a b) (Int.sub a' b'). Proof. intros * HPLE HPLE0. assert (ARCHI: Archi.ptr64 = false) by auto. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try solve [constructor; auto]. - rewrite ARCHI. constructor. unfold valueToPtr. apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr; auto with int_ptrofs. apply Ptrofs.agree32_sub; auto; rewrite <- Int.repr_unsigned; now apply Ptrofs.agree32_repr. - rewrite ARCHI. destruct_match; constructor. unfold Ptrofs.to_int. unfold valueToInt. apply int_inj. rewrite Int.unsigned_repr; auto with int_ptrofs. apply Ptrofs.agree32_sub; auto; unfold valueToPtr; now apply Ptrofs.agree32_of_int. Qed. Lemma eval_correct_mul : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.mul a b) (Int.mul a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_mul' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.mul a (Values.Vint n)) (Int.mul a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_and : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.and a b) (Int.and a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_and' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.and a (Values.Vint n)) (Int.and a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_or : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.or a b) (Int.or a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_or' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.or a (Values.Vint n)) (Int.or a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_xor : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.xor a b) (Int.xor a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_xor' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.xor a (Values.Vint n)) (Int.xor a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try solve [constructor; auto]. Qed. Lemma eval_correct_shl : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.shl a b) (Int.shl a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_shl' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.shl a (Values.Vint n)) (Int.shl a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_shr : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.shr a b) (Int.shr a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_shr' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.shr a (Values.Vint n)) (Int.shr a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_shru : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.shru a b) (Int.shru a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_shru' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.shru a (Values.Vint n)) (Int.shru a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try destruct_match; now constructor. Qed. Lemma eval_correct_add : forall a b a' b', val_value_lessdef a a' -> val_value_lessdef b b' -> val_value_lessdef (Values.Val.add a b) (Int.add a' b'). Proof. intros * HPLE HPLE0. inv HPLE; inv HPLE0; cbn in *; unfold valueToInt; try destruct_match; constructor; auto; unfold valueToPtr; unfold Ptrofs.of_int; apply ptrofs_inj; rewrite Ptrofs.unsigned_repr by auto with int_ptrofs; [rewrite Int.add_commut|]; apply Ptrofs.agree32_add; auto; rewrite <- Int.repr_unsigned; now apply Ptrofs.agree32_repr. Qed. Lemma eval_correct_add' : forall a a' n, val_value_lessdef a a' -> val_value_lessdef (Values.Val.add a (Values.Vint n)) (Int.add a' (intToValue n)). Proof. intros * HPLE. inv HPLE; cbn in *; unfold valueToInt; try destruct_match; try constructor; auto. unfold valueToPtr. apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr by auto with int_ptrofs. apply Ptrofs.agree32_add; auto. rewrite <- Int.repr_unsigned. apply Ptrofs.agree32_repr; auto. unfold intToValue. rewrite <- Int.repr_unsigned. apply Ptrofs.agree32_repr; auto. Qed. Lemma eval_correct : forall sp op rs m v e asr asa f f' stk pc args res ml st pr, match_states (GiblePar.State stk f sp pc rs pr m) (DHTL.State res ml st asr asa) -> Forall (fun x => (Ple x (max_reg_function f))) args -> Op.eval_operation ge sp op (List.map (fun r : BinNums.positive => Registers.Regmap.get r rs) args) m = Some v -> translate_instr op args = OK e -> exists v', Verilog.expr_runp f' asr asa e v' /\ val_value_lessdef v v'. Proof. intros * MSTATE INSTR EVAL TR_INSTR. pose proof MSTATE as MSTATE_2. inv MSTATE. inv MASSOC. unfold translate_instr in TR_INSTR; repeat (unfold_match TR_INSTR); inv TR_INSTR; unfold Op.eval_operation in EVAL; repeat (unfold_match EVAL); inv EVAL; repeat (simplify; eval_correct_tac; unfold valueToInt in *); repeat (apply Forall_cons_iff in INSTR; destruct INSTR as (?HPLE & INSTR)); try (apply H in HPLE); try (apply H in HPLE0). - do 2 econstructor; eauto. repeat econstructor. - do 2 econstructor; eauto. repeat econstructor. cbn. inv HPLE; cbn; try solve [constructor]; unfold valueToInt in *. constructor; unfold valueToInt; auto. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_sub. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_mul. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_mul'. - inv H2. rewrite Heqv0 in HPLE. inv HPLE. rewrite Heqv1 in HPLE0. inv HPLE0. unfold valueToInt in *. do 2 econstructor; eauto. repeat econstructor. unfold binop_run. rewrite Heqb. auto. constructor; auto. - inv H2. rewrite Heqv0 in HPLE. inv HPLE. rewrite Heqv1 in HPLE0. inv HPLE0. unfold valueToInt in *. do 2 econstructor; eauto. repeat econstructor. unfold binop_run. rewrite Heqb. auto. constructor; auto. - inv H2. rewrite Heqv0 in HPLE. inv HPLE. rewrite Heqv1 in HPLE0. inv HPLE0. unfold valueToInt in *. do 2 econstructor; eauto. repeat econstructor. unfold binop_run. rewrite Heqb. auto. constructor; auto. - inv H2. rewrite Heqv0 in HPLE. inv HPLE. rewrite Heqv1 in HPLE0. inv HPLE0. unfold valueToInt in *. do 2 econstructor; eauto. repeat econstructor. unfold binop_run. rewrite Heqb. auto. constructor; auto. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_and. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_and'. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_or. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_or'. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_xor. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_xor'. - do 2 econstructor; eauto. repeat econstructor. cbn. inv HPLE; now constructor. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shl. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shl'. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shr. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shr'. - inv H2. rewrite Heqv0 in HPLE. inv HPLE. assert (0 <= 31 <= Int.max_unsigned). { pose proof Int.two_wordsize_max_unsigned as Y. unfold Int.zwordsize, Int.wordsize, Wordsize_32.wordsize in Y. lia. } assert (Int.unsigned n <= 30). { unfold Int.ltu in Heqb. destruct_match; try discriminate. clear Heqs. rewrite Int.unsigned_repr in l by auto. lia. } rewrite IntExtra.shrx_shrx_alt_equiv by auto. case_eq (Int.lt (find_assocmap 32 (reg_enc p) asr) (ZToValue 0)); intros HLT. + assert ((if zlt (Int.signed (valueToInt (find_assocmap 32 (reg_enc p) asr))) 0 then true else false) = true). { destruct_match; auto; unfold valueToInt in *. exfalso. assert (Int.signed (find_assocmap 32 (reg_enc p) asr) < 0 -> False) by auto. apply H3. unfold Int.lt in HLT. destruct_match; try discriminate. auto. } destruct_match; try discriminate. do 2 econstructor; eauto. repeat econstructor. now rewrite HLT. constructor; cbn. unfold IntExtra.shrx_alt. rewrite Heqs. auto. + assert ((if zlt (Int.signed (valueToInt (find_assocmap 32 (reg_enc p) asr))) 0 then true else false) = false). { destruct_match; auto; unfold valueToInt in *. exfalso. assert (Int.signed (find_assocmap 32 (reg_enc p) asr) >= 0 -> False) by auto. apply H3. unfold Int.lt in HLT. destruct_match; try discriminate. auto. } destruct_match; try discriminate. do 2 econstructor; eauto. eapply erun_Vternary_false; repeat econstructor. now rewrite HLT. constructor; cbn. unfold IntExtra.shrx_alt. rewrite Heqs. auto. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shru. - do 2 econstructor; eauto. repeat econstructor. now apply eval_correct_shru'. - unfold translate_eff_addressing in H2. repeat (destruct_match; try discriminate); unfold boplitz in *; simplify; repeat (apply Forall_cons_iff in INSTR; destruct INSTR as (?HPLE & INSTR)); try (apply H in HPLE); try (apply H in HPLE0). + inv H2. do 2 econstructor; eauto. repeat econstructor. unfold ZToValue. now apply eval_correct_add'. + inv H2. do 2 econstructor; eauto. repeat econstructor. unfold ZToValue. apply eval_correct_add; auto. apply eval_correct_add; auto. constructor; auto. + inv H2. do 2 econstructor; eauto. repeat econstructor. unfold ZToValue. apply eval_correct_add; try constructor; auto. apply eval_correct_mul; try constructor; auto. + inv H2. do 2 econstructor; eauto. repeat econstructor. unfold ZToValue. apply eval_correct_add; try constructor; auto. apply eval_correct_add; try constructor; auto. apply eval_correct_mul; try constructor; auto. + inv H2. do 2 econstructor; eauto. repeat econstructor. unfold ZToValue. assert (X: Archi.ptr64 = false) by auto. rewrite X in H3. inv H3. constructor. unfold valueToPtr. unfold Ptrofs.of_int. rewrite Int.unsigned_repr by auto with int_ptrofs. rewrite Ptrofs.repr_unsigned. apply Ptrofs.add_zero_l. - remember (Op.eval_condition cond (List.map (fun r : positive => rs !! r) args) m). destruct o. cbn. symmetry in Heqo. exploit eval_cond_correct; eauto. intros. apply Forall_forall with (x := v) in INSTR; auto. intros. econstructor. split. eauto. destruct b; constructor; auto. exploit eval_cond_correct'; eauto. intros. apply Forall_forall with (x := v) in INSTR; auto. - assert (HARCHI: Archi.ptr64 = false) by auto. unfold Errors.bind in *. destruct_match; try discriminate; []. inv H2. remember (Op.eval_condition c (List.map (fun r : positive => rs !! r) l0) m). destruct o; cbn; symmetry in Heqo. + exploit eval_cond_correct; eauto. intros. apply Forall_forall with (x := v) in INSTR; auto. intros. destruct b. * intros. econstructor. split. econstructor. eauto. econstructor; auto. auto. unfold Values.Val.normalize. rewrite HARCHI. destruct_match; auto; constructor. * intros. econstructor. split. eapply erun_Vternary_false; repeat econstructor. eauto. auto. unfold Values.Val.normalize. rewrite HARCHI. destruct_match; auto; constructor. + exploit eval_cond_correct'; eauto. intros. apply Forall_forall with (x := v) in INSTR; auto. simplify. case_eq (valueToBool x); intros HVALU. * econstructor. econstructor. econstructor. eauto. constructor. eauto. auto. constructor. * econstructor. econstructor. eapply erun_Vternary_false. eauto. constructor. eauto. auto. constructor. Qed. Ltac name_goal name := refine ?[name]. Ltac unfold_merge := unfold merge_assocmap; repeat (rewrite AssocMapExt.merge_add_assoc); try (rewrite AssocMapExt.merge_base_1). Lemma match_assocmaps_merge_empty: forall n m rs ps ars, match_assocmaps n m rs ps ars -> match_assocmaps n m rs ps (AssocMapExt.merge value empty_assocmap ars). Proof. inversion 1; subst; clear H. constructor; intros. rewrite merge_get_default2 by auto. auto. rewrite merge_get_default2 by auto. auto. Qed. Lemma match_constants_merge_empty: forall n m ars, match_constants n m ars -> match_constants n m (AssocMapExt.merge value empty_assocmap ars). Proof. inversion 1. constructor; unfold AssocMapExt.merge. - rewrite PTree.gcombine; auto. - rewrite PTree.gcombine; auto. Qed. Lemma match_state_st_wf_empty: forall asr st pc, state_st_wf asr st pc -> state_st_wf (AssocMapExt.merge value empty_assocmap asr) st pc. Proof. unfold state_st_wf; intros. unfold AssocMapExt.merge. rewrite AssocMap.gcombine by auto. rewrite H. rewrite AssocMap.gempty. auto. Qed. Lemma match_arrs_merge_empty: forall sz stk stk_len sp mem asa, match_arrs sz stk stk_len sp mem asa -> match_arrs sz stk stk_len sp mem (merge_arrs (DHTL.empty_stack stk stk_len) asa). Proof. inversion 1. inv H0. inv H3. inv H1. destruct stack. econstructor; unfold AssocMapExt.merge. split; [|split]; [| |split]; cbn in *. - unfold merge_arrs in *. rewrite AssocMap.gcombine by auto. setoid_rewrite H2. unfold DHTL.empty_stack. rewrite AssocMap.gss. cbn in *. eauto. - cbn. rewrite list_combine_length. rewrite list_repeat_len. lia. - cbn. rewrite list_combine_length. rewrite list_repeat_len. lia. - cbn; intros. assert ((Datatypes.length (list_combine merge_cell (list_repeat None arr_length) arr_contents)) = arr_length). { rewrite list_combine_length. rewrite list_repeat_len. lia. } rewrite H3 in H1. apply H4 in H1. inv H1; try constructor. assert (array_get_error (Z.to_nat ptr) {| arr_contents := arr_contents; arr_length := Datatypes.length arr_contents; arr_wf := eq_refl |} = (array_get_error (Z.to_nat ptr) (combine merge_cell (arr_repeat None (Datatypes.length arr_contents)) {| arr_contents := arr_contents; arr_length := Datatypes.length arr_contents; arr_wf := eq_refl |}))). { apply array_get_error_equal; auto. cbn. now rewrite list_combine_none. } rewrite <- H1. auto. Qed. Lemma match_states_merge_empty : forall st f sp pc rs ps m st' modle asr asa, match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc asr asa) -> match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc (AssocMapExt.merge value empty_assocmap asr) asa). Proof. inversion 1; econstructor; eauto using match_assocmaps_merge_empty, match_constants_merge_empty, match_state_st_wf_empty. Qed. Lemma match_states_merge_empty_arr : forall st f sp pc rs ps m st' modle asr asa, match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc asr asa) -> match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc asr (merge_arrs (DHTL.empty_stack modle.(DHTL.mod_stk) modle.(DHTL.mod_stk_len)) asa)). Proof. inversion 1; econstructor; eauto using match_arrs_merge_empty. Qed. Lemma match_states_merge_empty_all : forall st f sp pc rs ps m st' modle asr asa, match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc asr asa) -> match_states (GiblePar.State st f sp pc rs ps m) (DHTL.State st' modle pc (AssocMapExt.merge value empty_assocmap asr) (merge_arrs (DHTL.empty_stack modle.(DHTL.mod_stk) modle.(DHTL.mod_stk_len)) asa)). Proof. eauto using match_states_merge_empty, match_states_merge_empty_arr. Qed. Opaque AssocMap.get. Opaque AssocMap.set. Opaque AssocMapExt.merge. Opaque Verilog.merge_arr. Lemma match_assocmaps_ext : forall n m rs ps ars1 ars2, (forall x, Ple x n -> ars1 ! (reg_enc x) = ars2 ! (reg_enc x)) -> (forall x, Ple x m -> ars1 ! (pred_enc x) = ars2 ! (pred_enc x)) -> match_assocmaps n m rs ps ars1 -> match_assocmaps n m rs ps ars2. Proof. intros * YFRL YFRL2 YMATCH. inv YMATCH. constructor; intros x' YPLE. unfold "#", AssocMapExt.get_default in *. rewrite <- YFRL by auto. eauto. unfold "#", AssocMapExt.get_default. rewrite <- YFRL2 by auto. eauto. Qed. Definition e_assoc asr : reg_associations := mkassociations asr (AssocMap.empty _). Definition e_assoc_arr stk stk_len asr : arr_associations := mkassociations asr (DHTL.empty_stack stk stk_len). Lemma option_inv : forall A x y, @Some A x = Some y -> x = y. Proof. intros. inversion H. trivial. Qed. Lemma main_tprog_internal : forall b, Globalenvs.Genv.find_symbol tge tprog.(AST.prog_main) = Some b -> exists f, Genv.find_funct_ptr (Genv.globalenv tprog) b = Some (AST.Internal f). Proof. intros. destruct TRANSL. unfold main_is_internal in H1. repeat (unfold_match H1). replace b with b0. exploit function_ptr_translated; eauto. intros [tf [A B]]. unfold transl_fundef, AST.transf_partial_fundef, Errors.bind in B. unfold_match B. inv B. econstructor. apply A. apply option_inv. rewrite <- Heqo. rewrite <- H. rewrite symbols_preserved. replace (AST.prog_main tprog) with (AST.prog_main prog). trivial. symmetry; eapply Linking.match_program_main; eauto. Qed. Lemma transl_initial_states : forall s1 : Smallstep.state (GiblePar.semantics prog), Smallstep.initial_state (GiblePar.semantics prog) s1 -> exists s2 : Smallstep.state (DHTL.semantics tprog), Smallstep.initial_state (DHTL.semantics tprog) s2 /\ match_states s1 s2. Proof. induction 1. destruct TRANSL. unfold main_is_internal in H4. repeat (unfold_match H4). assert (f = AST.Internal f1). apply option_inv. rewrite <- Heqo0. rewrite <- H1. replace b with b0. auto. apply option_inv. rewrite <- H0. rewrite <- Heqo. trivial. exploit function_ptr_translated; eauto. intros [tf [A B]]. unfold transl_fundef, Errors.bind in B. unfold AST.transf_partial_fundef, Errors.bind in B. repeat (unfold_match B). inversion B. subst. exploit main_tprog_internal; eauto; intros. rewrite symbols_preserved. replace (AST.prog_main tprog) with (AST.prog_main prog). apply Heqo. symmetry; eapply Linking.match_program_main; eauto. inversion H5. econstructor; split. econstructor. apply (Genv.init_mem_transf_partial TRANSL'); eauto. replace (AST.prog_main tprog) with (AST.prog_main prog). rewrite symbols_preserved; eauto. symmetry; eapply Linking.match_program_main; eauto. apply H6. constructor. inv B. assert (Some (AST.Internal x) = Some (AST.Internal m)). replace (AST.fundef DHTL.module) with (DHTL.fundef). rewrite <- H6. setoid_rewrite <- A. trivial. trivial. inv H7. assumption. Qed. #[local] Hint Resolve transl_initial_states : htlproof. Lemma transl_final_states : forall (s1 : Smallstep.state (GiblePar.semantics prog)) (s2 : Smallstep.state (DHTL.semantics tprog)) (r : Integers.Int.int), match_states s1 s2 -> Smallstep.final_state (GiblePar.semantics prog) s1 r -> Smallstep.final_state (DHTL.semantics tprog) s2 r. Proof. intros. inv H0. inv H. inv H4. inv MF. constructor. reflexivity. Qed. #[local] Hint Resolve transl_final_states : htlproof. Lemma ple_max_resource_function: forall f r, Ple r (max_reg_function f) -> Ple (reg_enc r) (max_resource_function f). Proof. intros * Hple. unfold max_resource_function, reg_enc, Ple in *. lia. Qed. Lemma ple_pred_max_resource_function: forall f r, Ple r (max_pred_function f) -> Ple (pred_enc r) (max_resource_function f). Proof. intros * Hple. unfold max_resource_function, pred_enc, Ple in *. lia. Qed. Lemma stack_correct_inv : forall s, stack_correct s = true -> (0 <= s) /\ (s < Ptrofs.modulus) /\ (s mod 4 = 0). Proof. unfold stack_correct; intros. crush. Qed. Lemma init_regs_empty: forall l, init_regs nil l = (Registers.Regmap.init Values.Vundef). Proof. destruct l; auto. Qed. Lemma dhtl_init_regs_empty: forall l, DHTL.init_regs nil l = (AssocMap.empty _). Proof. destruct l; auto. Qed. Lemma assocmap_gempty : forall n a, find_assocmap n a (AssocMap.empty _) = ZToValue 0. Proof. intros. unfold find_assocmap, AssocMapExt.get_default. now rewrite AssocMap.gempty. Qed. Transparent Mem.load. Transparent Mem.store. Transparent Mem.alloc. Lemma transl_callstate_correct: forall (s : list GiblePar.stackframe) (f : GiblePar.function) (args : list Values.val) (m : mem) (m' : Mem.mem') (stk : Values.block), Mem.alloc m 0 (GiblePar.fn_stacksize f) = (m', stk) -> forall R1 : DHTL.state, match_states (GiblePar.Callstate s (AST.Internal f) args m) R1 -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 Events.E0 R2 /\ match_states (GiblePar.State s f (Values.Vptr stk Integers.Ptrofs.zero) (GiblePar.fn_entrypoint f) (Gible.init_regs args (GiblePar.fn_params f)) (PMap.init false) m') R2. Proof. intros * H R1 MSTATE. inversion MSTATE; subst. inversion TF; subst. econstructor. split. apply Smallstep.plus_one. eapply DHTL.step_call. unfold transl_module, Errors.bind, Errors.bind2, ret in *. repeat (destruct_match; try discriminate; []). inv TF. cbn. econstructor; eauto; inv MSTATE; inv H1; eauto. - constructor; intros. + pose proof (ple_max_resource_function f r H0) as Hple. unfold Ple in *. repeat rewrite assocmap_gso by lia. rewrite init_regs_empty. rewrite dhtl_init_regs_empty. rewrite assocmap_gempty. rewrite Registers.Regmap.gi. constructor. + pose proof (ple_pred_max_resource_function f r H0) as Hple. unfold Ple in *. repeat rewrite assocmap_gso by lia. rewrite dhtl_init_regs_empty. rewrite assocmap_gempty. rewrite PMap.gi. auto. - cbn in *. unfold state_st_wf. repeat rewrite AssocMap.gso by lia. now rewrite AssocMap.gss. - constructor. - unfold DHTL.empty_stack. cbn in *. econstructor. repeat split; intros. + now rewrite AssocMap.gss. + cbn. now rewrite list_repeat_len. + cbn. now rewrite list_repeat_len. + destruct (Mem.loadv Mint32 m' (Values.Val.offset_ptr (Values.Vptr stk Ptrofs.zero) (Ptrofs.repr (4 * ptr)))) eqn:Heqn; constructor. unfold Mem.loadv in Heqn. destruct_match; try discriminate. cbn in Heqv0. symmetry in Heqv0. inv Heqv0. pose proof Mem.load_alloc_same as LOAD_ALLOC. pose proof H as ALLOC. eapply LOAD_ALLOC in ALLOC; eauto; subst. constructor. - unfold reg_stack_based_pointers; intros. unfold stack_based. unfold init_regs; destruct (GiblePar.fn_params f); rewrite Registers.Regmap.gi; constructor. - unfold arr_stack_based_pointers; intros. unfold stack_based. destruct (Mem.loadv Mint32 m' (Values.Val.offset_ptr (Values.Vptr stk Ptrofs.zero) (Ptrofs.repr (4 * ptr)))) eqn:LOAD; cbn; auto. pose proof Mem.load_alloc_same as LOAD_ALLOC. pose proof H as ALLOC. eapply LOAD_ALLOC in ALLOC. now rewrite ALLOC. exact LOAD. - unfold stack_bounds; intros. split. + unfold Mem.loadv. destruct_match; auto. unfold Mem.load, Mem.alloc in *. inv H. cbn -[Ptrofs.max_unsigned] in *. destruct_match; auto. unfold Mem.valid_access, Mem.range_perm, Mem.perm, Mem.perm_order' in *. clear Heqs2. inv v0. cbn -[Ptrofs.max_unsigned] in *. inv Heqv0. exfalso. specialize (H ptr). rewrite ! Ptrofs.add_zero_l in H. rewrite ! Ptrofs.unsigned_repr in H. specialize (H ltac:(lia)). destruct_match; auto. rewrite PMap.gss in Heqo. destruct_match; try discriminate. simplify. apply proj_sumbool_true in H5. lia. apply stack_correct_inv in Heqb. lia. + unfold Mem.storev. destruct_match; auto. unfold Mem.store, Mem.alloc in *. inv H. cbn -[Ptrofs.max_unsigned] in *. destruct_match; auto. unfold Mem.valid_access, Mem.range_perm, Mem.perm, Mem.perm_order' in *. clear Heqs2. inv v0. cbn -[Ptrofs.max_unsigned] in *. inv Heqv0. exfalso. specialize (H ptr). rewrite ! Ptrofs.add_zero_l in H. rewrite ! Ptrofs.unsigned_repr in H. specialize (H ltac:(lia)). destruct_match; auto. rewrite PMap.gss in Heqo. destruct_match; try discriminate. simplify. apply proj_sumbool_true in H5. lia. apply stack_correct_inv in Heqb. lia. - cbn; constructor; repeat rewrite PTree.gso by lia; now rewrite PTree.gss. Qed. Opaque Mem.load. Opaque Mem.store. Opaque Mem.alloc. Lemma transl_returnstate_correct: forall (res0 : Registers.reg) (f : GiblePar.function) (sp : Values.val) (pc : Gible.node) (rs : Gible.regset) (s : list GiblePar.stackframe) (vres : Values.val) (m : mem) ps (R1 : DHTL.state), match_states (GiblePar.Returnstate (GiblePar.Stackframe res0 f sp pc rs ps :: s) vres m) R1 -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 Events.E0 R2 /\ match_states (GiblePar.State s f sp pc (Registers.Regmap.set res0 vres rs) ps m) R2. Proof. intros * MSTATE. inversion MSTATE. inversion MF. Qed. #[local] Hint Resolve transl_returnstate_correct : htlproof. Lemma mfold_left_error: forall A B f l m, @mfold_left A B f l (Error m) = Error m. Proof. now induction l. Qed. Lemma transf_block_correct1: forall l ctrl d d' pc bb pbb i, mfold_left (transf_seq_block ctrl) l (OK d) = OK d' -> In (pc, bb) l -> nth_error bb i = Some pbb -> exists curr_p next_p stmnt, d' ! (Pos.of_nat (Pos.to_nat pc - i)%nat) = Some stmnt /\ transf_parallel_full_stmnt ctrl curr_p (Pos.of_nat (Pos.to_nat pc - i)%nat) pbb = OK (next_p, stmnt). Admitted. Lemma step_list_inter_not_term : forall A step_i sp i cf l i' cf', @step_list_inter A step_i sp (Iterm i cf) l (Iterm i' cf') -> i = i' /\ cf = cf'. Proof. now inversion 1. Qed. Lemma step_list_inter_not_exec : forall A step_i sp i cf l i', ~ @step_list_inter A step_i sp (Iterm i cf) l (Iexec i'). Proof. now inversion 1. Qed. Lemma step_list_nth_iterm': forall sp n instrs m out1 out2, step_list_nth (ParBB.step_instr_seq ge) sp n out1 instrs m out2 -> forall i cf, out1 = Iterm i cf -> out1 = out2. Proof. induction 1; subst; auto. intros. subst. destruct out. - now apply step_list_inter_not_exec in H0. - apply step_list_inter_not_term in H0. inv H0. now erewrite <- IHstep_list_nth by eauto. Qed. Lemma step_list_nth_iterm: forall sp n instrs m out2 i cf, step_list_nth (ParBB.step_instr_seq ge) sp n (Iterm i cf) instrs m out2 -> Iterm i cf = out2. Proof. eauto using step_list_nth_iterm'. Qed. Lemma transl_step_state_correct' : forall sp bb pc_final vstep init_state final_state pc_init, step_list_nth vstep sp pc_init init_state bb pc_final final_state -> forall rs rs' m m' pr pr' cf state t pc f s, vstep = (ParBB.step_instr_seq ge) -> init_state = (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) -> final_state = (Iterm {| is_rs := rs'; is_ps := pr'; is_mem := m' |} cf) -> (fn_code f) ! pc = Some bb -> (pc_final <= Datatypes.length bb)%nat -> step_cf_instr ge (GiblePar.State s f sp pc rs' pr' m') cf t state -> forall R1 : DHTL.state, match_states_reduced pc_init (GiblePar.State s f sp pc rs pr m) R1 -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 t R2 /\ match_states state R2. Proof. induction 1; intros * EQ1 EQ2 EQ3 HCODE HBOUND HSTEP R1 HMATCH; subst. - discriminate. - destruct out as [[rs_mid ps_mid m_mid] | [rs_mid ps_mid m_mid] cf_mid]. + inv HMATCH. unfold transl_module, Errors.bind, ret in TF. repeat (destruct_match; try discriminate; []). inv TF. exploit transf_block_correct1. eauto. apply PTree.elements_correct. eassumption. eauto. intros (curr_p & next_p & stmnt0 & HIND & HTRANSF). exploit IHstep_list_nth; trivial. * eassumption. * eassumption. * admit. * intros (R2' & HSMALL & HMATCH'). admit. + clear IHstep_list_nth. pose proof (step_list_nth_iterm _ _ _ _ _ _ _ H1) as HITERM. inv HITERM. admit. Admitted. Inductive match_states_reduced' : GiblePar.state -> DHTL.state -> Prop := | match_states_reduced'_intro : forall asa asr sf f sp sp' rs mem m st res ps n (MASSOC : match_assocmaps (max_reg_function f) (max_pred_function f) rs ps asr) (TF : transl_module f = Errors.OK m) (WF : state_st_wf asr m.(DHTL.mod_st) n) (MF : match_frames sf res) (MARR : match_arrs f.(fn_stacksize) m.(DHTL.mod_stk) m.(DHTL.mod_stk_len) sp mem asa) (SP : sp = Values.Vptr sp' (Ptrofs.repr 0)) (RSBP : reg_stack_based_pointers sp' rs) (ASBP : arr_stack_based_pointers sp' mem (f.(GiblePar.fn_stacksize)) sp) (BOUNDS : stack_bounds sp (f.(GiblePar.fn_stacksize)) mem) (CONST : match_constants m.(DHTL.mod_reset) m.(DHTL.mod_finish) asr), (* Add a relation about ps compared with the state register. *) match_states_reduced' (GiblePar.State sf f sp st rs ps mem) (DHTL.State res m n asr asa). Lemma step_cf_instr_pc_ind : forall s f sp rs' pr' m' pc pc' cf t state, step_cf_instr ge (GiblePar.State s f sp pc rs' pr' m') cf t state -> step_cf_instr ge (GiblePar.State s f sp pc' rs' pr' m') cf t state. Proof. destruct cf; intros; inv H; econstructor; eauto. Qed. Definition mk_ctrl f := {| ctrl_st := Pos.succ (max_resource_function f); ctrl_stack := Pos.succ (Pos.succ (Pos.succ (Pos.succ (max_resource_function f)))); ctrl_fin := Pos.succ (Pos.succ (max_resource_function f)); ctrl_return := Pos.succ (Pos.succ (Pos.succ (max_resource_function f))) |}. Lemma transl_step_state_correct_instr : forall s f sp bb hw_pc curr_p next_p rs rs' m m' pr pr' m_ s' stmnt stmnt' asr0 asa0 asr asa, (* (fn_code f) ! pc = Some bb -> *) mfold_left (transf_instr (mk_ctrl f)) bb (OK (curr_p, stmnt)) = OK (next_p, stmnt') -> stmnt_runp tt (e_assoc asr0) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa0) stmnt (e_assoc asr) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa) -> eval_predf pr curr_p = true -> ParBB.step_instr_list ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb (Iexec {| is_rs := rs'; is_ps := pr'; is_mem := m' |}) -> match_states (GiblePar.State s f sp hw_pc rs pr m) (DHTL.State s' m_ hw_pc asr asa) -> exists asr' asa', stmnt_runp tt (e_assoc asr0) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa0) stmnt' (e_assoc asr') (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa') /\ match_states (GiblePar.State s f sp hw_pc rs' pr' m') (DHTL.State s' m_ hw_pc asr' asa'). Proof. Admitted. Lemma transl_step_state_correct_chained : forall s f sp bb hw_pc curr_p next_p rs rs' m m' pr pr' m_ s' stmnt stmnt' asr0 asa0 asr asa, (* (fn_code f) ! pc = Some bb -> *) mfold_left (transf_chained_block (mk_ctrl f)) bb (OK (curr_p, stmnt)) = OK (next_p, stmnt') -> stmnt_runp tt (e_assoc asr0) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa0) stmnt (e_assoc asr) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa) -> eval_predf pr curr_p = true -> ParBB.step_instr_seq ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb (Iexec {| is_rs := rs'; is_ps := pr'; is_mem := m' |}) -> match_states (GiblePar.State s f sp hw_pc rs pr m) (DHTL.State s' m_ hw_pc asr asa) -> exists asr' asa', stmnt_runp tt (e_assoc asr0) (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa0) stmnt' (e_assoc asr') (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa') /\ match_states (GiblePar.State s f sp hw_pc rs' pr' m') (DHTL.State s' m_ hw_pc asr' asa'). Proof. Admitted. Lemma one_ne_zero: Int.repr 1 <> Int.repr 0. Proof. unfold not; intros. assert (Int.unsigned (Int.repr 1) = Int.unsigned (Int.repr 0)) by (now rewrite H). rewrite ! Int.unsigned_repr in H0 by crush. lia. Qed. Lemma int_and_boolToValue : forall b1 b2, Int.and (boolToValue b1) (boolToValue b2) = boolToValue (b1 && b2). Proof. destruct b1; destruct b2; cbn; unfold boolToValue; unfold natToValue; replace (Z.of_nat 1) with 1 by auto; replace (Z.of_nat 0) with 0 by auto. - apply Int.and_idem. - apply Int.and_zero. - apply Int.and_zero_l. - apply Int.and_zero. Qed. Lemma int_or_boolToValue : forall b1 b2, Int.or (boolToValue b1) (boolToValue b2) = boolToValue (b1 || b2). Proof. destruct b1; destruct b2; cbn; unfold boolToValue; unfold natToValue; replace (Z.of_nat 1) with 1 by auto; replace (Z.of_nat 0) with 0 by auto. - apply Int.or_idem. - apply Int.or_zero. - apply Int.or_zero_l. - apply Int.or_zero_l. Qed. Lemma translate_pred_correct : forall curr_p pr asr asa, (forall r, Ple r (max_predicate curr_p) -> find_assocmap 1 (pred_enc r) asr = boolToValue (PMap.get r pr)) -> expr_runp tt asr asa (pred_expr curr_p) (boolToValue (eval_predf pr curr_p)). Proof. induction curr_p. - intros * HFRL. cbn. destruct p as [b p']. destruct b. + constructor. eapply HFRL. cbn. unfold Ple. lia. + econstructor. constructor. eapply HFRL. cbn. unfold Ple; lia. econstructor. cbn. f_equal. unfold boolToValue. f_equal. destruct pr !! p' eqn:?. cbn. rewrite Int.eq_false; auto. unfold natToValue. replace (Z.of_nat 1) with 1 by auto. unfold Int.zero. apply one_ne_zero. cbn. rewrite Int.eq_true; auto. - intros. cbn. constructor. - intros. cbn. constructor. - cbn -[eval_predf]; intros. econstructor. eapply IHcurr_p1. intros. eapply H. unfold Ple in *. lia. eapply IHcurr_p2; intros. eapply H. unfold Ple in *; lia. cbn -[eval_predf]. f_equal. symmetry. apply int_and_boolToValue. - cbn -[eval_predf]; intros. econstructor. eapply IHcurr_p1. intros. eapply H. unfold Ple in *. lia. eapply IHcurr_p2; intros. eapply H. unfold Ple in *; lia. cbn -[eval_predf]. f_equal. symmetry. apply int_or_boolToValue. Qed. Lemma max_predicate_deep_simplify' : forall peq curr r, (r <= max_predicate (deep_simplify' peq curr))%positive -> (r <= max_predicate curr)%positive. Proof. destruct curr; cbn -[deep_simplify']; auto. - intros. unfold deep_simplify' in H. destruct curr1; destruct curr2; try (destruct_match; cbn in *); lia. - intros. unfold deep_simplify' in H. destruct curr1; destruct curr2; try (destruct_match; cbn in *); lia. Qed. Lemma max_predicate_deep_simplify : forall peq curr r, (r <= max_predicate (deep_simplify peq curr))%positive -> (r <= max_predicate curr)%positive. Proof. induction curr; try solve [cbn; auto]; cbn -[deep_simplify'] in *. - intros. apply max_predicate_deep_simplify' in H. cbn -[deep_simplify'] in *. assert (HX: (r <= max_predicate (deep_simplify peq curr1))%positive \/ (r <= max_predicate (deep_simplify peq curr2))%positive) by lia. inv HX; [eapply IHcurr1 in H0 | eapply IHcurr2 in H0]; lia. - intros. apply max_predicate_deep_simplify' in H. cbn -[deep_simplify'] in *. assert (HX: (r <= max_predicate (deep_simplify peq curr1))%positive \/ (r <= max_predicate (deep_simplify peq curr2))%positive) by lia. inv HX; [eapply IHcurr1 in H0 | eapply IHcurr2 in H0]; lia. Qed. Lemma translate_cfi_goto: forall pr curr_p pc s ctrl asr asa, (forall r, Ple r (max_predicate curr_p) -> find_assocmap 1 (pred_enc r) asr = boolToValue (PMap.get r pr)) -> eval_predf pr curr_p = true -> translate_cfi ctrl (Some curr_p) (RBgoto pc) = OK s -> stmnt_runp tt (e_assoc asr) asa s (e_assoc (AssocMap.set ctrl.(ctrl_st) (posToValue pc) asr)) asa. Proof. intros * HPLE HEVAL HTRANSL. unfold translate_cfi in *. inversion_clear HTRANSL as []. destruct_match. - constructor. constructor. econstructor. eapply translate_pred_correct. intros. unfold Ple in *. eapply HPLE. now apply max_predicate_deep_simplify in H. eauto. constructor. rewrite eval_predf_deep_simplify. rewrite HEVAL. auto. - repeat constructor. Qed. Lemma translate_cfi_goto_none: forall pc s ctrl asr asa, translate_cfi ctrl None (RBgoto pc) = OK s -> stmnt_runp tt (e_assoc asr) asa s (e_assoc (AssocMap.set ctrl.(ctrl_st) (posToValue pc) asr)) asa. Proof. intros; inversion_clear H as []; repeat constructor. Qed. Lemma transl_module_ram_none : forall f m_, transl_module f = OK m_ -> m_.(mod_ram) = None. Proof. unfold transl_module, Errors.bind, Errors.bind2, ret; intros. repeat (destruct_match; try discriminate). inversion_clear H as []. auto. Qed. Lemma transl_step_state_correct_ : forall s f sp bb hw_pc curr_p d hw_pc' pc_ind next_p d' rs rs' m m' pr pr' state cf m_ s', (* (fn_code f) ! pc = Some bb -> *) mfold_left (transf_parallel_full_block (mk_ctrl f)) bb (OK (hw_pc, curr_p, d)) = OK (hw_pc', next_p, d') -> (forall x y, d' ! x = Some y -> m_.(mod_datapath) ! x = Some y) -> eval_predf pr curr_p = true -> (max_predicate curr_p <= max_pred_function f)%positive -> ParBB.step ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb (Iterm {| is_rs := rs'; is_ps := pr'; is_mem := m' |} cf) -> step_cf_instr ge (GiblePar.State s f sp pc_ind rs' pr' m') cf Events.E0 state -> forall asr asa, match_states (GiblePar.State s f sp hw_pc rs pr m) (DHTL.State s' m_ hw_pc asr asa) -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge (DHTL.State s' m_ hw_pc asr asa) Events.E0 R2 /\ match_states state R2. Proof. induction bb. - cbn; intros * HFOLD HSUB HCURR HMAX HPAR HSTEP * HMATCH. inv HPAR. - intros * HFOLD HSUB HCURR HMAX HPAR HSTEP * HMATCH. inv HPAR. + destruct state' as [rs_mid pr_mid m_mid]. cbn -[transf_parallel_full_block] in HFOLD. assert (HTRANSF_EX: exists tres, (transf_parallel_full_block (mk_ctrl f) (hw_pc, curr_p, d) a) = OK tres) by admit. inversion_clear HTRANSF_EX as [[[hw_pc_mid curr_p_mid] d_mid] HTRANSF_EX']. rewrite HTRANSF_EX' in HFOLD. unfold transf_parallel_full_block, Errors.bind2, transf_parallel_full_stmnt, Errors.bind in HTRANSF_EX'. repeat (destruct_match; try discriminate; []). inv Heqp0. inv HTRANSF_EX'. exploit translate_cfi_goto. instantiate (2 := asr). admit. eauto. eauto. intros. instantiate (1 := (e_assoc_arr (DHTL.mod_stk m_) (DHTL.mod_stk_len m_) asa)) in H. exploit transl_step_state_correct_chained; eauto. admit. intros (asr' & asa' & HSTMNT & HMATCH'). eapply match_states_merge_empty_all in HMATCH'. eapply match_states_merge_empty_all in HMATCH'. exploit IHbb. * eauto. * eauto. * instantiate (1 := pr_mid). admit. * admit. * eauto. * eauto. * eauto. * intros (R2 & HSEMPLUS & HMATCH''). exists R2; split; auto. eapply Smallstep.plus_left'; eauto. 2: { symmetry; eapply Events.E0_right. } inv HMATCH. inv CONST. econstructor. eauto. eauto. eauto. inv WF. eapply HSUB. instantiate (1:=s0). admit. unfold e_assoc, e_assoc_arr in HSTMNT. eauto. rewrite transl_module_ram_none with (f := f) by auto. constructor. auto. auto. admit. admit. + admit. Admitted. (* Lemma transl_step_state_correct : *) (* forall s f sp pc rs rs' m m' bb pr pr' t state cf, *) (* (fn_code f) ! pc = Some bb -> *) (* ParBB.step ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb *) (* (Iterm {| is_rs := rs'; is_ps := pr'; is_mem := m' |} cf) -> *) (* step_cf_instr ge (GiblePar.State s f sp pc rs' pr' m') cf t state -> *) (* forall R1 : DHTL.state, *) (* match_states (GiblePar.State s f sp pc rs pr m) R1 -> *) (* exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 Events.E0 R2 /\ match_states state R2. *) (* Proof. *) (* intros * HCODE HPARBB HSTEP R1 HMATCH. *) (* exploit step_list_equiv; eauto. intros (pc_final & HSTEPNTH & HBOUND). *) (* eapply transl_step_state_correct'; eauto. inv HMATCH. *) (* replace pc with (Pos.of_nat ((Pos.to_nat pc) - O)%nat) at 2 by lia. *) (* econstructor; eauto. *) (* now replace (Pos.of_nat ((Pos.to_nat pc) - O)%nat) with pc by lia. *) (* Qed. *) Lemma transf_seq_block_in_const : forall d_init pc bb ctrl l d', mfold_left (transf_seq_block ctrl) l (OK d_init) = OK d' -> d_init ! pc = Some bb -> d' ! pc = Some bb. Proof. Admitted. Lemma transf_seq_block_in' : forall d_init pc bb ctrl l d', mfold_left (transf_seq_block ctrl) l (OK d_init) = OK d' -> list_norepet (List.map fst l) -> In (pc, bb) l -> exists d_mid d_mid' n' next_p', (mfold_left (transf_parallel_full_block ctrl) bb (OK (pc, Ptrue, d_mid)) = OK (n', next_p', d_mid')) /\ (forall x y, d_mid' ! x = Some y -> d' ! x = Some y). Proof. Admitted. Lemma transf_seq_block_in : forall d_init pc bb ctrl d' d, mfold_left (transf_seq_block ctrl) (PTree.elements d) (OK d_init) = OK d' -> d ! pc = Some bb -> exists d_mid d_mid' n' next_p', (mfold_left (transf_parallel_full_block ctrl) bb (OK (pc, Ptrue, d_mid)) = OK (n', next_p', d_mid')) /\ (forall x y, d_mid' ! x = Some y -> d' ! x = Some y). Proof. intros. eapply transf_seq_block_in'; eauto. apply PTree.elements_keys_norepet. apply PTree.elements_correct; eassumption. Qed. Lemma transl_step_state_correct : forall s f sp pc rs rs' m m' bb pr pr' state cf, (fn_code f) ! pc = Some bb -> ParBB.step ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb (Iterm {| is_rs := rs'; is_ps := pr'; is_mem := m' |} cf) -> step_cf_instr ge (GiblePar.State s f sp pc rs' pr' m') cf Events.E0 state -> forall R1 : DHTL.state, match_states (GiblePar.State s f sp pc rs pr m) R1 -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 Events.E0 R2 /\ match_states state R2. Proof. intros * HCODE HPARBB HSTEP R1 HMATCH. inversion HMATCH. unfold transl_module, Errors.bind, ret in *. repeat (destruct_match; try discriminate; []). inv TF. exploit transf_seq_block_in; eauto. intros (d_mid & d_mid' & n' & next_p' & HFOLD & HIN). eapply transl_step_state_correct_; eauto. cbn; lia. Qed. Lemma transl_step_state_correct_final : forall s f sp pc rs rs' m m' bb pr pr' state cf t, (fn_code f) ! pc = Some bb -> ParBB.step ge sp (Iexec {| is_rs := rs; is_ps := pr; is_mem := m |}) bb (Iterm {| is_rs := rs'; is_ps := pr'; is_mem := m' |} cf) -> step_cf_instr ge (GiblePar.State s f sp pc rs' pr' m') cf t state -> forall R1 : DHTL.state, match_states (GiblePar.State s f sp pc rs pr m) R1 -> exists R2 : DHTL.state, Smallstep.plus DHTL.step tge R1 t R2 /\ match_states state R2. Proof. Admitted. Theorem transl_step_correct: forall (S1 : GiblePar.state) t S2, GiblePar.step ge S1 t S2 -> forall (R1 : DHTL.state), match_states S1 R1 -> exists R2, Smallstep.plus DHTL.step tge R1 t R2 /\ match_states S2 R2. Proof. induction 1. - now (eapply transl_step_state_correct_final; eauto). - now apply transl_callstate_correct. - inversion 1. - now apply transl_returnstate_correct. Qed. #[local] Hint Resolve transl_step_correct : htlproof. Theorem transf_program_correct: Smallstep.forward_simulation (GiblePar.semantics prog) (DHTL.semantics tprog). Proof. eapply Smallstep.forward_simulation_plus; eauto with htlproof. apply senv_preserved. Qed. End CORRECTNESS.