(* * Vericert: Verified high-level synthesis. * Copyright (C) 2021 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) Require Import compcert.backend.Registers. Require Import compcert.common.AST. Require Import compcert.common.Globalenvs. Require Import compcert.common.Memory. Require Import compcert.common.Values. Require Import compcert.lib.Floats. Require Import compcert.lib.Integers. Require Import compcert.lib.Maps. Require compcert.verilog.Op. Require Import vericert.common.Vericertlib. Require Import vericert.hls.RTLBlock. Require Import vericert.hls.RTLPar. Require Import vericert.hls.RTLBlockInstr. #[local] Open Scope positive. #[local] Hint Resolve in_eq : core. #[local] Hint Resolve in_cons : core. Definition max_key {A} (t: PTree.t A) := fold_right Pos.max 1%positive (map fst (PTree.elements t)). Lemma max_key_correct' : forall l hi, In hi l -> hi <= fold_right Pos.max 1 l. Proof. induction l; crush. inv H. lia. destruct (Pos.max_dec a (fold_right Pos.max 1 l)); rewrite e. - apply Pos.max_l_iff in e. assert (forall a b c, a <= c -> c <= b -> a <= b) by lia. eapply H; eauto. - apply IHl; auto. Qed. Lemma max_key_correct : forall A h_tree hi (c: A), h_tree ! hi = Some c -> hi <= max_key h_tree. Proof. unfold max_key. intros. apply PTree.elements_correct in H. apply max_key_correct'. eapply in_map with (f := fst) in H. auto. Qed. Lemma filter_none : forall A f l (x: A), filter f l = nil -> In x l -> f x = false. Proof. induction l; crush; inv H0; subst; destruct_match; crush. Qed. Lemma filter_set : forall A l l' f (x: A), (In x l -> In x l') -> In x (filter f l) -> In x (filter f l'). Proof. induction l; crush. destruct_match; crush. inv H0; crush. apply filter_In. simplify; crush. Qed. Lemma filter_cons_true : forall A f l (a: A) l', filter f l = a :: l' -> f a = true. Proof. induction l; crush. destruct (f a) eqn:?. inv H. auto. eapply IHl; eauto. Qed. Lemma PTree_set_elements : forall A t x x' (c: A), In x (PTree.elements t) -> x' <> (fst x) -> In x (PTree.elements (PTree.set x' c t)). Proof. intros. destruct x. eapply PTree.elements_correct. simplify. rewrite PTree.gso; auto. apply PTree.elements_complete in H. auto. Qed. Lemma filter_set2 : forall A x y z (h: PTree.t A), In z (PTree.elements (PTree.set x y h)) -> In z (PTree.elements h) \/ fst z = x. Proof. intros. destruct z. destruct (Pos.eq_dec p x); subst. tauto. left. apply PTree.elements_correct. apply PTree.elements_complete in H. rewrite PTree.gso in H; auto. Qed. Lemma in_filter : forall A f l (x: A), In x (filter f l) -> In x l. Proof. induction l; crush. destruct_match; crush. inv H; crush. Qed. Lemma filter_norepet: forall A f (l: list A), list_norepet l -> list_norepet (filter f l). Proof. induction l; crush. inv H. destruct (f a). constructor. unfold not in *; intros. apply H2. eapply in_filter; eauto. apply IHl; auto. apply IHl; auto. Qed. Lemma filter_norepet2: forall A B g (l: list (A * B)), list_norepet (map fst l) -> list_norepet (map fst (filter g l)). Proof. induction l; crush. inv H. destruct (g a) eqn:?. simplify. constructor. unfold not in *. intros. eapply H2. apply list_in_map_inv in H. simplify; subst. rewrite H. apply filter_In in H1. simplify. apply in_map. eauto. eapply IHl. eauto. eapply IHl. eauto. Qed. Module Type Hashable. Parameter t: Type. Parameter eq_dec: forall (t1 t2: t), {t1 = t2} + {t1 <> t2}. End Hashable. Module HashTree(H: Hashable). Import H. Definition hash := positive. Definition hash_tree := PTree.t t. Definition find_tree (el: t) (h: hash_tree) : option hash := match filter (fun x => if eq_dec el (snd x) then true else false) (PTree.elements h) with | (p, _) :: nil => Some p | _ => None end. Definition hash_value (max: hash) (e: t) (h: hash_tree): hash * hash_tree := match find_tree e h with | Some p => (p, h) | None => let nkey := Pos.max max (max_key h) + 1 in (nkey, PTree.set nkey e h) end. Definition wf_hash_table h_tree := forall x c, h_tree ! x = Some c -> find_tree c h_tree = Some x. Lemma find_tree_correct : forall c h_tree p, find_tree c h_tree = Some p -> h_tree ! p = Some c. Proof. intros. unfold find_tree in H. destruct_match; crush. destruct_match; simplify. destruct_match; crush. assert (In (p, t0) (filter (fun x : hash * t => if eq_dec c (snd x) then true else false) (PTree.elements h_tree))). { setoid_rewrite Heql. constructor; auto. } apply filter_In in H. simplify. destruct_match; crush. subst. apply PTree.elements_complete; auto. Qed. Lemma find_tree_unique : forall c h_tree p p', find_tree c h_tree = Some p -> h_tree ! p' = Some c -> p = p'. Proof. intros. unfold find_tree in H. repeat (destruct_match; crush; []). assert (In (p, t0) (filter (fun x : hash * t => if eq_dec c (snd x) then true else false) (PTree.elements h_tree))). { setoid_rewrite Heql. constructor; auto. } apply filter_In in H. simplify. destruct (Pos.eq_dec p p'); auto. exfalso. destruct_match; subst; crush. assert (In (p', t0) (PTree.elements h_tree) /\ (fun x : hash * t => if eq_dec t0 (snd x) then true else false) (p', t0) = true). { split. apply PTree.elements_correct. auto. setoid_rewrite Heqs. auto. } apply filter_In in H. setoid_rewrite Heql in H. inv H. simplify. crush. crush. Qed. Lemma hash_no_element' : forall c h_tree, find_tree c h_tree = None -> wf_hash_table h_tree -> ~ forall x, h_tree ! x = Some c. Proof. unfold not, wf_hash_table; intros. specialize (H1 1). eapply H0 in H1. crush. Qed. Lemma hash_no_element : forall c h_tree, find_tree c h_tree = None -> wf_hash_table h_tree -> ~ exists x, h_tree ! x = Some c. Proof. unfold not, wf_hash_table; intros. simplify. apply H0 in H2. rewrite H in H2. crush. Qed. Lemma wf_hash_table_set_gso' : forall h x p0 c', filter (fun x : hash * t => if eq_dec c' (snd x) then true else false) (PTree.elements h) = (x, p0) :: nil -> h ! x = Some p0 /\ p0 = c'. Proof. intros. match goal with | H: filter ?f ?el = ?x::?xs |- _ => assert (In x (filter f el)) by (rewrite H; crush) end. apply filter_In in H0. simplify. destruct_match; subst; crush. apply PTree.elements_complete; auto. destruct_match; crush. Qed. Lemma wf_hash_table_set_gso : forall x x' c' c h, x <> x' -> wf_hash_table h -> find_tree c' h = Some x -> find_tree c h = None -> find_tree c' (PTree.set x' c h) = Some x. Proof. intros. pose proof H1 as X. unfold find_tree in H1. destruct_match; crush. destruct p. destruct l; crush. apply wf_hash_table_set_gso' in Heql. simplify. pose proof H2 as Z. apply hash_no_element in H2; auto. destruct (eq_dec c c'); subst. { exfalso. eapply H2. econstructor; eauto. } unfold wf_hash_table in H0. assert (In (x', c) (PTree.elements (PTree.set x' c h))). { apply PTree.elements_correct. rewrite PTree.gss; auto. } assert (In (x, c') (PTree.elements h)). { apply PTree.elements_correct; auto. } assert (In (x, c') (PTree.elements (PTree.set x' c h))). { apply PTree.elements_correct. rewrite PTree.gso; auto. } pose proof X as Y. unfold find_tree in X. repeat (destruct_match; crush; []). match goal with | H: filter ?f ?el = ?x::?xs |- _ => assert (In x (filter f el)) by (rewrite H; crush) end. apply filter_In in H6. simplify. destruct_match; crush; subst. unfold find_tree. repeat (destruct_match; crush). { eapply filter_none in Heql0. 2: { apply PTree.elements_correct. rewrite PTree.gso; eauto. } destruct_match; crush. } { subst. repeat match goal with | H: filter ?f ?el = ?x::?xs |- _ => learn H; assert (In x (filter f el)) by (rewrite H; crush) end. eapply filter_set in H10. rewrite Heql0 in H10. inv H10. simplify. auto. inv H11. auto. inv H11. intros. eapply PTree_set_elements; auto. } { exfalso. subst. repeat match goal with | H: filter ?f ?el = ?x::?xs |- _ => learn H; assert (In x (filter f el)) by (rewrite H; crush) end. pose proof H8 as X2. destruct p1. pose proof X2 as X4. apply in_filter in X2. apply PTree.elements_complete in X2. assert (In (p, t2) (filter (fun x : positive * t => if eq_dec t0 (snd x) then true else false) (PTree.elements (PTree.set x' c h)))) by (rewrite H6; eauto). pose proof H11 as X3. apply in_filter in H11. apply PTree.elements_complete in H11. destruct (peq p0 p); subst. { assert (list_norepet (map fst (filter (fun x : positive * t => if eq_dec t0 (snd x) then true else false) (PTree.elements (PTree.set x' c h))))). { eapply filter_norepet2. eapply PTree.elements_keys_norepet. } rewrite Heql0 in H12. simplify. inv H12. eapply H15. apply in_eq. } { apply filter_In in X4. simplify. destruct_match; crush; subst. apply filter_In in X3. simplify. destruct_match; crush; subst. destruct (peq p x'); subst. { rewrite PTree.gss in H11; crush. } { destruct (peq p0 x'); subst. { rewrite PTree.gss in X2; crush. } { rewrite PTree.gso in X2 by auto. rewrite PTree.gso in H11 by auto. assert (p = p0) by (eapply find_tree_unique; eauto). crush. } } } } Qed. Lemma wf_hash_table_set : forall h_tree c v (GT: v > max_key h_tree), find_tree c h_tree = None -> wf_hash_table h_tree -> wf_hash_table (PTree.set v c h_tree). Proof. unfold wf_hash_table; simplify. destruct (peq v x); subst. pose proof (hash_no_element c h_tree H H0). rewrite PTree.gss in H1. simplify. unfold find_tree. assert (In (x, c0) (PTree.elements (PTree.set x c0 h_tree)) /\ (fun x : positive * t => if eq_dec c0 (snd x) then true else false) (x, c0) = true). { simplify. apply PTree.elements_correct. rewrite PTree.gss. auto. destruct (eq_dec c0 c0); crush. } destruct_match. apply filter_In in H1. rewrite Heql in H1. crush. apply filter_In in H1. repeat (destruct_match; crush; []). subst. destruct l. simplify. rewrite Heql in H1. inv H1. inv H3. auto. crush. exfalso. apply H2. destruct p. pose proof Heql as X. apply filter_cons_true in X. destruct_match; crush; subst. assert (In (p0, t0) (filter (fun x : positive * t => if eq_dec t0 (snd x) then true else false) (PTree.elements (PTree.set x t0 h_tree)))) by (rewrite Heql; eauto). assert (In (p, t1) (filter (fun x : positive * t => if eq_dec t0 (snd x) then true else false) (PTree.elements (PTree.set x t0 h_tree)))) by (rewrite Heql; eauto). apply filter_In in H4. simplify. destruct_match; crush; subst. apply in_filter in H3. apply PTree.elements_complete in H5. apply PTree.elements_complete in H3. assert (list_norepet (map fst (filter (fun x : positive * t => if eq_dec t1 (snd x) then true else false) (PTree.elements (PTree.set x t1 h_tree))))). { eapply filter_norepet2. eapply PTree.elements_keys_norepet. } rewrite Heql in H4. simplify. destruct (peq p0 p); subst. { inv H4. exfalso. eapply H8. eauto. } destruct (peq x p); subst. rewrite PTree.gso in H3; auto. econstructor; eauto. rewrite PTree.gso in H5; auto. econstructor; eauto. rewrite PTree.gso in H1; auto. destruct (eq_dec c c0); subst. { apply H0 in H1. rewrite H in H1. discriminate. } apply H0 in H1. apply wf_hash_table_set_gso; eauto. Qed. Lemma wf_hash_table_distr : forall m p h_tree h h_tree', hash_value m p h_tree = (h, h_tree') -> wf_hash_table h_tree -> wf_hash_table h_tree'. Proof. unfold hash_value; simplify. destruct_match. - inv H; auto. - inv H. apply wf_hash_table_set; try lia; auto. Qed. Lemma wf_hash_table_eq : forall h_tree a b c, wf_hash_table h_tree -> h_tree ! a = Some c -> h_tree ! b = Some c -> a = b. Proof. unfold wf_hash_table; intros; apply H in H0; eapply find_tree_unique; eauto. Qed. Lemma hash_constant : forall p h h_tree hi c h_tree' m, h_tree ! hi = Some c -> hash_value m p h_tree = (h, h_tree') -> h_tree' ! hi = Some c. Proof. intros. unfold hash_value in H0. destruct_match. inv H0. eauto. inv H0. pose proof H. apply max_key_correct in H0. rewrite PTree.gso; solve [eauto | lia]. Qed. End HashTree.