(* * Vericert: Verified high-level synthesis. * Copyright (C) 2020-2022 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) (* [[file:../../docs/basic-block-generation.org::rtlblockgen-imports][rtlblockgen-imports]] *) Require compcert.backend.RTL. Require Import compcert.common.AST. Require Import compcert.lib.Maps. Require Import compcert.lib.Integers. Require Import compcert.lib.Floats. Require Import vericert.common.Vericertlib. Require Import vericert.hls.RTLBlockInstr. Require Import vericert.hls.RTLBlock. #[local] Open Scope positive. (* rtlblockgen-imports ends here *) Lemma comparison_eq: forall (x y : comparison), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma condition_eq: forall (x y : Op.condition), {x = y} + {x <> y}. Proof. generalize comparison_eq; intro. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. decide equality. Defined. Lemma addressing_eq : forall (x y : Op.addressing), {x = y} + {x <> y}. Proof. generalize Int.eq_dec; intro. generalize AST.ident_eq; intro. generalize Z.eq_dec; intro. generalize Ptrofs.eq_dec; intro. decide equality. Defined. Lemma typ_eq : forall (x y : AST.typ), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma operation_eq: forall (x y : Op.operation), {x = y} + {x <> y}. Proof. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. generalize Float.eq_dec; intro. generalize Float32.eq_dec; intro. generalize AST.ident_eq; intro. generalize condition_eq; intro. generalize addressing_eq; intro. generalize typ_eq; intro. decide equality. Defined. Lemma memory_chunk_eq : forall (x y : AST.memory_chunk), {x = y} + {x <> y}. Proof. decide equality. Defined. Lemma list_typ_eq: forall (x y : list AST.typ), {x = y} + {x <> y}. Proof. generalize typ_eq; intro. decide equality. Defined. Lemma option_typ_eq : forall (x y : option AST.typ), {x = y} + {x <> y}. Proof. generalize typ_eq; intro. decide equality. Defined. Lemma signature_eq: forall (x y : AST.signature), {x = y} + {x <> y}. Proof. repeat decide equality. Defined. Lemma list_operation_eq : forall (x y : list Op.operation), {x = y} + {x <> y}. Proof. generalize operation_eq; intro. decide equality. Defined. Lemma list_pos_eq : forall (x y : list positive), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intros. decide equality. Defined. Lemma sig_eq : forall (x y : AST.signature), {x = y} + {x <> y}. Proof. repeat decide equality. Defined. Lemma instr_eq: forall (x y : instr), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intro. generalize typ_eq; intro. generalize Int.eq_dec; intro. generalize memory_chunk_eq; intro. generalize addressing_eq; intro. generalize operation_eq; intro. generalize condition_eq; intro. generalize signature_eq; intro. generalize list_operation_eq; intro. generalize list_pos_eq; intro. generalize AST.ident_eq; intro. repeat decide equality. Defined. Lemma cf_instr_eq: forall (x y : cf_instr), {x = y} + {x <> y}. Proof. generalize Pos.eq_dec; intro. generalize typ_eq; intro. generalize Int.eq_dec; intro. generalize Int64.eq_dec; intro. generalize Float.eq_dec; intro. generalize Float32.eq_dec; intro. generalize Ptrofs.eq_dec; intro. generalize memory_chunk_eq; intro. generalize addressing_eq; intro. generalize operation_eq; intro. generalize condition_eq; intro. generalize signature_eq; intro. generalize list_operation_eq; intro. generalize list_pos_eq; intro. generalize AST.ident_eq; intro. repeat decide equality. Defined. Definition ceq {A: Type} (eqd: forall a b: A, {a = b} + {a <> b}) (a b: A): bool := if eqd a b then true else false. (* [[file:../../docs/basic-block-generation.org::rtlblockgen-main][rtlblockgen-main]] *) Parameter partition : RTL.function -> Errors.res function. (** [find_block max nodes index]: Does not need to be sorted, because we use filter and the max fold function to find the desired element. *) Definition find_block (max: positive) (nodes: list positive) (index: positive) : positive := List.fold_right Pos.min max (List.filter (fun x => (index <=? x)) nodes). (*Compute find_block (2::94::28::40::19::nil) 40.*) Definition check_instr (n: positive) (istr: RTL.instruction) (istr': instr) := match istr, istr' with | RTL.Inop n', RBnop => (n' + 1 =? n) | RTL.Iop op args dst n', RBop None op' args' dst' => ceq operation_eq op op' && ceq list_pos_eq args args' && ceq peq dst dst' && (n' + 1 =? n) | RTL.Iload chunk addr args dst n', RBload None chunk' addr' args' dst' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq dst dst' && (n' + 1 =? n) | RTL.Istore chunk addr args src n', RBstore None chunk' addr' args' src' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq src src' && (n' + 1 =? n) | _, _ => false end. Definition check_cf_instr_body (istr: RTL.instruction) (istr': instr): bool := match istr, istr' with | RTL.Iop op args dst _, RBop None op' args' dst' => ceq operation_eq op op' && ceq list_pos_eq args args' && ceq peq dst dst' | RTL.Iload chunk addr args dst _, RBload None chunk' addr' args' dst' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq dst dst' | RTL.Istore chunk addr args src _, RBstore None chunk' addr' args' src' => ceq memory_chunk_eq chunk chunk' && ceq addressing_eq addr addr' && ceq list_pos_eq args args' && ceq peq src src' | RTL.Inop _, RBnop | RTL.Icall _ _ _ _ _, RBnop | RTL.Itailcall _ _ _, RBnop | RTL.Ibuiltin _ _ _ _, RBnop | RTL.Icond _ _ _ _, RBnop | RTL.Ijumptable _ _, RBnop | RTL.Ireturn _, RBnop => true | _, _ => false end. Definition check_cf_instr (istr: RTL.instruction) (istr': cf_instr) := match istr, istr' with | RTL.Inop n, RBgoto n' => (n =? n') | RTL.Iop _ _ _ n, RBgoto n' => (n =? n') | RTL.Iload _ _ _ _ n, RBgoto n' => (n =? n') | RTL.Istore _ _ _ _ n, RBgoto n' => (n =? n') | RTL.Icall sig (inl r) args dst n, RBcall sig' (inl r') args' dst' n' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' && ceq peq dst dst' && (n =? n') | RTL.Icall sig (inr i) args dst n, RBcall sig' (inr i') args' dst' n' => ceq signature_eq sig sig' && ceq peq i i' && ceq list_pos_eq args args' && ceq peq dst dst' && (n =? n') | RTL.Itailcall sig (inl r) args, RBtailcall sig' (inl r') args' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' | RTL.Itailcall sig (inr r) args, RBtailcall sig' (inr r') args' => ceq signature_eq sig sig' && ceq peq r r' && ceq list_pos_eq args args' | RTL.Icond cond args n1 n2, RBcond cond' args' n1' n2' => ceq condition_eq cond cond' && ceq list_pos_eq args args' && ceq peq n1 n1' && ceq peq n2 n2' | RTL.Ijumptable r ns, RBjumptable r' ns' => ceq peq r r' && ceq list_pos_eq ns ns' | RTL.Ireturn (Some r), RBreturn (Some r') => ceq peq r r' | RTL.Ireturn None, RBreturn None => true | _, _ => false end. Definition is_cf_instr (n: positive) (i: RTL.instruction) := match i with | RTL.Inop n' => negb (n' + 1 =? n) | RTL.Iop _ _ _ n' => negb (n' + 1 =? n) | RTL.Iload _ _ _ _ n' => negb (n' + 1 =? n) | RTL.Istore _ _ _ _ n' => negb (n' + 1 =? n) | RTL.Icall _ _ _ _ _ => true | RTL.Itailcall _ _ _ => true | RTL.Ibuiltin _ _ _ _ => true | RTL.Icond _ _ _ _ => true | RTL.Ijumptable _ _ => true | RTL.Ireturn _ => true end. Definition check_present_blocks (c: code) (n: list positive) (max: positive) (i: positive) (istr: RTL.instruction) := let blockn := find_block max n i in match c ! blockn with | Some istrs => match List.nth_error istrs.(bb_body) (Pos.to_nat blockn - Pos.to_nat i)%nat with | Some istr' => if is_cf_instr i istr then check_cf_instr istr istrs.(bb_exit) && check_cf_instr_body istr istr' else check_instr i istr istr' | None => false end | None => false end. Definition transl_function (f: RTL.function) := match partition f with | Errors.OK f' => let blockids := map fst (PTree.elements f'.(fn_code)) in if forall_ptree (check_present_blocks f'.(fn_code) blockids (fold_right Pos.max 1 blockids)) f.(RTL.fn_code) then Errors.OK f' else Errors.Error (Errors.msg "check_present_blocks failed") | Errors.Error msg => Errors.Error msg end. Definition transl_fundef := transf_partial_fundef transl_function. Definition transl_program : RTL.program -> Errors.res program := transform_partial_program transl_fundef. (* rtlblockgen-main ends here *)