(*(* * Vericert: Verified high-level synthesis. * Copyright (C) 2020 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) (* begin hide *) From bbv Require Import Word. From bbv Require HexNotation WordScope. From Coq Require Import ZArith.ZArith FSets.FMapPositive Lia. From compcert Require Import lib.Integers common.Values. From vericert Require Import Vericertlib. (* end hide *) (** * Value A [value] is a bitvector with a specific size. We are using the implementation of the bitvector by mit-plv/bbv, because it has many theorems that we can reuse. However, we need to wrap it with an [Inductive] so that we can specify and match on the size of the [value]. This is necessary so that we can easily store [value]s of different sizes in a list or in a map. Using the default [word], this would not be possible, as the size is part of the type. *) Record value : Type := mkvalue { vsize: nat; vword: word vsize }. (** ** Value conversions Various conversions to different number types such as [N], [Z], [positive] and [int], where the last one is a theory of integers of powers of 2 in CompCert. *) Definition wordToValue : forall sz : nat, word sz -> value := mkvalue. Definition valueToWord : forall v : value, word (vsize v) := vword. Definition valueToNat (v :value) : nat := wordToNat (vword v). Definition natToValue sz (n : nat) : value := mkvalue sz (natToWord sz n). Definition valueToN (v : value) : N := wordToN (vword v). Definition NToValue sz (n : N) : value := mkvalue sz (NToWord sz n). Definition ZToValue (s : nat) (z : Z) : value := mkvalue s (ZToWord s z). Definition valueToZ (v : value) : Z := wordToZ (vword v). Definition uvalueToZ (v : value) : Z := uwordToZ (vword v). Definition posToValue sz (p : positive) : value := ZToValue sz (Zpos p). Definition posToValueAuto (p : positive) : value := let size := Pos.to_nat (Pos.size p) in ZToValue size (Zpos p). Definition valueToPos (v : value) : positive := Z.to_pos (uvalueToZ v). Definition intToValue (i : Integers.int) : value := ZToValue Int.wordsize (Int.unsigned i). Definition valueToInt (i : value) : Integers.int := Int.repr (uvalueToZ i). Definition ptrToValue (i : Integers.ptrofs) : value := ZToValue Ptrofs.wordsize (Ptrofs.unsigned i). Definition valueToPtr (i : value) : Integers.ptrofs := Ptrofs.repr (uvalueToZ i). Definition valToValue (v : Values.val) : option value := match v with | Values.Vint i => Some (intToValue i) | Values.Vptr b off => if Z.eqb (Z.modulo (uvalueToZ (ptrToValue off)) 4) 0%Z then Some (ptrToValue off) else None | Values.Vundef => Some (ZToValue 32 0%Z) | _ => None end. (** Convert a [value] to a [bool], so that choices can be made based on the result. This is also because comparison operators will give back [value] instead of [bool], so if they are in a condition, they will have to be converted before they can be used. *) Definition valueToBool (v : value) : bool := negb (weqb (@wzero (vsize v)) (vword v)). Definition boolToValue (sz : nat) (b : bool) : value := natToValue sz (if b then 1 else 0). (** ** Arithmetic operations *) Definition unify_word (sz1 sz2 : nat) (w1 : word sz2): sz1 = sz2 -> word sz1. intros; subst; assumption. Defined. Lemma unify_word_unfold : forall sz w, unify_word sz sz w eq_refl = w. Proof. auto. Qed. Definition value_eq_size: forall v1 v2 : value, { vsize v1 = vsize v2 } + { True }. Proof. intros; destruct (Nat.eqb (vsize v1) (vsize v2)) eqn:?. left; apply Nat.eqb_eq in Heqb; assumption. right; trivial. Defined. Definition map_any {A : Type} (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A) (EQ : vsize v1 = vsize v2) : A := let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in f (vword v1) w2. Definition map_any_opt {A : Type} (sz : nat) (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A) : option A := match value_eq_size v1 v2 with | left EQ => Some (map_any v1 v2 f EQ) | _ => None end. Definition map_word (f : forall sz : nat, word sz -> word sz) (v : value) : value := mkvalue (vsize v) (f (vsize v) (vword v)). Definition map_word2 (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value) (EQ : (vsize v1 = vsize v2)) : value := let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in mkvalue (vsize v1) (f (vsize v1) (vword v1) w2). Definition map_word2_opt (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value) : option value := match value_eq_size v1 v2 with | left EQ => Some (map_word2 f v1 v2 EQ) | _ => None end. Definition eq_to_opt (v1 v2 : value) (f : vsize v1 = vsize v2 -> value) : option value := match value_eq_size v1 v2 with | left EQ => Some (f EQ) | _ => None end. Lemma eqvalue {sz : nat} (x y : word sz) : x = y <-> mkvalue sz x = mkvalue sz y. Proof. split; intros. subst. reflexivity. inversion H. apply existT_wordToZ in H1. apply wordToZ_inj. assumption. Qed. Lemma eqvaluef {sz : nat} (x y : word sz) : x = y -> mkvalue sz x = mkvalue sz y. Proof. apply eqvalue. Qed. Lemma nevalue {sz : nat} (x y : word sz) : x <> y <-> mkvalue sz x <> mkvalue sz y. Proof. split; intros; intuition. apply H. apply eqvalue. assumption. apply H. rewrite H0. trivial. Qed. Lemma nevaluef {sz : nat} (x y : word sz) : x <> y -> mkvalue sz x <> mkvalue sz y. Proof. apply nevalue. Qed. (*Definition rewrite_word_size (initsz finalsz : nat) (w : word initsz) : option (word finalsz) := match Nat.eqb initsz finalsz return option (word finalsz) with | true => Some _ | false => None end.*) Definition valueeq (sz : nat) (x y : word sz) : {mkvalue sz x = mkvalue sz y} + {mkvalue sz x <> mkvalue sz y} := match weq x y with | left eq => left (eqvaluef x y eq) | right ne => right (nevaluef x y ne) end. Definition valueeqb (x y : value) : bool := match value_eq_size x y with | left EQ => weqb (vword x) (unify_word (vsize x) (vsize y) (vword y) EQ) | right _ => false end. Definition value_projZ_eqb (v1 v2 : value) : bool := Z.eqb (valueToZ v1) (valueToZ v2). Theorem value_projZ_eqb_true : forall v1 v2, v1 = v2 -> value_projZ_eqb v1 v2 = true. Proof. intros. subst. unfold value_projZ_eqb. apply Z.eqb_eq. trivial. Qed. Theorem valueeqb_true_iff : forall v1 v2, valueeqb v1 v2 = true <-> v1 = v2. Proof. split; intros. unfold valueeqb in H. destruct (value_eq_size v1 v2) eqn:?. - destruct v1, v2. simpl in H. Abort. Definition value_int_eqb (v : value) (i : int) : bool := Z.eqb (valueToZ v) (Int.unsigned i). (** Arithmetic operations over [value], interpreting them as signed or unsigned depending on the operation. The arithmetic operations over [word] are over [N] by default, however, can also be called over [Z] explicitly, which is where the bits are interpreted in a signed manner. *) Definition vplus v1 v2 := map_word2 wplus v1 v2. Definition vplus_opt v1 v2 := map_word2_opt wplus v1 v2. Definition vminus v1 v2 := map_word2 wminus v1 v2. Definition vmul v1 v2 := map_word2 wmult v1 v2. Definition vdiv v1 v2 := map_word2 wdiv v1 v2. Definition vmod v1 v2 := map_word2 wmod v1 v2. Definition vmuls v1 v2 := map_word2 wmultZ v1 v2. Definition vdivs v1 v2 := map_word2 wdivZ v1 v2. Definition vmods v1 v2 := map_word2 wremZ v1 v2. (** ** Bitwise operations Bitwise operations over [value], which is independent of whether the number is signed or unsigned. *) Definition vnot v := map_word wnot v. Definition vneg v := map_word wneg v. Definition vbitneg v := boolToValue (vsize v) (negb (valueToBool v)). Definition vor v1 v2 := map_word2 wor v1 v2. Definition vand v1 v2 := map_word2 wand v1 v2. Definition vxor v1 v2 := map_word2 wxor v1 v2. (** ** Comparison operators Comparison operators that return a bool, there should probably be an equivalent which returns another number, however I might just add that as an explicit conversion. *) Definition veqb v1 v2 := map_any v1 v2 (@weqb (vsize v1)). Definition vneb v1 v2 EQ := negb (veqb v1 v2 EQ). Definition veq v1 v2 EQ := boolToValue (vsize v1) (veqb v1 v2 EQ). Definition vne v1 v2 EQ := boolToValue (vsize v1) (vneb v1 v2 EQ). Definition vltb v1 v2 := map_any v1 v2 wltb. Definition vleb v1 v2 EQ := negb (map_any v2 v1 wltb (eq_sym EQ)). Definition vgtb v1 v2 EQ := map_any v2 v1 wltb (eq_sym EQ). Definition vgeb v1 v2 EQ := negb (map_any v1 v2 wltb EQ). Definition vltsb v1 v2 := map_any v1 v2 wsltb. Definition vlesb v1 v2 EQ := negb (map_any v2 v1 wsltb (eq_sym EQ)). Definition vgtsb v1 v2 EQ := map_any v2 v1 wsltb (eq_sym EQ). Definition vgesb v1 v2 EQ := negb (map_any v1 v2 wsltb EQ). Definition vlt v1 v2 EQ := boolToValue (vsize v1) (vltb v1 v2 EQ). Definition vle v1 v2 EQ := boolToValue (vsize v1) (vleb v1 v2 EQ). Definition vgt v1 v2 EQ := boolToValue (vsize v1) (vgtb v1 v2 EQ). Definition vge v1 v2 EQ := boolToValue (vsize v1) (vgeb v1 v2 EQ). Definition vlts v1 v2 EQ := boolToValue (vsize v1) (vltsb v1 v2 EQ). Definition vles v1 v2 EQ := boolToValue (vsize v1) (vlesb v1 v2 EQ). Definition vgts v1 v2 EQ := boolToValue (vsize v1) (vgtsb v1 v2 EQ). Definition vges v1 v2 EQ := boolToValue (vsize v1) (vgesb v1 v2 EQ). (** ** Shift operators Shift operators on values. *) Definition shift_map (sz : nat) (f : word sz -> nat -> word sz) (w1 w2 : word sz) := f w1 (wordToNat w2). Definition vshl v1 v2 := map_word2 (fun sz => shift_map sz (@wlshift sz)) v1 v2. Definition vshr v1 v2 := map_word2 (fun sz => shift_map sz (@wrshift sz)) v1 v2. Module HexNotationValue. Export HexNotation. Import WordScope. Notation "sz ''h' a" := (NToValue sz (hex a)) (at level 50). End HexNotationValue. Inductive val_value_lessdef: val -> value -> Prop := | val_value_lessdef_int: forall i v', i = valueToInt v' -> val_value_lessdef (Vint i) v' | val_value_lessdef_ptr: forall b off v', off = valueToPtr v' -> (Z.modulo (uvalueToZ v') 4) = 0%Z -> val_value_lessdef (Vptr b off) v' | lessdef_undef: forall v, val_value_lessdef Vundef v. Inductive opt_val_value_lessdef: option val -> value -> Prop := | opt_lessdef_some: forall v v', val_value_lessdef v v' -> opt_val_value_lessdef (Some v) v' | opt_lessdef_none: forall v, opt_val_value_lessdef None v. Lemma valueToZ_ZToValue : forall n z, (- Z.of_nat (2 ^ n) <= z < Z.of_nat (2 ^ n))%Z -> valueToZ (ZToValue (S n) z) = z. Proof. unfold valueToZ, ZToValue. simpl. auto using wordToZ_ZToWord. Qed. Lemma uvalueToZ_ZToValue : forall n z, (0 <= z < 2 ^ Z.of_nat n)%Z -> uvalueToZ (ZToValue n z) = z. Proof. unfold uvalueToZ, ZToValue. simpl. auto using uwordToZ_ZToWord. Qed. Lemma uvalueToZ_ZToValue_full : forall sz : nat, (0 < sz)%nat -> forall z : Z, uvalueToZ (ZToValue sz z) = (z mod 2 ^ Z.of_nat sz)%Z. Proof. unfold uvalueToZ, ZToValue. simpl. auto using uwordToZ_ZToWord_full. Qed. Lemma ZToValue_uvalueToZ : forall v, ZToValue (vsize v) (uvalueToZ v) = v. Proof. intros. unfold ZToValue, uvalueToZ. rewrite ZToWord_uwordToZ. destruct v; auto. Qed. Lemma valueToPos_posToValueAuto : forall p, valueToPos (posToValueAuto p) = p. Proof. intros. unfold valueToPos, posToValueAuto. rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z. split. apply Zle_0_pos. assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt. inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1. simpl. rewrite <- Pos2Z.inj_pow_pos. trivial. Qed. Lemma valueToPos_posToValue : forall p, valueToPos (posToValueAuto p) = p. Proof. intros. unfold valueToPos, posToValueAuto. rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z. split. apply Zle_0_pos. assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt. inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1. simpl. rewrite <- Pos2Z.inj_pow_pos. trivial. Qed. Lemma valueToInt_intToValue : forall v, valueToInt (intToValue v) = v. Proof. intros. unfold valueToInt, intToValue. rewrite uvalueToZ_ZToValue. auto using Int.repr_unsigned. split. apply Int.unsigned_range_2. assert ((Int.unsigned v <= Int.max_unsigned)%Z) by apply Int.unsigned_range_2. apply Z.lt_le_pred in H. apply H. Qed. Lemma valueToPtr_ptrToValue : forall v, valueToPtr (ptrToValue v) = v. Proof. intros. unfold valueToPtr, ptrToValue. rewrite uvalueToZ_ZToValue. auto using Ptrofs.repr_unsigned. split. apply Ptrofs.unsigned_range_2. assert ((Ptrofs.unsigned v <= Ptrofs.max_unsigned)%Z) by apply Ptrofs.unsigned_range_2. apply Z.lt_le_pred in H. apply H. Qed. Lemma intToValue_valueToInt : forall v, vsize v = 32%nat -> intToValue (valueToInt v) = v. Proof. intros. unfold valueToInt, intToValue. rewrite Int.unsigned_repr_eq. unfold ZToValue, uvalueToZ. unfold Int.modulus. unfold Int.wordsize. unfold Wordsize_32.wordsize. pose proof (uwordToZ_bound (vword v)). rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto. rewrite <- H. rewrite two_power_nat_equiv. apply H0. Qed. Lemma ptrToValue_valueToPtr : forall v, vsize v = 32%nat -> ptrToValue (valueToPtr v) = v. Proof. intros. unfold valueToPtr, ptrToValue. rewrite Ptrofs.unsigned_repr_eq. unfold ZToValue, uvalueToZ. unfold Ptrofs.modulus. unfold Ptrofs.wordsize. unfold Wordsize_Ptrofs.wordsize. pose proof (uwordToZ_bound (vword v)). rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto. rewrite <- H. rewrite two_power_nat_equiv. apply H0. Qed. Lemma valToValue_lessdef : forall v v', valToValue v = Some v' -> val_value_lessdef v v'. Proof. intros. destruct v; try discriminate; constructor. unfold valToValue in H. inversion H. symmetry. apply valueToInt_intToValue. inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0); try discriminate. inv H1. symmetry. apply valueToPtr_ptrToValue. inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0) eqn:?; try discriminate. inv H1. apply Z.eqb_eq. apply Heqb0. Qed. Lemma boolToValue_ValueToBool : forall b, valueToBool (boolToValue 32 b) = b. Proof. destruct b; auto. Qed. Local Open Scope Z. Ltac word_op_value H := intros; unfold uvalueToZ, ZToValue; simpl; rewrite unify_word_unfold; rewrite <- H; rewrite uwordToZ_ZToWord_full; auto; omega. Lemma zadd_vplus : forall sz z1 z2, (sz > 0)%nat -> uvalueToZ (vplus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 + z2) mod 2 ^ Z.of_nat sz. Proof. word_op_value ZToWord_plus. Qed. Lemma zadd_vplus2 : forall z1 z2, vplus (ZToValue 32 z1) (ZToValue 32 z2) eq_refl = ZToValue 32 (z1 + z2). Proof. intros. unfold vplus, ZToValue, map_word2. rewrite unify_word_unfold. simpl. rewrite ZToWord_plus; auto. Qed. Lemma ZToValue_eq : forall w1, (mkvalue 32 w1) = (ZToValue 32 (wordToZ w1)). Abort. Lemma wordsize_32 : Int.wordsize = 32%nat. Proof. auto. Qed. Lemma intadd_vplus : forall i1 i2, valueToInt (vplus (intToValue i1) (intToValue i2) eq_refl) = Int.add i1 i2. Proof. intros. unfold Int.add, valueToInt, intToValue. rewrite zadd_vplus. rewrite <- Int.unsigned_repr_eq. rewrite Int.repr_unsigned. auto. rewrite wordsize_32. omega. Qed. (*Lemma intadd_vplus2 : forall v1 v2 EQ, vsize v1 = 32%nat -> Int.add (valueToInt v1) (valueToInt v2) = valueToInt (vplus v1 v2 EQ). Proof. intros. unfold Int.add, valueToInt, intToValue. repeat (rewrite Int.unsigned_repr). rewrite (@vadd_vplus v1 v2 EQ). trivial. unfold uvalueToZ. pose proof (@uwordToZ_bound (vsize v2) (vword v2)). rewrite H in EQ. rewrite <- EQ in H0 at 3.*) (*rewrite zadd_vplus3. trivia*) Lemma valadd_vplus : forall v1 v2 v1' v2' v v' EQ, val_value_lessdef v1 v1' -> val_value_lessdef v2 v2' -> Val.add v1 v2 = v -> vplus v1' v2' EQ = v' -> val_value_lessdef v v'. Proof. intros. inv H; inv H0; constructor; simplify. Abort. Lemma zsub_vminus : forall sz z1 z2, (sz > 0)%nat -> uvalueToZ (vminus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 - z2) mod 2 ^ Z.of_nat sz. Proof. word_op_value ZToWord_minus. Qed. Lemma zmul_vmul : forall sz z1 z2, (sz > 0)%nat -> uvalueToZ (vmul (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 * z2) mod 2 ^ Z.of_nat sz. Proof. word_op_value ZToWord_mult. Qed. Local Open Scope N. Lemma zdiv_vdiv : forall n1 n2, n1 < 2 ^ 32 -> n2 < 2 ^ 32 -> n1 / n2 < 2 ^ 32 -> valueToN (vdiv (NToValue 32 n1) (NToValue 32 n2) eq_refl) = n1 / n2. Proof. intros; unfold valueToN, NToValue; simpl; rewrite unify_word_unfold. unfold wdiv. unfold wordBin. repeat (rewrite wordToN_NToWord_2); auto. Qed. Lemma ZToValue_valueToNat : forall x sz, (sz > 0)%nat -> (0 <= x < 2^(Z.of_nat sz))%Z -> valueToNat (ZToValue sz x) = Z.to_nat x. Proof. destruct x; intros; unfold ZToValue, valueToNat; crush. - rewrite wzero'_def. apply wordToNat_wzero. - rewrite posToWord_nat. rewrite wordToNat_natToWord_2. trivial. clear H1. lazymatch goal with | [ H : context[(_ < ?x)%Z] |- _ ] => replace x with (Z.of_nat (Z.to_nat x)) in H end. 2: { apply Z2Nat.id; apply Z.pow_nonneg; lia. } rewrite Z2Nat.inj_pow in H2; crush. replace (Pos.to_nat 2) with 2%nat in H2 by reflexivity. rewrite Nat2Z.id in H2. rewrite <- positive_nat_Z in H2. apply Nat2Z.inj_lt in H2. assumption. Qed. *)