(* * CoqUp: Verified high-level synthesis. * Copyright (C) 2020 Yann Herklotz * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *) From coqup Require Import Coquplib Value. From Coq Require Import FSets.FMapPositive. From compcert Require Import Maps. Search Maps.PTree.get not List.In. Definition reg := positive. Module AssocMap := PositiveMap. Module AssocMapExt. Import AssocMap. Hint Resolve elements_3w : assocmap. Hint Resolve elements_correct : assocmap. Hint Resolve gss : assocmap. Hint Resolve gso : assocmap. Section Operations. Variable elt : Type. Definition find_default (a : elt) (k : reg) (m : t elt) : elt := match find k m with | None => a | Some v => v end. Definition merge (am bm : t elt) : t elt := fold_right (fun p a => add (fst p) (snd p) a) bm (elements am). Lemma add_assoc : forall k v l bm, List.In (k, v) l -> SetoidList.NoDupA (@eq_key elt) l -> @find elt k (fold_right (fun p a => add (fst p) (snd p) a) bm l) = Some v. Proof. Hint Resolve SetoidList.InA_alt : assocmap. Hint Extern 1 (exists _, _) => apply list_in_map_inv : assocmap. induction l; intros. - contradiction. - destruct a as [k' v']. destruct (peq k k'). + inversion H. inversion H1. inversion H0. subst. simpl. auto with assocmap. subst. inversion H0. subst. apply in_map with (f := fst) in H1. simpl in *. unfold not in H4. exfalso. apply H4. apply SetoidList.InA_alt. auto with assocmap. + inversion H. inversion H1. inversion H0. subst. simpl. rewrite gso; try assumption. apply IHl. contradiction. contradiction. simpl. rewrite gso; try assumption. apply IHl. assumption. inversion H0. subst. assumption. Qed. Hint Resolve add_assoc : assocmap. Lemma not_in_assoc : forall k v l bm, ~ List.In k (List.map (@fst key elt) l) -> @find elt k bm = Some v -> @find elt k (fold_right (fun p a => add (fst p) (snd p) a) bm l) = Some v. Proof. induction l; intros. - assumption. - destruct a as [k' v']. destruct (peq k k'); subst; simpl in *; apply Decidable.not_or in H; destruct H. contradiction. rewrite AssocMap.gso; auto. Qed. Hint Resolve not_in_assoc : assocmap. Lemma elements_iff : forall am k, (exists v, find k am = Some v) <-> List.In k (List.map (@fst _ elt) (elements am)). Proof. split; intros. destruct H. apply elements_correct in H. apply in_map with (f := fst) in H. apply H. apply list_in_map_inv in H. destruct H. destruct H. subst. exists (snd x). apply elements_complete. assert (x = (fst x, snd x)) by apply surjective_pairing. rewrite H in H0; assumption. Qed. Hint Resolve elements_iff : assocmap. Lemma elements_correct' : forall am k, ~ (exists v, find k am = Some v) <-> ~ List.In k (List.map (@fst _ elt) (elements am)). Proof. auto using not_iff_compat with assocmap. Qed. Hint Resolve elements_correct' : assocmap. Lemma elements_correct_none : forall am k, find k am = None -> ~ List.In k (List.map (@fst _ elt) (elements am)). Proof. intros. apply elements_correct'. unfold not. intros. destruct H0. rewrite H in H0. discriminate. Qed. Hint Resolve elements_correct_none : assocmap. Lemma merge_add : forall k v am bm, find k am = Some v -> find k (merge am bm) = Some v. Proof. unfold merge. auto with assocmap. Qed. Hint Resolve merge_add : assocmap. Lemma merge_not_in : forall k v am bm, find k am = None -> find k bm = Some v -> find k (merge am bm) = Some v. Proof. intros. apply not_in_assoc; auto with assocmap. Qed. Hint Resolve merge_not_in : assocmap. Lemma merge_base : forall am, merge (empty elt) am = am. Proof. auto. Qed. Hint Resolve merge_base : assocmap. End Operations. End AssocMapExt. Import AssocMapExt. Definition assocmap := AssocMap.t value. Definition find_assocmap (n : nat) : reg -> assocmap -> value := find_default value (ZToValue n 0). Definition empty_assocmap : assocmap := AssocMap.empty value. Definition merge_assocmap : assocmap -> assocmap -> assocmap := merge value. Module AssocMapNotation. Notation "a ! b" := (AssocMap.find b a) (at level 1). Notation "a # ( b , c )" := (find_assocmap c b a) (at level 1). Notation "a # b" := (find_assocmap 32 b a) (at level 1). Notation "a ## b" := (List.map (fun c => find_assocmap 32 c a) b) (at level 1). End AssocMapNotation.