{-| Module : VeriFuzz.Verilog.Gen Description : Various useful generators. Copyright : (c) 2019, Yann Herklotz License : GPL-3 Maintainer : ymherklotz [at] gmail [dot] com Stability : experimental Portability : POSIX Various useful generators. -} {-# LANGUAGE TemplateHaskell #-} module VeriFuzz.Verilog.Gen ( -- * Generation methods procedural , proceduralIO , proceduralSrc , proceduralSrcIO , randomMod ) where import Control.Lens hiding (Context) import Control.Monad (replicateM) import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.Reader hiding (local) import Control.Monad.Trans.State.Strict import Data.Foldable (fold) import Data.Functor.Foldable (cata) import Data.List.NonEmpty (NonEmpty (..), toList) import qualified Data.Text as T import Hedgehog (Gen) import qualified Hedgehog.Gen as Hog import qualified Hedgehog.Range as Hog import VeriFuzz.Config import VeriFuzz.Internal import VeriFuzz.Verilog.AST import VeriFuzz.Verilog.BitVec import VeriFuzz.Verilog.Eval import VeriFuzz.Verilog.Internal import VeriFuzz.Verilog.Mutate data Context = Context { _variables :: [Port] , _parameters :: [Parameter] , _modules :: [ModDecl] , _nameCounter :: {-# UNPACK #-} !Int , _stmntDepth :: {-# UNPACK #-} !Int , _modDepth :: {-# UNPACK #-} !Int } makeLenses ''Context type StateGen = StateT Context (ReaderT Config Gen) toId :: Int -> Identifier toId = Identifier . ("w" <>) . T.pack . show toPort :: Identifier -> Gen Port toPort ident = do i <- range return $ wire i ident sumSize :: [Port] -> Range sumSize ps = sum $ ps ^.. traverse . portSize random :: [Port] -> (Expr -> ContAssign) -> Gen ModItem random ctx fun = do expr <- Hog.sized (exprWithContext (ProbExpr 1 1 0 1 1 1 1 0 1 1) [] ctx) return . ModCA $ fun expr --randomAssigns :: [Identifier] -> [Gen ModItem] --randomAssigns ids = random ids . ContAssign <$> ids randomOrdAssigns :: [Port] -> [Port] -> [Gen ModItem] randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids where generate cid (i, o) = (cid : i, random i (ContAssign (_portName cid)) : o) randomMod :: Int -> Int -> Gen ModDecl randomMod inps total = do ident <- sequence $ toPort <$> ids x <- sequence $ randomOrdAssigns (start ident) (end ident) let inputs_ = take inps ident let other = drop inps ident let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids let yport = [wire (sumSize other) "y"] return . declareMod other $ ModDecl "test_module" yport inputs_ (x ++ [y]) [] where ids = toId <$> [1 .. total] end = drop inps start = take inps gen :: Gen a -> StateGen a gen = lift . lift listOf1 :: Gen a -> Gen [a] listOf1 a = toList <$> Hog.nonEmpty (Hog.linear 0 100) a --listOf :: Gen a -> Gen [a] --listOf = Hog.list (Hog.linear 0 100) largeNum :: Gen Int largeNum = Hog.int Hog.linearBounded wireSize :: Gen Int wireSize = Hog.int $ Hog.linear 2 100 range :: Gen Range range = Range <$> fmap fromIntegral wireSize <*> pure 0 genBitVec :: Gen BitVec genBitVec = BitVec <$> wireSize <*> fmap fromIntegral largeNum binOp :: Gen BinaryOperator binOp = Hog.element [ BinPlus , BinMinus , BinTimes -- , BinDiv -- , BinMod , BinEq , BinNEq -- , BinCEq -- , BinCNEq , BinLAnd , BinLOr , BinLT , BinLEq , BinGT , BinGEq , BinAnd , BinOr , BinXor , BinXNor , BinXNorInv -- , BinPower , BinLSL , BinLSR , BinASL , BinASR ] unOp :: Gen UnaryOperator unOp = Hog.element [ UnPlus , UnMinus , UnNot , UnLNot , UnAnd , UnNand , UnOr , UnNor , UnXor , UnNxor , UnNxorInv ] constExprWithContext :: [Parameter] -> ProbExpr -> Hog.Size -> Gen ConstExpr constExprWithContext ps prob size | size == 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) ] | size > 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) , (prob ^. probExprUnOp, ConstUnOp <$> unOp <*> subexpr 2) , ( prob ^. probExprBinOp , ConstBinOp <$> subexpr 2 <*> binOp <*> subexpr 2 ) , ( prob ^. probExprCond , ConstCond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3 ) , (prob ^. probExprConcat, ConstConcat <$> listOf1 (subexpr 8)) ] | otherwise = constExprWithContext ps prob 0 where subexpr y = constExprWithContext ps prob $ size `div` y exprSafeList :: ProbExpr -> [(Int, Gen Expr)] exprSafeList prob = [(prob ^. probExprNum, Number <$> genBitVec)] exprRecList :: ProbExpr -> (Hog.Size -> Gen Expr) -> [(Int, Gen Expr)] exprRecList prob subexpr = [ (prob ^. probExprNum , Number <$> genBitVec) , (prob ^. probExprConcat , Concat <$> listOf1 (subexpr 8)) , (prob ^. probExprUnOp , UnOp <$> unOp <*> subexpr 2) , (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum) , (prob ^. probExprBinOp , BinOp <$> subexpr 2 <*> binOp <*> subexpr 2) , (prob ^. probExprCond , Cond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3) , (prob ^. probExprSigned , Appl <$> pure "$signed" <*> subexpr 2) , (prob ^. probExprUnsigned, Appl <$> pure "$unsigned" <*> subexpr 2) ] rangeSelect :: [Parameter] -> [Port] -> Gen Expr rangeSelect ps ports = do p <- Hog.element ports let s = calcRange ps (Just 32) $ _portSize p msb <- Hog.int (Hog.constantFrom (s `div` 2) 0 (s - 1)) lsb <- Hog.int (Hog.constantFrom (msb `div` 2) 0 msb) return . RangeSelect (_portName p) $ Range (fromIntegral msb) (fromIntegral lsb) exprWithContext :: ProbExpr -> [Parameter] -> [Port] -> Hog.Size -> Gen Expr exprWithContext prob ps [] n | n == 0 = Hog.frequency $ exprSafeList prob | n > 0 = Hog.frequency $ exprRecList prob subexpr | otherwise = exprWithContext prob ps [] 0 where subexpr y = exprWithContext prob ps [] $ n `div` y exprWithContext prob ps l n | n == 0 = Hog.frequency $ (prob ^. probExprId, Id . fromPort <$> Hog.element l) : exprSafeList prob | n > 0 = Hog.frequency $ (prob ^. probExprId , Id . fromPort <$> Hog.element l) : (prob ^. probExprRangeSelect, rangeSelect ps l) : exprRecList prob subexpr | otherwise = exprWithContext prob ps l 0 where subexpr y = exprWithContext prob ps l $ n `div` y someI :: Int -> StateGen a -> StateGen [a] someI m f = do amount <- gen $ Hog.int (Hog.linear 1 m) replicateM amount f some :: StateGen a -> StateGen [a] some = someI 50 many :: StateGen a -> StateGen [a] many f = do amount <- gen $ Hog.int (Hog.linear 0 50) replicateM amount f makeIdentifier :: T.Text -> StateGen Identifier makeIdentifier prefix = do context <- get let ident = Identifier $ prefix <> showT (context ^. nameCounter) nameCounter += 1 return ident getPort' :: PortType -> Identifier -> [Port] -> StateGen Port getPort' pt i c = case filter portId c of x : _ -> return x [] -> newPort i pt where portId (Port pt' _ _ i') = i == i' && pt == pt' nextPort :: PortType -> StateGen Port nextPort pt = do context <- get ident <- makeIdentifier . T.toLower $ showT pt getPort' pt ident (_variables context) newPort :: Identifier -> PortType -> StateGen Port newPort ident pt = do p <- gen $ Port pt <$> Hog.bool <*> range <*> pure ident variables %= (p :) return p scopedExpr :: StateGen Expr scopedExpr = do context <- get prob <- askProbability gen . Hog.sized . exprWithContext (_probExpr prob) (_parameters context) $ _variables context contAssign :: StateGen ContAssign contAssign = do expr <- scopedExpr p <- nextPort Wire return $ ContAssign (p ^. portName) expr lvalFromPort :: Port -> LVal lvalFromPort (Port _ _ _ i) = RegId i probability :: Config -> Probability probability c = c ^. configProbability askProbability :: StateGen Probability askProbability = lift $ asks probability assignment :: StateGen Assign assignment = do expr <- scopedExpr lval <- lvalFromPort <$> nextPort Reg return $ Assign lval Nothing expr seqBlock :: StateGen Statement seqBlock = do stmntDepth -= 1 tstat <- SeqBlock <$> someI 20 statement stmntDepth += 1 return tstat conditional :: StateGen Statement conditional = do expr <- scopedExpr nc <- _nameCounter <$> get tstat <- seqBlock nc' <- _nameCounter <$> get nameCounter .= nc fstat <- seqBlock nc'' <- _nameCounter <$> get nameCounter .= max nc' nc'' return $ CondStmnt expr (Just tstat) (Just fstat) --constToExpr :: ConstExpr -> Expr --constToExpr (ConstNum s n ) = Number s n --constToExpr (ParamId i ) = Id i --constToExpr (ConstConcat c ) = Concat $ constToExpr <$> c --constToExpr (ConstUnOp u p ) = UnOp u (constToExpr p) --constToExpr (ConstBinOp a b c) = BinOp (constToExpr a) b (constToExpr c) --constToExpr (ConstCond a b c) = -- Cond (constToExpr a) (constToExpr b) (constToExpr c) --constToExpr (ConstStr s) = Str s forLoop :: StateGen Statement forLoop = do num <- Hog.int (Hog.linear 0 20) var <- lvalFromPort <$> nextPort Reg ForLoop (Assign var Nothing 0) (BinOp (varId var) BinLT $ fromIntegral num) (Assign var Nothing $ BinOp (varId var) BinPlus 1) <$> seqBlock where varId v = Id (v ^. regId) statement :: StateGen Statement statement = do prob <- askProbability cont <- get let defProb i = prob ^. probStmnt . i Hog.frequency [ (defProb probStmntBlock , BlockAssign <$> assignment) , (defProb probStmntNonBlock , NonBlockAssign <$> assignment) , (onDepth cont (defProb probStmntCond), conditional) , (onDepth cont (defProb probStmntFor) , forLoop) ] where onDepth c n = if c ^. stmntDepth > 0 then n else 0 recEventList :: NonEmpty Identifier -> Hog.Size -> Gen Event recEventList ids size | size <= 0 = idgen | otherwise = Hog.choice [idgen, EOr <$> recCall <*> recCall] where idgen = fmap EId . Hog.element $ toList ids recCall = recEventList ids (size `div` 2) eventList :: StateGen Event eventList = do prob <- askProbability context <- get let defProb i = prob ^. probEventList . i gen $ Hog.frequency [ (defProb probEventListAll, return EAll) , ( defProb probEventListVar , case context ^. variables of [] -> return EAll x : xs -> Hog.sized . recEventList $ fromPort <$> (x :| xs) ) , (defProb probEventListClk, return $ EPosEdge "clk") ] always :: StateGen ModItem always = do events <- eventList stat <- seqBlock return $ Always (EventCtrl events (Just stat)) instantiate :: ModDecl -> StateGen ModItem instantiate (ModDecl i outP inP _ _) = do context <- get outs <- fmap (Id . view portName) <$> (replicateM (length outP) $ nextPort Wire) ins <- (Id "clk" :) . fmap (Id . view portName) . take (length inP - 1) <$> (Hog.shuffle $ context ^. variables) ident <- makeIdentifier "modinst" Hog.choice [ return . ModInst i ident $ ModConn <$> outs <> ins , ModInst i ident <$> Hog.shuffle (zipWith ModConnNamed (view portName <$> outP <> inP) (outs <> ins)) ] -- | Generates a module instance by also generating a new module if there are -- not enough modules currently in the context. It keeps generating new modules -- for every instance and for every level until either the deepest level is -- achieved, or the maximum number of modules are reached. -- -- If the maximum number of levels are reached, it will always pick an instance -- from the current context. The problem with this approach is that at the end -- there may be many more than the max amount of modules, as the modules are -- always set to empty when entering a new level. This is to fix recursive -- definitions of modules, which are not defined. -- -- One way to fix that is to also decrement the max modules for every level, -- depending on how many modules have already been generated. This would mean -- there would be moments when the module cannot generate a new instance but -- also not take a module from the current context. A fix for that may be to -- have a default definition of a simple module that is used instead. -- -- Another different way to handle this would be to have a probability of taking -- a module from a context or generating a new one. modInst :: StateGen ModItem modInst = do prob <- lift ask context <- get let maxMods = prob ^. configProperty . propMaxModules if length (context ^. modules) < maxMods then do let currMods = context ^. modules let params = context ^. parameters let vars = context ^. variables modules .= [] variables .= [] parameters .= [] modDepth -= 1 chosenMod <- moduleDef Nothing ncont <- get let genMods = ncont ^. modules modDepth += 1 parameters .= params variables .= vars modules .= chosenMod : currMods <> genMods instantiate chosenMod else Hog.element (context ^. modules) >>= instantiate -- | Generate a random module item. modItem :: StateGen ModItem modItem = do prob <- askProbability context <- get let defProb i = prob ^. probModItem . i Hog.frequency [ (defProb probModItemAssign, ModCA <$> contAssign) , (defProb probModItemAlways, always) , ( if context ^. modDepth > 0 then defProb probModItemInst else 0 , modInst ) ] moduleName :: Maybe Identifier -> StateGen Identifier moduleName (Just t) = return t moduleName Nothing = makeIdentifier "module" constExpr :: StateGen ConstExpr constExpr = do prob <- askProbability context <- get gen . Hog.sized $ constExprWithContext (context ^. parameters) (prob ^. probExpr) parameter :: StateGen Parameter parameter = do ident <- makeIdentifier "param" cexpr <- constExpr let param = Parameter ident cexpr parameters %= (param :) return param -- | Evaluate a range to an integer, and cast it back to a range. evalRange :: [Parameter] -> Int -> Range -> Range evalRange ps n (Range l r) = Range (eval l) (eval r) where eval = ConstNum . cata (evaluateConst ps) . resize n calcRange :: [Parameter] -> Maybe Int -> Range -> Int calcRange ps i (Range l r) = eval l - eval r + 1 where eval a = fromIntegral . cata (evaluateConst ps) $ maybe a (`resize` a) i -- | Generates a module definition randomly. It always has one output port which -- is set to @y@. The size of @y@ is the total combination of all the locally -- defined wires, so that it correctly reflects the internal state of the -- module. moduleDef :: Maybe Identifier -> StateGen ModDecl moduleDef top = do name <- moduleName top portList <- some $ nextPort Wire mi <- Hog.list (Hog.linear 4 100) modItem ps <- many parameter context <- get let local = filter (`notElem` portList) $ _variables context let size = evalRange (_parameters context) 32 . sum $ local ^.. traverse . portSize let clock = Port Wire False 1 "clk" let yport = Port Wire False size "y" let comb = combineAssigns_ yport local return . declareMod local . ModDecl name [yport] (clock : portList) (mi <> [comb]) $ ps -- | Procedural generation method for random Verilog. Uses internal 'Reader' and -- 'State' to keep track of the current Verilog code structure. procedural :: T.Text -> Config -> Gen Verilog procedural top config = do (mainMod, st) <- Hog.resize num $ runReaderT (runStateT (moduleDef (Just $ Identifier top)) context) config return . Verilog $ mainMod : st ^. modules where context = Context [] [] [] 0 (confProp propStmntDepth) $ confProp propModDepth num = fromIntegral $ confProp propSize confProp i = config ^. configProperty . i proceduralIO :: T.Text -> Config -> IO Verilog proceduralIO t = Hog.sample . procedural t proceduralSrc :: T.Text -> Config -> Gen SourceInfo proceduralSrc t c = SourceInfo t <$> procedural t c proceduralSrcIO :: T.Text -> Config -> IO SourceInfo proceduralSrcIO t c = SourceInfo t <$> proceduralIO t c