{-| Module : VeriFuzz.Verilog.Gen Description : Various useful generators. Copyright : (c) 2019, Yann Herklotz License : GPL-3 Maintainer : ymherklotz [at] gmail [dot] com Stability : experimental Portability : POSIX Various useful generators. -} {-# LANGUAGE TemplateHaskell #-} module VeriFuzz.Verilog.Gen ( -- * Generation methods procedural , proceduralIO , randomMod ) where import Control.Lens hiding (Context) import Control.Monad (replicateM) import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.Reader hiding (local) import Control.Monad.Trans.State.Lazy import Data.Foldable (fold) import Data.List.NonEmpty (toList) import qualified Data.Text as T import Hedgehog (Gen) import qualified Hedgehog.Gen as Hog import qualified Hedgehog.Range as Hog import VeriFuzz.Config import VeriFuzz.Internal import VeriFuzz.Verilog.AST import VeriFuzz.Verilog.BitVec import VeriFuzz.Verilog.Internal import VeriFuzz.Verilog.Mutate data Context = Context { _variables :: [Port] , _parameters :: [Parameter] , _modules :: [ModDecl] , _nameCounter :: {-# UNPACK #-} !Int , _stmntDepth :: {-# UNPACK #-} !Int , _modDepth :: {-# UNPACK #-} !Int } makeLenses ''Context type StateGen = StateT Context (ReaderT Config Gen) toId :: Int -> Identifier toId = Identifier . ("w" <>) . T.pack . show toPort :: Identifier -> Gen Port toPort ident = do i <- range return $ wire i ident sumSize :: [Port] -> Range sumSize ps = sum $ ps ^.. traverse . portSize random :: [Identifier] -> (Expr -> ContAssign) -> Gen ModItem random ctx fun = do expr <- Hog.sized (exprWithContext (ProbExpr 1 1 1 1 1 1 0 1 1) ctx) return . ModCA $ fun expr --randomAssigns :: [Identifier] -> [Gen ModItem] --randomAssigns ids = random ids . ContAssign <$> ids randomOrdAssigns :: [Identifier] -> [Identifier] -> [Gen ModItem] randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids where generate cid (i, o) = (cid : i, random i (ContAssign cid) : o) randomMod :: Int -> Int -> Gen ModDecl randomMod inps total = do x <- sequence $ randomOrdAssigns start end ident <- sequence $ toPort <$> ids let inputs_ = take inps ident let other = drop inps ident let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids let yport = [wire (sumSize other) "y"] return . declareMod other $ ModDecl "test_module" yport inputs_ (x ++ [y]) [] where ids = toId <$> [1 .. total] end = drop inps ids start = take inps ids gen :: Gen a -> StateGen a gen = lift . lift listOf1 :: Gen a -> Gen [a] listOf1 a = toList <$> Hog.nonEmpty (Hog.linear 0 100) a --listOf :: Gen a -> Gen [a] --listOf = Hog.list (Hog.linear 0 100) largeNum :: Gen Int largeNum = Hog.int Hog.linearBounded wireSize :: Gen Int wireSize = Hog.int $ Hog.linear 2 200 range :: Gen Range range = Range <$> fmap fromIntegral wireSize <*> pure 0 genBitVec :: Gen BitVec genBitVec = BitVec <$> wireSize <*> fmap fromIntegral largeNum binOp :: Gen BinaryOperator binOp = Hog.element [ BinPlus , BinMinus , BinTimes -- , BinDiv -- , BinMod , BinEq , BinNEq -- , BinCEq -- , BinCNEq , BinLAnd , BinLOr , BinLT , BinLEq , BinGT , BinGEq , BinAnd , BinOr , BinXor , BinXNor , BinXNorInv -- , BinPower , BinLSL , BinLSR , BinASL , BinASR ] unOp :: Gen UnaryOperator unOp = Hog.element [ UnPlus , UnMinus , UnNot , UnLNot , UnAnd , UnNand , UnOr , UnNor , UnXor , UnNxor , UnNxorInv ] constExprWithContext :: [Parameter] -> ProbExpr -> Hog.Size -> Gen ConstExpr constExprWithContext ps prob size | size == 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) ] | size > 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) , (prob ^. probExprUnOp, ConstUnOp <$> unOp <*> subexpr 2) , ( prob ^. probExprBinOp , ConstBinOp <$> subexpr 2 <*> binOp <*> subexpr 2 ) , ( prob ^. probExprCond , ConstCond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3 ) , (prob ^. probExprConcat, ConstConcat <$> listOf1 (subexpr 8)) ] | otherwise = constExprWithContext ps prob 0 where subexpr y = constExprWithContext ps prob $ size `div` y exprSafeList :: ProbExpr -> [(Int, Gen Expr)] exprSafeList prob = [(prob ^. probExprNum, Number <$> genBitVec)] exprRecList :: ProbExpr -> (Hog.Size -> Gen Expr) -> [(Int, Gen Expr)] exprRecList prob subexpr = [ (prob ^. probExprNum , Number <$> genBitVec) , (prob ^. probExprConcat , Concat <$> listOf1 (subexpr 8)) , (prob ^. probExprUnOp , UnOp <$> unOp <*> subexpr 2) , (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum) , (prob ^. probExprBinOp , BinOp <$> subexpr 2 <*> binOp <*> subexpr 2) , (prob ^. probExprCond , Cond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3) , (prob ^. probExprSigned , Appl <$> pure "$signed" <*> subexpr 2) , (prob ^. probExprUnsigned, Appl <$> pure "$unsigned" <*> subexpr 2) ] exprWithContext :: ProbExpr -> [Identifier] -> Hog.Size -> Gen Expr exprWithContext prob [] n | n == 0 = Hog.frequency $ exprSafeList prob | n > 0 = Hog.frequency $ exprRecList prob subexpr | otherwise = exprWithContext prob [] 0 where subexpr y = exprWithContext prob [] $ n `div` y exprWithContext prob l n | n == 0 = Hog.frequency $ (prob ^. probExprId, Id <$> Hog.element l) : exprSafeList prob | n > 0 = Hog.frequency $ (prob ^. probExprId, Id <$> Hog.element l) : exprRecList prob subexpr | otherwise = exprWithContext prob l 0 where subexpr y = exprWithContext prob l $ n `div` y some :: StateGen a -> StateGen [a] some f = do amount <- gen $ Hog.int (Hog.linear 1 100) replicateM amount f many :: StateGen a -> StateGen [a] many f = do amount <- gen $ Hog.int (Hog.linear 0 100) replicateM amount f makeIdentifier :: T.Text -> StateGen Identifier makeIdentifier prefix = do context <- get let ident = Identifier $ prefix <> showT (context ^. nameCounter) nameCounter += 1 return ident newPort :: PortType -> StateGen Port newPort pt = do ident <- makeIdentifier . T.toLower $ showT pt p <- gen $ Port pt <$> Hog.bool <*> range <*> pure ident variables %= (p :) return p scopedExpr :: StateGen Expr scopedExpr = do context <- get prob <- askProbability gen . Hog.sized . exprWithContext (prob ^. probExpr) $ vars context where vars cont = (cont ^.. variables . traverse . portName) <> (cont ^.. parameters . traverse . paramIdent) contAssign :: StateGen ContAssign contAssign = do expr <- scopedExpr p <- newPort Wire return $ ContAssign (p ^. portName) expr lvalFromPort :: Port -> LVal lvalFromPort (Port _ _ _ i) = RegId i probability :: Config -> Probability probability c = c ^. configProbability askProbability :: StateGen Probability askProbability = lift $ asks probability assignment :: StateGen Assign assignment = do expr <- scopedExpr lval <- lvalFromPort <$> newPort Reg return $ Assign lval Nothing expr seqBlock :: StateGen Statement seqBlock = do stmntDepth -= 1 tstat <- SeqBlock <$> some statement stmntDepth += 1 return tstat conditional :: StateGen Statement conditional = do expr <- scopedExpr tstat <- seqBlock fstat <- Hog.maybe seqBlock return $ CondStmnt expr (Just tstat) fstat --constToExpr :: ConstExpr -> Expr --constToExpr (ConstNum s n ) = Number s n --constToExpr (ParamId i ) = Id i --constToExpr (ConstConcat c ) = Concat $ constToExpr <$> c --constToExpr (ConstUnOp u p ) = UnOp u (constToExpr p) --constToExpr (ConstBinOp a b c) = BinOp (constToExpr a) b (constToExpr c) --constToExpr (ConstCond a b c) = -- Cond (constToExpr a) (constToExpr b) (constToExpr c) --constToExpr (ConstStr s) = Str s forLoop :: StateGen Statement forLoop = do num <- Hog.int (Hog.linear 0 20) var <- lvalFromPort <$> newPort Reg stats <- seqBlock return $ ForLoop (Assign var Nothing 0) (BinOp (varId var) BinLT $ fromIntegral num) (Assign var Nothing $ BinOp (varId var) BinPlus 1) stats where varId v = Id (v ^. regId) statement :: StateGen Statement statement = do prob <- askProbability cont <- get let defProb i = prob ^. probStmnt . i Hog.frequency [ (defProb probStmntBlock , BlockAssign <$> assignment) , (defProb probStmntNonBlock , NonBlockAssign <$> assignment) , (onDepth cont (defProb probStmntCond), conditional) , (onDepth cont (defProb probStmntFor) , forLoop) ] where onDepth c n = if c ^. stmntDepth > 0 then n else 0 always :: StateGen ModItem always = do stat <- SeqBlock <$> some statement return $ Always (EventCtrl (EPosEdge "clk") (Just stat)) instantiate :: ModDecl -> StateGen ModItem instantiate (ModDecl i outP inP _ _) = do context <- get outs <- fmap (Id . view portName) <$> (replicateM (length outP) $ newPort Wire) ins <- (Id "clk" :) . fmap (Id . view portName) . take (length inP - 1) <$> (Hog.shuffle $ context ^. variables) ident <- makeIdentifier "modinst" Hog.choice [ return . ModInst i ident $ ModConn <$> outs <> ins , ModInst i ident <$> Hog.shuffle (zipWith ModConnNamed (view portName <$> outP <> inP) (outs <> ins)) ] -- | Generates a module instance by also generating a new module if there are -- not enough modules currently in the context. It keeps generating new modules -- for every instance and for every level until either the deepest level is -- achieved, or the maximum number of modules are reached. -- -- If the maximum number of levels are reached, it will always pick an instance -- from the current context. The problem with this approach is that at the end -- there may be many more than the max amount of modules, as the modules are -- always set to empty when entering a new level. This is to fix recursive -- definitions of modules, which are not defined. -- -- One way to fix that is to also decrement the max modules for every level, -- depending on how many modules have already been generated. This would mean -- there would be moments when the module cannot generate a new instance but -- also not take a module from the current context. A fix for that may be to -- have a default definition of a simple module that is used instead. -- -- Another different way to handle this would be to have a probability of taking -- a module from a context or generating a new one. modInst :: StateGen ModItem modInst = do prob <- lift ask context <- get let maxMods = prob ^. configProperty . propMaxModules if length (context ^. modules) < maxMods then do let currMods = context ^. modules let params = context ^. parameters let vars = context ^. variables modules .= [] variables .= [] parameters .= [] modDepth -= 1 chosenMod <- moduleDef Nothing ncont <- get let genMods = ncont ^. modules modDepth += 1 parameters .= params variables .= vars modules .= chosenMod : currMods <> genMods instantiate chosenMod else Hog.element (context ^. modules) >>= instantiate -- | Generate a random module item. modItem :: StateGen ModItem modItem = do prob <- askProbability context <- get let defProb i = prob ^. probModItem . i Hog.frequency [ (defProb probModItemAssign, ModCA <$> contAssign) , (defProb probModItemAlways, always) , ( if context ^. modDepth > 0 then defProb probModItemInst else 0 , modInst ) ] moduleName :: Maybe Identifier -> StateGen Identifier moduleName (Just t) = return t moduleName Nothing = makeIdentifier "module" constExpr :: StateGen ConstExpr constExpr = do prob <- askProbability context <- get gen . Hog.sized $ constExprWithContext (context ^. parameters) (prob ^. probExpr) parameter :: StateGen Parameter parameter = do ident <- makeIdentifier "param" cexpr <- constExpr let param = Parameter ident cexpr parameters %= (param :) return param -- | Generates a module definition randomly. It always has one output port which -- is set to @y@. The size of @y@ is the total combination of all the locally -- defined wires, so that it correctly reflects the internal state of the -- module. moduleDef :: Maybe Identifier -> StateGen ModDecl moduleDef top = do name <- moduleName top portList <- some $ newPort Wire mi <- Hog.list (Hog.linear 4 100) modItem context <- get let local = filter (`notElem` portList) $ context ^. variables let size = sum $ local ^.. traverse . portSize let clock = Port Wire False 1 "clk" let yport = Port Wire False size "y" let comb = combineAssigns_ yport local declareMod local . ModDecl name [yport] (clock : portList) (mi <> [comb]) <$> many parameter -- | Procedural generation method for random Verilog. Uses internal 'Reader' and -- 'State' to keep track of the current Verilog code structure. procedural :: Config -> Gen Verilog procedural config = do (mainMod, st) <- Hog.resize num $ runReaderT (runStateT (moduleDef (Just "top")) context) config return . Verilog $ mainMod : st ^. modules where context = Context [] [] [] 0 (confProp propStmntDepth) $ confProp propModDepth num = fromIntegral $ confProp propSize confProp i = config ^. configProperty . i proceduralIO :: Config -> IO Verilog proceduralIO = Hog.sample . procedural