{-# LANGUAGE QuasiQuotes #-} -- | -- Module : Verismith.EMI -- Description : Definition of the circuit graph. -- Copyright : (c) 2021, Yann Herklotz -- License : GPL-3 -- Maintainer : yann [at] yannherklotz [dot] com -- Stability : experimental -- Portability : POSIX -- -- Equivalence modulo inputs (EMI) testing. This file should get an existing design, and spit out a -- modified design that is equivalent under some specific values of the extra inputs. module Verismith.EMI where import Control.Lens hiding (Context) import Control.Monad (replicateM) import Control.Monad.Reader import Control.Monad.State.Strict import Data.Text (Text) import Data.List (intercalate) import qualified Data.Text as T import Hedgehog (Gen, GenT, MonadGen) import qualified Hedgehog as Hog import qualified Hedgehog.Gen as Hog import qualified Hedgehog.Range as HogR import Data.Maybe (fromMaybe) import Verismith.Config import Verismith.Internal import Verismith.Verilog.AST import Verismith.Verilog.BitVec import Verismith.Verilog.Eval import Verismith.Verilog.Internal import Verismith.Verilog.Mutate import Verismith.Generate import Verismith.Verilog.CodeGen import Verismith.Verilog.Quote import qualified Data.Text.IO as T data EMIInputs a = EMIInputs [Identifier] | EMIOrig a deriving (Eq, Ord) instance Show a => Show (EMIInputs a) where show (EMIInputs i) = "EMI: " <> intercalate ", " (T.unpack . getIdentifier <$> i) show (EMIOrig a) = show a newPort' :: Identifier -> StateGen a Port newPort' ident = do hex <- Identifier . T.toLower . T.pack <$> Hog.list (HogR.constant 10 10) Hog.hexit let p = Port Wire False (Range 0 0) (ident <> hex) emiContext . _Just . emiNewInputs %= (p :) return p nstatementEMI :: StateGen a (Maybe (Statement a)) nstatementEMI = do config <- ask Hog.frequency [ (config ^. configEMI . confEMIGenerateProb, do s' <- statement n <- newPort' "emi_" return (Just (CondStmnt (Id (n^.portName)) (Just s') Nothing))), (config ^. configEMI . confEMINoGenerateProb, return Nothing) ] statementEMI :: Statement a -> StateGen a (Statement a) statementEMI (SeqBlock s) = do s'' <- nstatementEMI return $ SeqBlock ((s'' ^.. _Just) ++ s) statementEMI s = return s moditemEMI :: ModItem a -> StateGen a (ModItem a) moditemEMI (Always s) = Always <$> transformM statementEMI s moditemEMI m = return m moddeclEMI :: ModDecl a -> StateGen a (ModDecl (EMIInputs a)) moddeclEMI m = do emiContext._Just.emiNewInputs .= [] blocking .= [] nonblocking .= [] wires .= [] m' <- traverseOf (modItems.traverse) moditemEMI m c <- use (emiContext._Just.emiNewInputs) b <- use blocking nb <- use nonblocking w <- use wires let m'' = m' & modInPorts %~ (c ++ ) & initNewRegs c & initNewInnerRegs (b <> nb <> w) return (ModDeclAnn (EMIInputs (c^..traverse.portName)) (fmap (\x -> EMIOrig x) m'')) sourceEMI :: (SourceInfo a) -> StateGen a (SourceInfo (EMIInputs a)) sourceEMI s = traverseOf (infoSrc._Wrapped.traverse) moddeclEMI s initNewRegs :: [Port] -> ModDecl a -> ModDecl a initNewRegs ps m = m & modItems %~ (++ (Decl (Just PortIn) <$> ps <*> pure Nothing)) initNewInnerRegs :: [Port] -> ModDecl a -> ModDecl a initNewInnerRegs ps m = m & modItems %~ (++ (Decl Nothing <$> ps <*> pure Nothing)) -- | Procedural generation method for random Verilog. Uses internal 'Reader' and -- 'State' to keep track of the current Verilog code structure. proceduralEMI :: SourceInfo a -> Config -> Gen (SourceInfo (EMIInputs a)) proceduralEMI src config = do (mainMod, st) <- Hog.resize num $ runStateT (Hog.distributeT (runReaderT (sourceEMI src) config)) context return mainMod where context = Context [] [] [] [] [] [] 100000 (confProp propStmntDepth) (confProp propModDepth) True (Just (EMIContext [])) num = fromIntegral $ confProp propSize confProp i = config ^. configProperty . i proceduralEMIIO :: SourceInfo a -> Config -> IO (SourceInfo (EMIInputs a)) proceduralEMIIO t = Hog.sample . proceduralEMI t -- | Make top level module for equivalence verification. Also takes in how many -- modules to instantiate. makeTopEMI :: Int -> ModDecl (EMIInputs ann) -> (ModDecl (EMIInputs ann), [Identifier]) makeTopEMI i m' = (ModDecl (m ^. modId) ys nports modIt [], anns) where ys = yPort . flip makeIdFrom "y" <$> [1 .. i] modIt = instantiateModSpec_ "_" . modN <$> [1 .. i] modN n = m & modId %~ makeIdFrom n & modOutPorts .~ [yPort (makeIdFrom n "y")] anns = concatMap (\x -> case x of EMIInputs x -> x _ -> [] ) (collectAnn m') m = removeAnn m' nports = filter (\x -> (x^.portName) `notElem` anns) (m^.modInPorts) createProperty :: Identifier -> ModItem a createProperty i = Property (i <> "_emi_prop") (EPosEdge "clk") Nothing (BinOp (Id i) BinEq 0) createAssignment :: Identifier -> Statement a createAssignment i = BlockAssign (Assign (RegId i) Nothing 0) addAssumesEMI :: (ModDecl a, [Identifier]) -> (ModDecl a, [Identifier]) addAssumesEMI (m, i) = (m & modItems %~ (++ mods), i) where mods = fmap createProperty i addAssignmentsEMI :: (ModDecl a, [Identifier]) -> (ModDecl a, [Identifier]) addAssignmentsEMI (m, i) = (m & modItems %~ (mods :), i) where mods = Initial (SeqBlock (createAssignment <$> i)) -- | Make a top module with an assert that requires @y_1@ to always be equal to -- @y_2@, which can then be proven using a formal verification tool. makeTopAssertEMI :: Bool -> ModDecl (EMIInputs ann) -> (ModDecl (EMIInputs ann), [Identifier]) makeTopAssertEMI b = bimap (modItems %~ (assert :)) id . (if b then addAssumesEMI else addAssignmentsEMI) . makeTopEMI 2 where assert = Always . EventCtrl e . Just $ SeqBlock [TaskEnable $ Task "assert" [BinOp (Id "y_1") BinEq (Id "y_2")]] e = EPosEdge "clk" initModEMI :: (ModDecl ann, [Identifier]) -> (ModDecl ann) initModEMI (m, i) = m & modItems %~ ((out ++ inp ++ other) ++) where out = Decl (Just PortOut) <$> (m ^. modOutPorts) <*> pure Nothing inp = Decl (Just PortIn) <$> (m^.modInPorts) <*> pure Nothing other = Decl Nothing <$> map (\i' -> Port Reg False (Range 0 0) i') i <*> pure Nothing getTopEMIIdent :: SourceInfo (EMIInputs a) -> [Identifier] getTopEMIIdent s = concatMap (\x -> case x of EMIInputs x -> x _ -> [] ) (collectAnn (s^.mainModule)) -- Test code m :: SourceInfo () m = SourceInfo "m" [verilog| module m; always @(posedge clk) begin if (z == 2) begin ry = 2; end x <= y; y <= z; end endmodule module m2; always @(posedge clk) begin if (z == 2) begin ry = 2; end x <= y; y <= z; end endmodule |] p :: Show a => ModDecl a -> IO () p = T.putStrLn . genSource p2 :: Show a => SourceInfo a -> IO () p2 = T.putStrLn . genSource customConfig = defaultConfig & (configEMI . confEMIGenerateProb .~ 1) . (configEMI . confEMINoGenerateProb .~ 0) top = ((initModEMI . makeTopAssertEMI True . (\s -> s^.mainModule)) <$> proceduralEMIIO m customConfig) >>= p top2 = proceduralEMIIO m customConfig >>= p2