{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -Wno-unused-imports #-} -- | -- Module : Verismith.Generate -- Description : Various useful generators. -- Copyright : (c) 2019, Yann Herklotz -- License : GPL-3 -- Maintainer : yann [at] yannherklotz [dot] com -- Stability : experimental -- Portability : POSIX -- -- Various useful generators. module Verismith.Generate ( -- * Generation methods procedural, proceduralIO, proceduralSrc, proceduralSrcIO, randomMod, -- ** Data types EMIContext(..), emiNewInputs, Context(..), wires, nonblocking, blocking, outofscope, parameters, modules, nameCounter, stmntDepth, modDepth, determinism, emiContext, StateGen(..), -- ** Generate Functions largeNum, wireSize, range, genBitVec, binOp, unOp, constExprWithContext, exprSafeList, exprRecList, exprWithContext, makeIdentifier, nextWirePort, nextNBPort, nextBPort, newWirePort, newNBPort, newBPort, scopedExpr, contAssign, lvalFromPort, assignment, seqBlock, conditional, forLoop, statement, alwaysSeq, instantiate, modInst, modItem, constExpr, parameter, moduleDef, -- ** Helpers someI, probability, askProbability, resizePort, moduleName, evalRange, calcRange, ) where import Control.Lens hiding (Context) import Control.Monad (replicateM) import Control.Monad.Reader import Control.Monad.State.Strict import Data.Foldable (fold) import Data.Functor.Foldable (cata) import Data.List (foldl', partition) import Data.Maybe (fromMaybe) import Data.Text (Text) import qualified Data.Text as T import Hedgehog (Gen, GenT, MonadGen) import qualified Hedgehog as Hog import qualified Hedgehog.Gen as Hog import qualified Hedgehog.Range as Hog import Verismith.Config import Verismith.Internal import Verismith.Verilog.AST import Verismith.Verilog.BitVec import Verismith.Verilog.Eval import Verismith.Verilog.Internal import Verismith.Verilog.Mutate data EMIContext = EMIContext { _emiNewInputs :: [Port] } makeLenses ''EMIContext data Context a = Context { _wires :: [Port], _nonblocking :: [Port], _blocking :: [Port], _outofscope :: [Port], _parameters :: [Parameter], _modules :: [ModDecl a], _nameCounter :: {-# UNPACK #-} !Int, _stmntDepth :: {-# UNPACK #-} !Int, _modDepth :: {-# UNPACK #-} !Int, _determinism :: !Bool, _emiContext :: !(Maybe EMIContext) } makeLenses ''Context type StateGen a = ReaderT Config (GenT (State (Context a))) toId :: Int -> Identifier toId = Identifier . ("w" <>) . T.pack . show toPort :: (MonadGen m) => Identifier -> m Port toPort ident = do i <- range return $ wire i ident sumSize :: [Port] -> Range sumSize ps = sum $ ps ^.. traverse . portSize random :: (MonadGen m) => [Port] -> (Expr -> ContAssign) -> m (ModItem ann) random ctx fun = do expr <- Hog.sized (exprWithContext (ProbExpr 1 1 0 1 1 1 1 0 1 1) [] ctx) return . ModCA $ fun expr --randomAssigns :: [Identifier] -> [Gen ModItem] --randomAssigns ids = random ids . ContAssign <$> ids randomOrdAssigns :: (MonadGen m) => [Port] -> [Port] -> [m (ModItem ann)] randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids where generate cid (i, o) = (cid : i, random i (ContAssign (_portName cid)) : o) randomMod :: (MonadGen m) => Int -> Int -> m (ModDecl ann) randomMod inps total = do ident <- sequence $ toPort <$> ids x <- sequence $ randomOrdAssigns (start ident) (end ident) let inputs_ = take inps ident let other = drop inps ident let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids let yport = [wire (sumSize other) "y"] return . declareMod other $ ModDecl "test_module" yport inputs_ (x ++ [y]) [] where ids = toId <$> [1 .. total] end = drop inps start = take inps -- | Converts a 'Port' to an 'LVal' by only keeping the 'Identifier' of the -- 'Port'. lvalFromPort :: Port -> LVal lvalFromPort (Port _ _ _ i) = RegId i -- | Returns the probability from the configuration. probability :: Config -> Probability probability c = c ^. configProbability -- | Gets the current probabilities from the 'State'. askProbability :: StateGen ann Probability askProbability = asks probability -- | Generates a random large number, which can also be negative. largeNum :: (MonadGen m) => m Int largeNum = Hog.int $ Hog.linear (-100) 100 -- | Generates a random size for a wire so that it is not too small and not too -- large. wireSize :: (MonadGen m) => m Int wireSize = Hog.int $ Hog.linear 2 100 -- | Generates a random range by using the 'wireSize' and 0 as the lower bound. range :: (MonadGen m) => m Range range = Range <$> fmap fromIntegral wireSize <*> pure 0 -- | Generate a random bit vector using 'largeNum'. genBitVec :: (MonadGen m) => m BitVec genBitVec = fmap fromIntegral largeNum -- | Return a random 'BinaryOperator'. This currently excludes 'BinDiv', -- 'BinMod' because they can take a long time to synthesis, and 'BinCEq', -- 'BinCNEq', because these are not synthesisable. 'BinPower' is also excluded -- because it can only be used in conjunction with base powers of 2 which is -- currently not enforced. binOp :: (MonadGen m) => m BinaryOperator binOp = Hog.element [ BinPlus, BinMinus, BinTimes, -- , BinDiv -- , BinMod BinEq, BinNEq, -- , BinCEq -- , BinCNEq BinLAnd, BinLOr, BinLT, BinLEq, BinGT, BinGEq, BinAnd, BinOr, BinXor, BinXNor, BinXNorInv, -- , BinPower BinLSL, BinLSR, BinASL, BinASR ] -- | Generate a random 'UnaryOperator'. unOp :: (MonadGen m) => m UnaryOperator unOp = Hog.element [ UnPlus, UnMinus, UnNot, UnLNot, UnAnd, UnNand, UnOr, UnNor, UnXor, UnNxor, UnNxorInv ] -- | Generate a random 'ConstExpr' by using the current context of 'Parameter'. constExprWithContext :: (MonadGen m) => [Parameter] -> ProbExpr -> Hog.Size -> m ConstExpr constExprWithContext ps prob size | size == 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec), ( if null ps then 0 else prob ^. probExprId, ParamId . view paramIdent <$> Hog.element ps ) ] | size > 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec), ( if null ps then 0 else prob ^. probExprId, ParamId . view paramIdent <$> Hog.element ps ), (prob ^. probExprUnOp, ConstUnOp <$> unOp <*> subexpr 2), ( prob ^. probExprBinOp, ConstBinOp <$> subexpr 2 <*> binOp <*> subexpr 2 ), ( prob ^. probExprCond, ConstCond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2 ), ( prob ^. probExprConcat, ConstConcat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2) ) ] | otherwise = constExprWithContext ps prob 0 where subexpr y = constExprWithContext ps prob $ size `div` y -- | The list of safe 'Expr', meaning that these will not recurse and will end -- the 'Expr' generation. exprSafeList :: (MonadGen m) => ProbExpr -> [(Int, m Expr)] exprSafeList prob = [(prob ^. probExprNum, Number <$> genBitVec)] -- | List of 'Expr' that have the chance to recurse and will therefore not be -- used when the expression grows too large. exprRecList :: (MonadGen m) => ProbExpr -> (Hog.Size -> m Expr) -> [(Int, m Expr)] exprRecList prob subexpr = [ (prob ^. probExprNum, Number <$> genBitVec), ( prob ^. probExprConcat, Concat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2) ), (prob ^. probExprUnOp, UnOp <$> unOp <*> subexpr 2), (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum), (prob ^. probExprBinOp, BinOp <$> subexpr 2 <*> binOp <*> subexpr 2), (prob ^. probExprCond, Cond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2), (prob ^. probExprSigned, Appl <$> pure "$signed" <*> subexpr 2), (prob ^. probExprUnsigned, Appl <$> pure "$unsigned" <*> subexpr 2) ] -- | Select a random port from a list of ports and generate a safe bit selection -- for that port. rangeSelect :: (MonadGen m) => [Parameter] -> [Port] -> m Expr rangeSelect ps ports = do p <- Hog.element ports let s = calcRange ps (Just 32) $ _portSize p msb <- Hog.int (Hog.constantFrom (s `div` 2) 0 (s - 1)) lsb <- Hog.int (Hog.constantFrom (msb `div` 2) 0 msb) return . RangeSelect (_portName p) $ Range (fromIntegral msb) (fromIntegral lsb) -- | Generate a random expression from the 'Context' with a guarantee that it -- will terminate using the list of safe 'Expr'. exprWithContext :: (MonadGen m) => ProbExpr -> [Parameter] -> [Port] -> Hog.Size -> m Expr exprWithContext prob ps [] n | n == 0 = Hog.frequency $ exprSafeList prob | n > 0 = Hog.frequency $ exprRecList prob subexpr | otherwise = exprWithContext prob ps [] 0 where subexpr y = exprWithContext prob ps [] $ n `div` y exprWithContext prob ps l n | n == 0 = Hog.frequency $ (prob ^. probExprId, Id . fromPort <$> Hog.element l) : exprSafeList prob | n > 0 = Hog.frequency $ (prob ^. probExprId, Id . fromPort <$> Hog.element l) : (prob ^. probExprRangeSelect, rangeSelect ps l) : exprRecList prob subexpr | otherwise = exprWithContext prob ps l 0 where subexpr y = exprWithContext prob ps l $ n `div` y -- | Runs a 'StateGen' for a random number of times, limited by an 'Int' that is -- passed to it. someI :: Int -> StateGen ann a -> StateGen ann [a] someI m f = do amount <- Hog.int (Hog.linear 1 m) replicateM amount f -- | Make a new name with a prefix and the current nameCounter. The nameCounter -- is then increased so that the label is unique. makeIdentifier :: Text -> StateGen ann Identifier makeIdentifier prefix = do context <- get let ident = Identifier $ prefix <> showT (context ^. nameCounter) nameCounter += 1 return ident newPort_ :: Bool -> PortType -> Identifier -> StateGen ann Port newPort_ blk pt ident = do p <- Port pt <$> Hog.bool <*> range <*> pure ident case pt of Reg -> if blk then blocking %= (p :) else nonblocking %= (p :) Wire -> wires %= (p :) return p -- | Creates a new port based on the current name counter and adds it to the -- current context. It will be added to the '_wires' list. newWirePort :: Identifier -> StateGen ann Port newWirePort = newPort_ False Wire -- | Creates a new port based on the current name counter and adds it to the -- current context. It will be added to the '_nonblocking' list. newNBPort :: Identifier -> StateGen ann Port newNBPort = newPort_ False Reg -- | Creates a new port based on the current name counter and adds it to the -- current context. It will be added to the '_blocking' list. newBPort :: Identifier -> StateGen ann Port newBPort = newPort_ True Reg getPort' :: Bool -> PortType -> Identifier -> StateGen ann (Maybe Port) getPort' blk pt i = do cont <- get let b = _blocking cont let nb = _nonblocking cont let w = _wires cont let (c, nc) = case pt of Reg -> if blk then (b, nb <> w) else (nb, b <> w) Wire -> (w, b <> nb) case (filter portId c, filter portId nc) of (_, x : _) -> return Nothing (x : _, []) -> return $ Just x ([], []) -> fmap Just ( case pt of Reg -> if blk then newBPort i else newNBPort i Wire -> newWirePort i ) where portId (Port pt' _ _ i') = i == i' && pt == pt' try :: StateGen ann (Maybe a) -> StateGen ann a try a = do r <- a case r of Nothing -> try a Just res -> return res -- | Makes a new 'Identifier' and then checks if the 'Port' already exists, if -- it does the existant 'Port' is returned, otherwise a new port is created with -- 'newPort'. This is used subsequently in all the functions to create a port, -- in case a port with the same name was already created. This could be because -- the generation is currently in the other branch of an if-statement. nextWirePort :: Maybe Text -> StateGen ann Port nextWirePort i = try $ do ident <- makeIdentifier $ fromMaybe (T.toLower $ showT Wire) i getPort' False Wire ident nextNBPort :: Maybe Text -> StateGen ann Port nextNBPort i = try $ do ident <- makeIdentifier $ fromMaybe (T.toLower $ showT Reg) i getPort' False Reg ident nextBPort :: Maybe Text -> StateGen ann Port nextBPort i = try $ do ident <- makeIdentifier $ fromMaybe (T.toLower $ showT Reg) i getPort' True Reg ident allVariables :: StateGen ann [Port] allVariables = fmap (\context -> _wires context <> _nonblocking context <> _blocking context) get shareableVariables :: StateGen ann [Port] shareableVariables = fmap (\context -> _wires context <> _nonblocking context) get -- | Generates an expression from variables that are currently in scope. scopedExpr_ :: [Port] -> StateGen ann Expr scopedExpr_ vars = do context <- get prob <- askProbability Hog.sized . exprWithContext (_probExpr prob) (_parameters context) $ vars scopedExprAll :: StateGen ann Expr scopedExprAll = allVariables >>= scopedExpr_ scopedExpr :: StateGen ann Expr scopedExpr = shareableVariables >>= scopedExpr_ -- | Generates a random continuous assignment and assigns it to a random wire -- that is created. contAssign :: StateGen ann ContAssign contAssign = do expr <- scopedExpr p <- nextWirePort Nothing return $ ContAssign (p ^. portName) expr -- | Generate a random assignment and assign it to a random 'Reg'. assignment :: Bool -> StateGen ann Assign assignment blk = do expr <- scopedExprAll lval <- lvalFromPort <$> (if blk then nextBPort else nextNBPort) Nothing return $ Assign lval Nothing expr -- | Generate a random 'Statement' safely, by also increasing the depth counter. seqBlock :: StateGen ann (Statement ann) seqBlock = do stmntDepth -= 1 tstat <- SeqBlock <$> someI 20 statement stmntDepth += 1 return tstat -- | Generate a random conditional 'Statement'. The nameCounter is reset between -- branches so that port names can be reused. This is safe because if a 'Port' -- is not reused, it is left at 0, as all the 'Reg' are initialised to 0 at the -- start. conditional :: StateGen ann (Statement ann) conditional = do expr <- scopedExprAll nc <- _nameCounter <$> get tstat <- seqBlock nc' <- _nameCounter <$> get nameCounter .= nc fstat <- seqBlock nc'' <- _nameCounter <$> get nameCounter .= max nc' nc'' return $ CondStmnt expr (Just tstat) (Just fstat) -- | Generate a random for loop by creating a new variable name for the counter -- and then generating random statements in the body. forLoop :: StateGen ann (Statement ann) forLoop = do num <- Hog.int (Hog.linear 0 20) var <- lvalFromPort <$> nextBPort (Just "forvar") ForLoop (Assign var Nothing 0) (BinOp (varId var) BinLT $ fromIntegral num) (Assign var Nothing $ BinOp (varId var) BinPlus 1) <$> seqBlock where varId v = Id (v ^. regId) -- | Choose a 'Statement' to generate. statement :: StateGen ann (Statement ann) statement = do prob <- askProbability cont <- get let defProb i = prob ^. probStmnt . i Hog.frequency [ (defProb probStmntBlock, BlockAssign <$> assignment True), (defProb probStmntNonBlock, NonBlockAssign <$> assignment False), (onDepth cont (defProb probStmntCond), conditional), (onDepth cont (defProb probStmntFor), forLoop) ] where onDepth c n = if c ^. stmntDepth > 0 then n else 0 -- | Generate a sequential always block which is dependent on the clock. alwaysSeq :: StateGen ann (ModItem ann) alwaysSeq = do always <- Always . EventCtrl (EPosEdge "clk") . Just <$> seqBlock blk <- fmap _blocking get outofscope %= mappend blk blocking .= [] return always -- | Should resize a port that connects to a module port if the latter is -- larger. This should not cause any problems if the same net is used as input -- multiple times, and is resized multiple times, as it should only get larger. resizePort :: [Parameter] -> Identifier -> Range -> [Port] -> [Port] resizePort ps i ra = foldl' func [] where func l p@(Port t _ ri i') | i' == i && calc ri < calc ra = (p & portSize .~ ra) : l | otherwise = p : l calc = calcRange ps $ Just 64 -- | Instantiate a module, where the outputs are new nets that are created, and -- the inputs are taken from existing ports in the context. -- -- 1 is subtracted from the inputs for the length because the clock is not -- counted and is assumed to be there, this should be made nicer by filtering -- out the clock instead. I think that in general there should be a special -- representation for the clock. instantiate :: (ModDecl ann) -> StateGen ann (ModItem ann) instantiate (ModDecl i outP inP _ _) = do vars <- shareableVariables outs <- replicateM (length outP) $ nextWirePort Nothing ins <- take (length inpFixed) <$> Hog.shuffle vars insLit <- replicateM (length inpFixed - length ins) (Number <$> genBitVec) mapM_ (uncurry process) . zip ( zip (ins ^.. traverse . portName) (ins ^.. traverse . portType) ) $ inpFixed ^.. traverse . portSize ident <- makeIdentifier "modinst" Hog.choice [ return . ModInst i [] ident $ ModConn <$> (toE (outs <> clkPort <> ins) <> insLit), ModInst i [] ident <$> Hog.shuffle ( zipWith ModConnNamed (view portName <$> outP <> clkPort <> inpFixed) (toE (outs <> clkPort <> ins) <> insLit) ) ] where toE ins = Id . view portName <$> ins (inpFixed, clkPort) = partition filterFunc inP filterFunc (Port _ _ _ n) | n == "clk" = False | otherwise = True process (p, t) r = do params <- view parameters <$> get case t of Reg -> nonblocking %= resizePort params p r Wire -> wires %= resizePort params p r -- | Generates a module instance by also generating a new module if there are -- not enough modules currently in the context. It keeps generating new modules -- for every instance and for every level until either the deepest level is -- achieved, or the maximum number of modules are reached. -- -- If the maximum number of levels are reached, it will always pick an instance -- from the current context. The problem with this approach is that at the end -- there may be many more than the max amount of modules, as the modules are -- always set to empty when entering a new level. This is to fix recursive -- definitions of modules, which are not defined. -- -- One way to fix that is to also decrement the max modules for every level, -- depending on how many modules have already been generated. This would mean -- there would be moments when the module cannot generate a new instance but -- also not take a module from the current context. A fix for that may be to -- have a default definition of a simple module that is used instead. -- -- Another different way to handle this would be to have a probability of taking -- a module from a context or generating a new one. modInst :: StateGen ann (ModItem ann) modInst = do prob <- ask context <- get let maxMods = prob ^. configProperty . propMaxModules if length (context ^. modules) < maxMods then do let currMods = context ^. modules let params = context ^. parameters let w = _wires context let nb = _nonblocking context let b = _blocking context let oos = _outofscope context modules .= [] wires .= [] nonblocking .= [] blocking .= [] outofscope .= [] parameters .= [] modDepth -= 1 chosenMod <- moduleDef Nothing ncont <- get let genMods = ncont ^. modules modDepth += 1 parameters .= params wires .= w nonblocking .= nb blocking .= b outofscope .= oos modules .= chosenMod : currMods <> genMods instantiate chosenMod else Hog.element (context ^. modules) >>= instantiate -- | Generate a random module item. modItem :: StateGen ann (ModItem ann) modItem = do conf <- ask let prob = conf ^. configProbability context <- get let defProb i = prob ^. probModItem . i det <- Hog.frequency [ (conf ^. configProperty . propDeterminism, return True), (conf ^. configProperty . propNonDeterminism, return False) ] determinism .= det Hog.frequency [ (defProb probModItemAssign, ModCA <$> contAssign), (defProb probModItemSeqAlways, alwaysSeq), ( if context ^. modDepth > 0 then defProb probModItemInst else 0, modInst ) ] -- | Either return the 'Identifier' that was passed to it, or generate a new -- 'Identifier' based on the current 'nameCounter'. moduleName :: Maybe Identifier -> StateGen ann Identifier moduleName (Just t) = return t moduleName Nothing = makeIdentifier "module" -- | Generate a random 'ConstExpr' by using the current context of 'Parameters'. constExpr :: StateGen ann ConstExpr constExpr = do prob <- askProbability context <- get Hog.sized $ constExprWithContext (context ^. parameters) (prob ^. probExpr) -- | Generate a random 'Parameter' and assign it to a constant expression which -- it will be initialised to. The assumption is that this constant expression -- should always be able to be evaluated with the current context of parameters. parameter :: StateGen ann Parameter parameter = do ident <- makeIdentifier "param" cexpr <- constExpr let param = Parameter ident cexpr parameters %= (param :) return param -- | Evaluate a range to an integer, and cast it back to a range. evalRange :: [Parameter] -> Int -> Range -> Range evalRange ps n (Range l r) = Range (eval l) (eval r) where eval = ConstNum . cata (evaluateConst ps) . resize n -- | Calculate a range to an int by maybe resizing the ranges to a value. calcRange :: [Parameter] -> Maybe Int -> Range -> Int calcRange ps i (Range l r) = eval l - eval r + 1 where eval a = fromIntegral . cata (evaluateConst ps) $ maybe a (`resize` a) i -- | Filter out a port based on it's name instead of equality of the ports. This -- is because the ports might not be equal if the sizes are being updated. identElem :: Port -> [Port] -> Bool identElem p = elem (p ^. portName) . toListOf (traverse . portName) -- | Select items from a list with a specific frequency, returning the new list -- that contains the selected items. If 0 is passed to both the select and -- not-select parameter, the function will act like the idententy, returning the -- original list inside the 'Gen' monad. -- -- The reason for doing this at the output of a module reduces the number of -- wires that are exposed at the output and therefore allows the synthesis tool -- to perform more optimisations that it could otherwise not perform. The -- synthesis tool is quite strict with optimisations if all the wires and -- registers are exposed. selectwfreq :: (MonadGen m) => Int -> Int -> [a] -> m [a] selectwfreq _ _ [] = return [] selectwfreq s n a@(l : ls) | s > 0 && n > 0 = Hog.frequency [ (s, (l :) <$> selectwfreq s n ls), (n, selectwfreq s n ls) ] | otherwise = return a -- | Generates a module definition randomly. It always has one output port which -- is set to @y@. The size of @y@ is the total combination of all the locally -- defined wires, so that it correctly reflects the internal state of the -- module. moduleDef :: Maybe Identifier -> StateGen ann (ModDecl ann) moduleDef top = do name <- moduleName top portList <- Hog.list (Hog.linear 4 10) $ nextWirePort Nothing mi <- Hog.list (Hog.linear 4 100) modItem ps <- Hog.list (Hog.linear 0 10) parameter context <- get vars <- shareableVariables config <- ask let (newPorts, local) = partition (`identElem` portList) $ vars <> _outofscope context let size = evalRange (_parameters context) 32 . sum $ local ^.. traverse . portSize let (ProbMod n s) = config ^. configProbability . probMod newlocal <- selectwfreq s n local let clock = Port Wire False 1 "clk" let combine = config ^. configProperty . propCombine let yport = if combine then Port Wire False 1 "y" else Port Wire False size "y" let comb = combineAssigns_ combine yport newlocal return . declareMod local . ModDecl name [yport] (clock : newPorts) (comb : mi) $ ps -- | Procedural generation method for random Verilog. Uses internal 'Reader' and -- 'State' to keep track of the current Verilog code structure. procedural :: Text -> Config -> Gen (Verilog ann) procedural top config = do (mainMod, st) <- Hog.resize num $ runStateT (Hog.distributeT (runReaderT (moduleDef (Just $ Identifier top)) config)) context return . Verilog $ mainMod : st ^. modules where context = Context [] [] [] [] [] [] 0 (confProp propStmntDepth) (confProp propModDepth) True Nothing num = fromIntegral $ confProp propSize confProp i = config ^. configProperty . i -- | Samples the 'Gen' directly to generate random 'Verilog' using the 'Text' as -- the name of the main module and the configuration 'Config' to influence the -- generation. proceduralIO :: Text -> Config -> IO (Verilog a) proceduralIO t = Hog.sample . procedural t -- | Given a 'Text' and a 'Config' will generate a '(SourceInfo ann)' which has the -- top module set to the right name. proceduralSrc :: Text -> Config -> Gen (SourceInfo ann) proceduralSrc t c = SourceInfo t <$> procedural t c -- | Sampled and wrapped into a '(SourceInfo ann)' with the given top module name. proceduralSrcIO :: Text -> Config -> IO (SourceInfo ann) proceduralSrcIO t c = SourceInfo t <$> proceduralIO t c