Speech Enhancement by Spectral Noise Subtraction

Yann HERKLOTZ*
Imperial College London

Abstract— The purpose of this project is to achieve
real-time speech enhancement by using spectral subtrac-
tion of the estimated noise spectrum from the original
signal. The noise estimation was performed by finding
the minimum spectrum over a time frame, multiplying it
by a small factor, and subtracting that from the original
spectrum.

I. INTRODUCTION

There are many ways in which noise reduction can
be performed. The implementation that was chosen for
this project can be seen below in Figure 1.

x(n) FFT X(w) Subtract Y(@) [Iverse | Y™
Noise Spectrum FFT
L |N(@)|
Estimate
Noise Spectrum

Fig. 1. A basic implementation of the noise subtraction algorithm

It can be seen in the figure that the input signal
is converted to the frequency domain using the FFT
(Fast Fourier Transform). The noise spectrum is then
estimated, which is further explained below, and then
subtracted from the original spectrum. The output can
then be converted back to the time domain using the
IFFT (Inverse Fourier Transform).

The resulting signal should not be noisy anymore, as
it theoretically should not contain the noise spectrum
anymore, however, in practice, this technique is not
perfect. Spectral subtraction often leaves artifacts and
specific frequencies in the resultant spectrum. When
listening to the output that includes such artifacts,
musical noise can be heard instead of the actual noise.

There are optimisations which were added to the
algorithm that also focuses on reducing the resultant
musical noise, which are described further in Section
1.

* yann.herklotz15 @imperial.ac.uk
** divyansh.manochal5 @imperial.ac.uk

Divyansh MANOCHA**
Imperial College London

II. BASIC IMPLEMENTATION

The speech is converted into its frequency domain
in order to be processed with noise removal techniques
and then converted back into the time domain. The
assumption here is that the noise is additive, but not
necessarily white. It should also be noted that the phase
spectrum of the speech will remain untouched.

As the signal is continuous and the algorithm should
work in real-time, the input is split into frames. With
a non-overlapping frame technique, taking the fourier
transform on a frame will give rise to spectral artefacts.
This would therefore not be a true representation of the
frequencies of the original spectrum.

One way to avoid this is to use windowing, which
reduces the amplitude of the frame to zero at the edges
before FFT is performed. This, however, changes the
signal in the time domain and therefore after perform
IFT, the amplitude will vary unexpectedly.

Overlap add can be used so that the envelope of
the overlapping windows always adds to one. This
eradicates spectral artefacts due to windowing.

The square root of a Hamming window can be used
as the window function, shown in equation 1.

2% + 1
\/1 — 0.85185 cos <(;\;)”> fork=0..N—1

(D

A long frame would result in a better frequency

resolution, but a worse time resolution - and vice versa

for short frames. Since FFT is most efficient when the

length is a power of 2, the length is chosen to be 256

in this case. Thus corresponding to 32 ms at 8 kHz
sampling rate.

A. Algorithm

To develop the noise estimation, it is assumed that
any speech sample does not have talking for more than
10 seconds. At each frequency the minimum power
over the last 10 seconds is taken and stored in a noise
minimum buffer.

1) Initialisation and circular buffer: The size of
the buffer is defined by the FFT length and Frame
increment. This is 256 + % = 320. An input output
pointer is used to traverse through this buffer. Therefore
it must wrap around as follows:

// Wrapping around the circular buffer
if (++io_ptr >= CIRCBUF) io_ptr=0;
frame_ctr++;

The process_frame (void) function is then re-
sponsible for ensuring the rotation is performed at the
right time. The processing of the frame is then done by
converting the spectrum in to time domain.

// Initialising the fft spectrum

for (k = 0; k < FFTLEN; ++k) {
fft_out([k] = cmplx(inframelk], 0.0);

}

// Performing the fft

fft (FFTLEN, fft_future);

2) Estimating the noise spectrum: Since four frames
will be used, every 1) = 2.5s, M;(w) must be trans-
ferred to M;11(w). Subsequently M;(w) = | X (w)].

M (@) = min(|X ()], My (@) @)

IN(w)| = amini=1._4(M;(w)) 3)

The minimum over all M’s needs to be taken, such
that we obtain the minimum over 10 seconds. The
implementation of this is briefly shown in listing II-
A2

for(k =
min_1i

k < FFTLEN; ++k) {

0; // Set the minimum index
to the first element by default

min_val = M[0] [k]; // Set the
minimum value to the first
component

for(i = 1; 1 < NUM_M; ++1i) {
// If a smaller value is found,

replace index

(M[1] [k] < min_val &&

M[i] [k]!l= 0) {

min_val = M[i][k];

0;

if

min_i = i;

}

noisel[k] = M[min_1i] [k];

It was decided best to split this computation into its
own function, for better decomposition.

3) Subtracting the noise spectrum: In the simplest
case, noise spectrum would be subtracted as follows:

Y(w) = X(w) = N(w))

This can, however, be rewritten as shown in equation
5.

V) — X(w) x K@= ING)
[X (w)] (5)
= X(w) X g(w)
This form allows a minimum \ to be set, such that:
[N (w)]
g(w) = maz (1 \X(w)]) (6)
for (k = 0; k < FFTLEN; ++k) {

float g; // Current output for g (w)
// Calculate the magnitude of

N (w) /X (w)
mag_N_X = 1 — noiselk]/X[k];

// Ensure min value is lambda

g = mag_N_X > lambda ? mag_N_X
lambda;

// Rppropriately multiply a float by
a complex number

fft_out[k] = rmul (g, fft_outl[k]);

A simulation in Matlab for this clearly shows the effect
of using g(w). A random signal composed of two
sine waves was generated to represent human speech.
Additive noise was then added to the signal, simulating
the given audio samples.

55 Time domain signal

2 o
ral ‘
15)/ /A LA
\ I\ \
A \ \
1r Al (.
Al | | \
\ 7 / | [
0.5 | \ \ A
\)-‘ \ o | \\/
of A\ Y ‘ [SRAY.S
N/ \‘ .“ |
05 \ | \ :
\ \
1 N v _
15+ \ 1
‘\ / Input Data (noise and signal)
2r | Noise Data]
Signal data
25 . ‘ ‘ .
0 10 20 30 40 50
Fig. 2. A time domain representation of the input signals

g(w) was then calculated using the frequency spec-
trum of the noise and original signal. This will, of
course, be an ideal case in which the noise and signal
are estimated to be exactly correct.

‘ . _ow) ‘ ‘
081 | 8

0.7 Il 1
0.6 1 [B
051 | | q
0.4r | | -
0.3 I | w 4
02 | ! [1

01t J" [[1

20 40 60 80 100 120 140 160
Frequency (Hz)

Fig. 3. A frequency domain representation of g(w)

y(w) = z(w) and y(w) = z(w) x g(w) are then
compared in the frequency domain.

Y(w)
Giw) * X(w)
Xw)

120 | [
[
100 |
[
80 ﬁ [
[[
“ /|\ |
60 I I
H il
I \
40+ [I
| | |
I i
L an I
20 [\ | |
[N |1

0—_\/_\J B E—— T VJJ\L T /\ 77|" ”_k\r - —

20 40 60 80 100 120 140 160 180 200 220

Frequency (Hz)
Fig. 4. A frequency domain representation of y(w) with and

without the g(w)

Clearly it can be observed that the noise spectral
components have been reduced, whilst keeping the
peaks intact. This is what is expected from this en-
hancement. One disadvantage of this technique also

become apparent from the simulation, that the peaks
are not entirely unaffected.

B. Code implementation

An estimation of the spectrum can be taken by
storing the minimum magnitude spectrum. Although
not accurate, it requires significantly less storage and
processing. Therefore it was deemed more efficient to
only store the minimum magnitude spectrum in each
of the 2.5 second windows: M.

float *M[NUM_M];
fft_out = (complex x) calloc (FFTLEN,
sizeof (complex)); /* FFT Output =*/

power_in = (float %) calloc (FFTLEN,
sizeof (float)); /* Output window =*/
lpf = (float %) calloc (FFTLEN,
sizeof (float)); /+ Output window =*/
mag_in = (float %) calloc(FFTLEN,
sizeof (float)); /* Output window =*/
noise = (float %) calloc (FFTLEN,

sizeof (float)); /* Output window =*/

Before the noise is estimated, the spectrum are
written to the M windows. This is defined as a float
*M[NUM_M], since only the magnitude spectrum need
be stored.

unsigned int k;
for(k = 0; k < FFTLEN;
if(X[k] < M[m_ptr][k] ||

== 0) {
M[m_ptr] [k] =

++k) |
M[m_ptr] [k]

X[k];

After subtracting the noise as mentioned in the
previous section, the inverse fast fourier transform was
taken to convert the spectrum back into its time domain.
The real part of the result was set to the outframe.

ifft (FFTLEN, fft_out);

for (k = 0;
outframe[k] =

k < FFTLEN; ++k) {
fft_out[k].r;

III. ENHANCEMENTS

All implementations were attempted, however the
final implementation only included those which had an
audible effect on the audio signals. This ensured the
code was also kept readable.

A. Enhancement 1: Low pass filter of | X (w)]

One main enhancement that significantly improves
the noise estimation and therefore improves the noise
subtraction as well, is low pass filtering the input
signal’s magnitude response.

Low pass filtering removes the high frequency com-
ponents from the signal, which are the quick tran-
sitions in the signal. By removing those, the noise
can be identified more accurately as the signal’s fast
random transitions will be ignored, which means a
more averaged noise is estimated. As the estimated
noise spectrum is a more accurate representation of the
actual noise spectrum, the « value can also be reduced,
as the estimated noise spectrum does not have to be
amplified as much anymore.

The filter used to filter the magnitude response of the
input uses the following formula to estimate the filtered
spectrum.

Pw)=(1—e7) x| X(w)|+e * x P_i(w) (7)

Here the time constant is 7, T is the frame rate.
#define TFRAME FRAMEINC/FSAMP

Where P;_1(w) is the previously estimated low-pass
filtered magnitude response.

Taking the Z-transform, we derive the following
transfer function in an IIR form:

Py(Z) = (1= ") x|Xp(Z)|+e™ = x PH(2)Z7" (8)
1-— exp_%

f
H(Z) = = =)
() 1 —exp Z-1

low_pass_filter (X, 1lpf);

The low pass filter from the equation above can be
directly implemented as follows:

int w; // Current frequency bin
// Loop through the spectrum to perform
the low passfilter operation
for (w = 0; w < FFTLEN; ++w) {
current [w] = (1-K)+*current[w] +
Kxnext [w];
// Performs low pass filtering and
updates the next spectrum
accordingly

next [w] = current[w];

The most appropriate time constant for the speech
signal was decided to be around 40-50. To choose the

appropriate value for the time constant, certain trade
offs had to be made. These are discussed in section
IV-A.

B. Enhancement 2: Power Domain

Algorithms

Using the power domain avoids the use of cabs
for FFT calculations. This is more efficient because it
avoids square rooting FFTLEN times for each frame
process. A slow computation could lead to delays,
which could in-turn be heard as echo.

Implementation in the power domain now means that
the low pass filter operation is actually:

P2(w) = (1—e™7) x| X (w)]*+e7 x P2y (w) (10)
Implementation
To implement this enhancement, the cabs was sim-

ply replaced by the real?+imaginary?®. This is shown
in the code below:

// calculate the power spectrum
for (k = 0; k < FFTLEN; ++k) {
power_in[k] = fft_outl[k].r =
fft_out([k].r + f£ft_out[k].i =
fft_out([k].i

C. Enhancement 3: Low pass filter noise estimation

Algorithms

The noise estimate |N(w)| can be low pass filtered
to avoid abrupt discontinuities when the minimisation
buffers rotate. This will only be noticeable if the noise
level varies greatly.

Implementation

The low pass filter implementation from section III-
A is generic on purpose. Therefore it can be easily used
with noise as follows.

low_pass_filter (noise, next_noise);

D. Enhancement 4 and 5: modifying of g(w)
Algorithms

The minimum value of g(w) is currently set to a
constant: A. This value is arbitrarily chosen, between
0.01 and 0.1. Theoretically, it may be possible to

achieve a better approximation by making the minimum
value dynamic. By depending on the magnitudes of the
signal 1(in the magnitude or power domain) and noise, a
better approximation for the frequency dependent gain
factor can be obtained.

Implementation

The following settings for g(w) were attempted:

maz(\, 1 — ggz;})
i1
maz (A 1 -)
maz(A\pE L=)
maz(\, 1 — ||]}\3[((S))||)

As in figure 3, the same signal spectrum was also
used to derive the value of g(w). The result of this is
shown in figure 6.

Time domain signal

’) Input Data (noise and signal)
A\ \ Noise Data
15 \ |\ Signal data 1
\ [| \
\ [|
\ A | \ |

Fig. 5. A time domain representation of the input signals

g(w) was then calculated using the frequency spec-
trum of the noise and original signal. This will, of
course, be an ideal case in which the noise and signal
are estimated to be exactly correct.

y(w) = z(w) and y(w) = z(w) x g(w) are then
compared in the frequency domain.

Y(w)
Gw) " Xw)
X(w)
120 | }
i
100 | |‘
. "
80 1 \\l
| |
Il |
I “‘
60 - |
| |
[‘
I \
M ‘h
40 I | ‘
n 1
:" [\ ‘
20 /] I (
an .
~ S R .
0 l—J L= Lo onusaaaN\as A N
50 100 150 200 250

Frequency (Hz)

Fig. 6. A frequency domain representation of y(w) with and
without the g(w)

Comparing this to the original g(w) = maxz(A,1 —
||]1\3](:j)) ‘|) in figure 4, it can be observed that the noise was
reduced however more of the smaller spectral compo-
nents were kept. This is expected as the minimum is
now dependent on the signal itself.

It was found that changing the values of g(w) did
not make any audible change to the speech signals. The

original function was therefore restored as: maz(\, 1 —
[N (w)]
X))

The calculation for the function g(w) value was
conducted in the power domain.

[N (w)]?
max(A\ |1 — —5) (11)
[X (w)]?
for (k = 0; k < FFTLEN; ++k) {
float g;

// Calculating [N (w) |/|X(w) |

mag_N_X = sgrt(l -
noise[k]/power_in[k]);

// Setting the maximum of the two

g = mag_N_X > lambda ? mag_N_X
lambda;

// Outputting the value

fft_out[k] = rmul (g, fft_outl[k]);

Fundamentally this is implementing a zero-phase
filter, which has a real and even frequency response.
This is a special case of a linear phase filter with a
zero phase slope.

E. Enhancement 6: Over-estimation

Musical noise is a phenomena in which isolated
peaks are left subsequent to spectral subtraction. These
isolated components form a large difference in mag-
nitude at different frequency bins, which sound like
musical noise.

To attempt to attenuate these, overestimation can
be used to remove the musical noise as well as the
originally detected noise. This is done by increasing
the value of « for frequency bins that have a very low
SNR. The SNR was estimated by dividing the original
signal by the estimated noise, and if that result was
lower than a specific threshold, the alpha value at that
point was increased. By doing this, there is a greater
chance that musical noise will not be left behind after
the spectral subtraction, and the effect of musical noise
will be reduced.

Usually the threshold would be chosen by experi-
mentation, however, this becomes cumbersome as more
thresholds are added to make the over-estimation more
specific, and increasing or decreasing « for different
SNR bands. Instead it was decided to use the average
of the SNR over the current frame and use that to
normalize the SNR. Using the normalized SNR, it can
then be multiplied by the number of different o values
that should be used. Once rounded, this gives an index
to the array of s, and can then be multiplied by the
according a.. As the lower SNR frequency bins are the
most likely to be noise, they should be the ones that
are multiplied by the larger o, whereas frequency bins
with a large SNR value are most likely part of the actual
signal, and should be multiplied by a very low «.

The algorithm can be shown mathematically as fol-
lows.

| X (wi)|?
SNR; = =1L
C N (wi)?
SNR,y = average,;(SNR;) (12)
. SNR; _
noise; < a | ——————| X noise;
2 X SNR g

Implementation

The speech samples did not vary a lot in frequency,
and therefore it was deemed unnecessary to have more
than four values for «, as this was enough to separate
the speech from the noise, and multiply the noise by
higher « values.

The C code that implements the algorithm described
above can be seen below.

int 1i;
float sumj;

// Calcualte
k

for (i = 0; 1 < FFTLEN;
SNR[i] = power_in[i]
sum += SNR[i];

|signal”2/noise”2| for all

++1) {
/ noisel[i];

}

// Calculate average
sum /= FFTLEN;

// Use SNRs to divide

for (i = 0; i < FFTLEN; ++i) {
// Normalising
SNR[i] /= 2xsum;
SNR[i] = SNR[i] > 1 ? 1 SNR[i];
noise[i] == alphal (int) (SNR[1i] =

(NUM_ALPHA-1))];

The highest SNR was achieved with the values:

float alpha[NUM_ALPHA] = {50, 40, 30,
10}. This means that when the noise is in a low SNR
bin, that it will be multiplied with « value 50, whereas
if it is in a high SNR bin, it will be multiplied by o =
10.

It was found that choosing between different «
values is a trade off for different speech signals. The
average SNR was calculated over the duration of the
signal by keeping a global counter, for the SNR and
the number of frames processed.

snr_val = total_snr / counter;

Note the alpha values are squared

Alpha value optimisations with different sound recordings

21
19
17
15 .

phantom4 phantom2 car factory_2 lynx2

Recording
m 100, 100, 50, 10

50,40, 30, 10 10, 10, 10, 10

Fig. 7. Average SNR values for optimising « values

Experimental techniques showed that lower alpha
values were more suitable for phantom 4. It is true
that considering solely the SNR values, the chosen
values for alpha may not be optimal. However other
factors also needed to be considered when judging the
performance of different alpha values, such as crack-
ling. One reason for this may be that filtering increases
the time domain amplitude for certain samples, and if
this exceeds the available range then it clips or wraps
around.

F. Enhancement 7: Frame length

Reducing the frame length from the initial value
of 256 to 128 and 64, made the voice of the sound
clip sound more distorted and rougher. A larger frame
length of 512 samples was also implemented, however,
that made the voice in the sound clip sound slurred.
The chosen values that were tested had to be a power
of two as the FFT algorithm will be applied to it, and it
requires the number of samples to be a power of two.

We ended up using the original frame time of 256
samples, as the other options that were tested reduced
the quality of the output signal. This can be explained
by the fact that experimentally [1], it was found that
a frame length of 25-64 ms resulted in the best re-
construction of a voice signal when only using the
magnitude response. As the magnitude spectrum of the
speech signal was used to estimate and subtract the
noise from the original signal, a more optimal frame
length to estimate this will give a better result.

Contrary to what the project description mentioned,
when decreasing the frame length, the musical noise
did not seem to increase. This can be explained by the
fact that the musical noise was already very low due
to the other enhancements.

The framer length is implemented using a #define
and assigned to the symbol FFTLEN, which can be seen
below. By changing the desired length (keeping it a
power of 2), different frame lengths can be tested.

#define FFTLEN 256

G. Enhancement 8: Residual noise reduction

This enhancement was based on [2], in which a
similar noise reduction method is used. Theoretically,
and according to [2], using residual noise reduction
helps reduce the noise that is left after removing the
mean, which is the musical noise, as described above.

This was implemented as shown below, where
fft_out is the current output, however, it has one

frame delay, as the £ft_future was the output that
was calculated for the current input frame.

(k = 0; k < FFTLEN; ++k) {

// calculate the future output with
the noise

float g;

mag_N_X = sgrt(l -
noisel[k]/power_in[k]);

g = mag_N_X > lambda ? mag_N_X
lambda;

fft_futurelk] = rmul (g,
fft_futurelk]);

for

// output the fft_out calculated in
the previous sample, except if
the SNR is smaller than a
threshold

if (power_in_prev[k]/noise_prev[k] <
threshold) {

// calculate the minimum of all
three signals

fft_out[k] = min(fft_previk],
min (fft_out [k]
fft_futurelk]));

This enhancement, however, did not seem to improve
the quality of the sound output, as the over-estimation
seem to already have gotten rid of most of the musical
noise that was left over after subtracting the mean of
the noise.

H. Enhancement 9: Shorter period

As mentioned in the introduction, the noise estima-
tion is based on finding the minimum over a fixed
amount of time, which will likely be a good estimation
of the noise. Instead of waiting 10 seconds to get this
minimum though, it is much more efficient to calculate
it at 4 different times using a period of 1/4 x 10.
This way, the minimum over these four M;(w) can be
found, and the noise can be estimated much earlier.
However, when starting the program without initially
playing a sound file, the noise is estimated to be A, as
a consequence of Equation 13, as the estimated noise
will be negligible. When starting the noisy sound file,
the algorithm then took 7.5 seconds to start estimating
the actual noise. The reason for this is that for the 7.5
seconds, the minimum for the estimated noise will be
lower than A, and therefore A will be used for this
time, and the algorithm has to wait until the buffer
containing the estimated noise of 0 is reset until it can

start estimating the real noise.

L IR,

g(w) = maz (A, X (o)

(13)

To avoid this problem, a shorter period can be used
when taking the minimum value of each frequency bin
over time, this, however, comes at the cost of signal
quality, as the shorter the period for the minimum
estimation, the more musical noise was left in the
signal. The optimal value that was found for the period,
was 1 seconds instead of 2.5 seconds, which was a good
compromise between signal quality and speed.

Another enhancement that was performed with re-
spect to the minimum, was reduce the amount of buffers
of the minimum M (w) that are stored. The initial
algorithm was storing four past minimums, however,
we decided to reduce this to storing two past minimums
instead, as that doubled the noise estimation rate and
made it much more reactive.

The number of passed minimums and the period
were changed by the following definitions in C.

// Sets the update period

#define FRAME_TIME 1

// Calculate the number that has to be
counted to using a counter in the
interrupt

#define MAX_COUNT (FRAME_TIME = FSAMP)

// defines how many minimums are stored

#define NUM_M 2

IV. OPTIMISATIONS
A. Parameters: Time constant

Consider again the low pass filter:
Puw)=(1—e =) x |X(w)|+e + x Pr_y(w) (14)

Which gives the transfer function for the IIR filter, as
derived earlier:

- Pf(Z) _ 1—e~+ (15)

2 G N e

In order to better observe the effects of the low pass
filtering, a speech signal was modeled along with an
additive noise signal. Matlab’s filter function was used
to model the low pass filter. The code for this is shown
below:

H(Z)

= exp(-T/tau);

= signal + noise;
1-k;

[1 -kl;

OO X A~
Il

y = filter(b, a, x, [1, 2);

The simulations for three different values of time
constants are shown below:

Low pass lIR filter in the time domain

Input Data (noise and signal)
Filtered Data

Noise data

Signal data

Low pass IIR filter for a time constant 10 ms

Low pass IIR filter in the time domain
T T T T

Input Data (noise and signal)
Filtered Data

Noise data

Signal data

Fig. 9. Low pass IIR filter for a time constant 50 ms

Both the signals were simulated in the time domain,
enabling better comparison of the effects on the signal
that will be heard. It can be observed that the lower the
time constant, the closer the signal is to the input signal.
Therefore at a time constant of 10 ms, a lot of noise
is expected as less is filtered out. At a time constant
of 50 ms, peaks are noticeably filtered out and the
signal is therefore expected to have less noise but the
original signal data’s characteristics may be suppressed.

Low pass IR filter in the time domain

Input Data (noise and signal)
Filtered Data

Noise data

Signal data

Fig. 10. Low pass IIR filter for a time constant 80ms

Further suppression is observed at larger values of the
time constant. Therefore a trade off needed to be made,
between the suppression of the signal and the filtering
out of the noise. Practically this was found to be ideal
at 40 ms. This is therefore what will be used in the
final algorithm.

V. FINAL ALGORITHM

The final algorithm only included some of the opti-
misations discussed above, as not all of them improved
the noise reduction, and some even decreased its perfor-
mance. Firstly, the low pass filter in the power domain
was left in, because it dramatically reduced the musical
noise and the alpha values that had to be used. The
low pass filter in the power domain was used, because
it made the calculations in the whole frame processing
loop more efficient, as there only had to be one sgrt
function at the end, when the processed frame is output.
This low-pass filter was also applied to the noise, so
that sudden changes and peaks in the noise did not
affect it significantly and it would be more resistant. As
we already had the signal in the power domain, g(w)
could also be estimated in the power domain efficiently
by using

g(w) = maz(\ /1 — NV ()

xXwpe 19

Overestimation also improved the quality of the out-
put, therefore it was included in the algorithm as well.
Finally, the number of minimums that were stored, as
well as the time used to estimate the minimum, were
reduced to 2 and 1. This degraded the quality of the

noise reduction a bit, as the noise was not estimated
over a large window anymore, however, it improved
the responsiveness of the reduction by quite a lot.

Parameter Optimal values
A 0.05
Time: 40e — 3
Alpha Values: 50,40, 30, 10

These parameters, even though they performed well
on all signals, did perform better on some compared
to others. By trying to optimise the parameters on
phantom4 .wav, by dampening the noise and musical
noise as much as possible, some of the voice ended up
being distorted as well. This meant that, even though
it sounded very good on phantom4.wav, it sounded
a bit more distorted on a simpler noisy signal such
as carl.wav. Another compromise that was made, is
that as we chose a shorter period for the minimum
estimation, signals that had varying noise suffered a
bit more with the shorter period, as it was not possible
to calculate a good average for the noise.

In Figure 11, the spectrogram of the original noisy
signal for the phantom4.wav file can be seen. The
patches in yellow specify the parts in the frequency
that have high power, which is measured over time. It
can be observed that most of the spectrogram is yellow,
which indicates that the signal is very noisy.

Original Noisy Phantom4 Spectrogram

Frequency (kHz}
Power/frequency (dB/Hz)

&
o
o

1 120
130
0 : ; : ;
2 4 6 8
Time (secs)
Fig. 11. phantom4.wav original noisy signal spectrogram

After passing it through the noise reduction, the
output in Figure 12 can be observed. For the first sec-
ond, the algorithm does not have the correct minimum
stored, and is subtracting O from the signal, leaving

the original signal intact. However, after it has found
an estimate for the noise, it subtracts it and reduces the
noise by quite a lot. Finally, the clean signal can be seen
in Figure 13. By comparing the noise reduced output to
the clean signal, it can be seen that the parts where the
voice is are definitely identified, and the noise reduced.

Noise Reduced Phantom4 Spectrogram

-40

Freguency (kHz)
Power/frequency (dB/Hz)

[
i
v -140
L
-
2 4 6 8
Time (secs)

Fig. 12. phantom4.wav spectrogram after it was noise reduced
using our optimised parameters

Clean Signal Spectrogram

Freguency (kHz)

Power/frequency (dB/Hz)

gl

Time (secs)

Fig. 13. Spectrogram of clean signal without any noise

REFERENCES

[1] Vahid Montazeri, Soudeh A. Khoubrouy, Issa M. S. Panahi,
"A perceptually motivated estimator for speech enhancement",
Image and Signal Processing and Analysis (ISPA) 2013 8th
International Symposium on, pp. 366-370, 2013.

[2] Boll,S.E.,"Suppression of Acoustic Noise in Speech using
Spectral Subtraction", IEEE Trans ASSP 27(2):113-120, April
1979.

10

(3]

(4]

(]

Berouti,M. Schwartz,R. & Makhoul,].,"Enhancement of
Speech Corrupted by Acoustic Noise", Proc ICASSP, pp208-
211, 1979.

Lockwoord, P. & Boudy,J.,"Experiments with a Nonlinear
Spectral Subtractor (NSS), Hidden Markov Models and the
projection, for robust speech recognition in cars", Speech
Communication, 11, pp215-228, Elsevier 1992

Martin, R., "Spectral Subtraction Based on Minimum Statis-
tics", Signal Processing VII: Theories and Applications,
pp1182-1185, Holt, M., Cowan, C., Grant, P. and Sandham,
W. (Eds.), 1994

APPENDIX
A. Low Pass filter Simulation Matlab Code

T = 0.008;

tau = 10e-03;

k = exp(-T/tau);
lambda = 0.01;

% Randomly generated signal
%$signal = rand (2, 15);
signal = [0.4923 0.9727 0.8378 0.9542 0.3569 0.2815 0.7111 0.5906 0.0476 0.4513
0.7150 0.2815 0.1378 0.1386 0.3662 ;
0.6947 0.3278 0.7391 0.0319 0.6627 0.2304 0.6246 0.6604 0.3488 0.2409
0.8562 0.7311 0.8367 0.5882 0.8068 1;
$noise = 0.2*rand(2,15);
noise = [0.1860 0.0095 0.1472 0.1090 0.1787 0.0607 0.0391 0.1444 0.1165 0.1845
0.0572 0.1970 0.1678 0.0941 0.0538;
0.0798 0.0685 0.1589 0.1372 0.0110 0.0092 0.1440 0.1756 0.0141 0.1601
0.1087 0.1431 0.0867 0.1121 0.1498];
x = signal + noise;
1-k;
a = [1 -kIl;

o
Il

filter (b, a, x, [1, 2);

=
I

t

O:length(x)-1;

plot(t, x(1, :),’LineWidth’,1.5)

hold on

plot(t,y(l,:),’Linewidth’,1.5)

hold on

plot (t, noise(l,:),’LinewWidth’,0.2)

hold on

plot (t, signal(l,:),’LineWidth’,0.2)

legend (' Input Data (noise and signal)’,’Filtered Data’, ’'Noise data’, ’'Signal data’)
title(’Low pass IIR filter in the time domain’)

B. Zero phase filter Simulation Matlab Code

lamba 0.01;

alpha 20;

t = 0:.001:.25;

X = sin(2xpi*50xt) + sin(2xpix120xt);

signal = x;% + 2+randn(size(t));
noise = 0.2*randn(size(t));

y = signal + noise;

figure;

plot (y(1:50))

hold on

plot (noise (1:50))

hold on

plot (signal (1:50))
legend (' Input Data (noise and signal)’,’Noise Data’, ’'Signal data’)
title (' Time domain signal’)

11

figure;

SIGNAL = fft(signal,251);

NOISE = fft (noise, 251);

G = max (lambda, 1 - abs(alphax*NOISE) ./abs (SIGNAL));
%G = max (lambda*abs (alpha*NOISE)./abs (SIGNAL), 1 - abs(alpha*NOISE)./abs (SIGNAL));
randn (size (t))

Pyy = G.xconj(G)/251;

f = 1000/251%x(0:127);

plot (£,G(1:128))

hold on

plot (£,G(1:128))

title("g(w)’)

xlabel (' Frequency (Hz)”’)

figure;

Y_fft = f£ft(y,251);

Y = Y_fft .x G;

randn (size(t))

f = 1000/251x(0:127);
plot (f,abs (Y (1:128)))
hold on

plot (f,abs(Y_£fft (1:128)))
title ('Y (w)")
xlabel (' Frequency (Hz)’)
legend (G (w) = X(w)',"X(w)”")

C. Spectrogram

o\

o
°
)

°

Creates the spectrogram for the audio files

[song, fs] = audioread(’../audio/best_case/phantomd4.wav’);
song = song(l:£s%10);

figure

spectrogram(song, 256, [1, [], fs, ’'vaxis’);

[song, fs] = audioread(’../audio/original/carl.wav’);
song = song(l:fsx10);

figure

spectrogram(song, 256, [1, [], fs, ’'vyaxis’);

[song, fs] = audioread(’../audio/original/clean.wav’);
song = song(l:fsx10);

figure

spectrogram(song, 256, [1, [], fs, ’'vaxis’);

D. Enhance.c

// library required when using calloc
#include <stdlib.h>

12

// Included so program can make use of DSP/BIOS configuration tool.
#include "dsp_bios_cfg.h"

/+ The file dsk6713.h must be included in every program that uses the BSL. This
example also includes dsk6713_aic23.h because it uses the
AIC23 codec module (audio interface). =/

#include "dsk6713.h"

#include "dsk6713_aic23.h"

// math library (trig functions)
#include <math.h>

/+ Some functions to help with Complex algebra and FFT. x/
#include "cmplx.h"
#include "fft_functions.h"

// Some functions to help with writing/reading the audio ports when using
interrupts.
#include <helper_functions_ISR.h>

#define WINCONST 0.85185 /* 0.46/0.54 for Hamming window x*/
#define FSAMP 8000.0 /* sample frequency, ensure this matches Config for AIC */

#define FFTLEN 256 /+ fft length = frame length 256/8000 = 32 msx/
#define NFREQ (1+FFTLEN/2) /* number of frequency bins from a real FFT x/
#define OVERSAMP 4 /* oversampling ratio (2 or 4) «*/

#define FRAMEINC (FFTLEN/OVERSAMP) /% Frame increment =*/
#define CIRCBUF (FFTLEN+FRAMEINC) /»* length of I/0 buffers x/
#define FRAME_TIME 2

#define MAX_COUNT (FRAME_TIME = FSAMP)

#define MAX_FLOAT 3.4E+38

#define OUTGAIN 16000.0 /% Output gain for DAC «*/

#define INGAIN (1.0/16000.0) /* Input gain for ADC «/
#define NUM_M 2

#define NUM_ALPHA 4

// PI defined here for use in your code

#define PI 3.141592653589793

#define TFRAME FRAMEINC/FSAMP /* time between calculation of each frame */

[xkhkhkhkkhkxhkxhkxhkxkxkxkkkkkxkkxxxx Global declarations

********************************/

/* Audio port configuration settings: these values set registers in the AIC23 audio
interface to configure it. See TI doc SLWS106D 3-3 to 3-10 for more info. */
DSK6713_AIC23_Config Config = { \
/**/
/+ REGISTER FUNCTION SETTINGS */
/**/\
0x0017, /+ 0 LEFTINVOL Left line input channel volume 0dB */\

0x0017, /+ 1 RIGHTINVOL Right line input channel volume 0dB =*/\

0x01f9, /+ 2 LEFTHPVOL Left channel headphone volume 0dB */\

0x01f9, /+ 3 RIGHTHPVOL Right channel headphone volume 0dB */\

0x0011, /* 4 ANAPATH Analog audio path control DAC on, Mic boost 20dB=/\
0x0000, /+ 5 DIGPATH Digital audio path control All Filters off x/\
0x0000, /* 6 DPOWERDOWN Power down control All Hardware on */\

0x0043, /+ 7 DIGIF Digital audio interface format 16 bit */\

13

0x008d, /+ 8 SAMPLERATE Sample rate control 8 KHZ-ensure matches FSAMP */\
0x0001 /+ 9 DIGACT Digital interface activation On */\

/**/

}i

// Codec handle:- a variable used to identify audio interface
DSK6713_AIC23_CodecHandle H_Codec;

float xinbuffer, =*outbuffer; /x Input/output circular buffers =/
float xinframe, xoutframe; /% Input and output frames =/

float xinwin, =outwin; /+ Input and output windows =/
float ingain, outgain; /+ ADC and DAC gains =/

float cpufrac; /* Fraction of CPU time used */
complex *fft_out; /* FFT output =/

float +*noise;
float xpower_in;
float *mag_in;
floatx p_w;

floatx prev_noise;
floatx SNR;

volatile int io_ptr=0; /+ Input/ouput pointer for circular buffers =/
volatile int frame_ptr=0; /% Frame pointer =/

volatile int frame_ctr = 0;

volatile int m_ptr = 0;

float snr_val = 0;

float total_snr = 0;

float lambda = 0.05;

float alpha[NUM_ALPHA] = {50, 40, 30, 10};

float avg = 0;

float sum = 0;

float *M[NUM_M];

float mag_N_X;

float K;

float time_constant = 40e-3; /x Time constant in ms =*/

int started = 0;

Ak A KKK KK KKk Kk Kk kkkkk kA kA kA xxxkk* Function prototypes
*******************************/

void init_hardware (void); /* Initialize codec =*/

void init_HWI (void) ; /+ Initialize hardware interrupts =/

void ISR_AIC (void); /+ Interrupt service routine for codec */

void process_frame (void); /x Frame processing routine */

vold write_spectrum(void);

void get_noise(void);

void low_pass_filter (float* current, floats* next);

void overestimation (void);

[k kkhkhkhkhkhkkkrhkhhkhkhkkrrkkhkhkkkrkxkkxkkxxx Main routine
************************************/

void main ()

{
int k; // used in various for loops
int counter = 1;

/* Initialize and zero fill arrays =*/

inbuffer = (float *) calloc(CIRCBUF, sizeof(float)); /+ Input array =/

14

outbuffer = (float *) calloc(CIRCBUF, sizeof (float)); /+ Output array =/

inframe float) calloc(FFTLEN, sizeof(float)); /+ Array for processingx/
outframe = (float *) calloc(FFTLEN, sizeof(float)); /* Array for processingx/
inwin = (float) calloc(FFTLEN, sizeof(float)); /* Input window =*/
outwin = (float *) calloc(FFTLEN, sizeof (float)); /* Output window =*/

(
(
(
(
fft_out = (complex) calloc(FFTLEN, sizeof (complex)); /* FFT Output =*/
power_in = (float %) calloc(FFTLEN, sizeof (float)); /* Output window =*/

(

(

(

)
p_w = (float *) calloc(FFTLEN, sizeof (float)); /* Output window =*/
mag_in = (float) calloc(FFTLEN, sizeof(float)); /* Output window =/
noise = (float *) calloc(FFTLEN, sizeof (float)); /* Output window =/
prev_noise (float *) calloc(FFTLEN, sizeof (float)); /+ Output window =/
SNR = (float *) calloc(FFTLEN, sizeof (float)); /* Output window =*/
for(k = k < FFTLEN; ++k) {

0;
SNR[k] = 0;
}
/+ initialize board and the audio port =/
init_hardware () ;

/* initialize hardware interrupts =*/
init_HWI();

/+ initialize algorithm constants =/

for (k=0; k<FFTLEN; ++k)

{
inwin[k] = sqgrt ((1.0-WINCONST*cos (PIx (2+«k+1)/FFTLEN))/OVERSAMP) ;
outwin[k] = inwinl[k];

}

ingain=INGAIN;

outgain=0UTGAIN;

for (k = 0; k < NUM_M; ++k) {
M[k] = (float %) calloc(FFTLEN, sizeof(float));

K = exp (-TFRAME/time_constant) ;
/+ main loop, wait for interrupt =/
while (1) {

process_frame () ;

counter++;

snr_val = total_snr / counter;

[xkkkhkkhkkhkkhkxhkxkkkkkkkkkkkkkxxxxxkxx 1nit hardware ()
hkkkkhkkhkkkhkkhkkhkkkkkkkxkkkkkxx/

void init_hardware ()

{
// Initialize the board support library, must be called first
DSK6713_init () ;

// Start the AIC23 codec using the settings defined above in config
H_Codec = DSK6713_AIC23_openCodec (0, &Confiqg);

/+ Function below sets the number of bits in word used by MSBSP (serial port)

15

for

receives from AIC23 (audio port). We are using a 32 bit packet containing two
16 bit numbers hence 32BIT is set for receive */
MCBSP_FSETS (RCR1, RWDLEN1, 32BIT);

/+ Configures interrupt to activate on each consecutive available 32 bits
from Audio port hence an interrupt is generated for each L & R sample pair =*/
MCBSP_FSETS (SPCR1, RINTM, FRM);

/+ These commands do the same thing as above but applied to data transfers to the
audio port =/

MCBSP_FSETS (XCR1, XWDLEN1, 32BIT);

MCBSP_FSETS (SPCR1, XINTM, FRM);

}

[Hhrkkhkxkhkhkkkhkrkkhkhkkkkkkhkkkkkxkkxkkxx 1nit HWI ()
**************************************/

void init_HWI (void)

{
IRQ_globalDisable(); // Globally disables interrupts
IRQ_nmiEnable () ; // Enables the NMI interrupt (used by the debugger)
IRQ_map (IRQ_EVT_RINTI1,4); // Maps an event to a physical interrupt
IRQ_enable (IRQ_EVT_RINT1); // Enables the event
TIRQ_globalEnable(); // Globally enables interrupts

// Spectrum calculations for the new values
void write_spectrum(void) {

unsigned int k;

for(k = 0; k < FFTLEN; ++k) {

if (power_in[k] < M[m_ptr][k] || M[m_ptr][k] == 0) {
M[m_ptr] [k] = power_in[k];
}
}
}
// Noise estimataion
void get_noise(void) {
int k, i, min_i;
float min_val;
for(k = 0; k < FFTLEN; ++k) {
min_i = 0;
min_val = M[O0] [k];
for(i = 1; 1 < NUM_M; ++1) {
if (M[1i][k] < min_val && M[1i][k]'!= 0) {
min_val = M[i] [k];
min_1i = 1i;
}
}
noisel[k] = M[min_i] [k];

overestimation () ;

16

vold overestimation (void) {

int 1i;

sum = 0;

// Calcualte |signal”2/noise”2| for all k

for (i = 0; 1 < FFTLEN; ++1i) {

if (noise[i] != 0) {

SNR[1] = power_in[i] / noisel[i];
sum += SNR[i];

// Calculate average
sum /= FFTLEN;
avg = sum;
total_snr += sum;
// Use SNRs to divide
for (i = 0; i < FFTLEN; ++i) {
// Normalising
SNR[1] /= 2*sum;
SNR[i] = SNR[i] > 1 2 1 : SNR[i];
noise[i] = alphal (int) (SNR[i] % (NUM_ALPHA-1))];

// Low pass filter X (w)
void low_pass_filter (float* current, floats* next) {

int w;

for (w = 0; w < FFTLEN; ++w) {
current [w] = (1-K)+*current[w] + Ksnext[w];
next [w] = current[w];

/% Kk Kk ok Kk ok Kk ok ok k ok ok ko ok ko kK ok kK ok ok ok kK Kk process_frame ()
********‘k‘k********‘k****************/

void process_frame (void)

{
int k, m;
int io_ptr0;
/+ work out fraction of available CPU time used by algorithm =/
cpufrac = ((float) (io_ptr & (FRAMEINC - 1)))/FRAMEINC;

/* wait until io_ptr is at the start of the current frame x/
while ((io_ptr/FRAMEINC) != frame_ptr);

/+ then increment the framecount (wrapping if required) =/
if (++frame_ptr >= (CIRCBUF/FRAMEINC)) frame_ptr=0;

/* save a pointer to the position in the I/0 buffers (inbuffer/outbuffer)

the

17

where

data should be read (inbuffer) and saved (outbuffer) for the purpose of
processing x/
io_ptrO=frame_ptr » FRAMEINC;

/* copy input data from inbuffer into inframe (starting from the pointer
position) */

m=io_ptr0;
for (k=0;k<FFTLEN;k++)
{
inframe([k] = inbuffer[m] * inwin[k];
if (+#+m >= CIRCBUF) m=0; /* wrap if required =/

[xkkxhkkxhkkxkkxkkxkkxkkxxkkx DO PROCESSING OF FRAME HERE

*~k~k~k**********************/

// Initialise the array fft_out for FFT
for (k = 0; k < FFTLEN; ++k) {
fft_out[k] = cmplx(inframelk], 0.0);

// Perform the FFT
fft (FFTLEN, fft_out);
// calculate the power spectrum

for (k = 0; k < FFTLEN; ++k) {
power_in[k] = fft_out[k].r = fft_out[k].r + fft_out[k].i = fft_out[k].i;

low_pass_filter (power_in, p_w);
low_pass_filter (noise, prev_noise);

// Get average of fft_out and write to Spectrum
write_spectrum();

// Set the noise
get_noise();

if (frame_ctr > MAX_COUNT-1) {

int 1i;

frame_ctr = 0;

if(++m_ptr == NUM_M) m_ptr = 0;

for(i = 0; 1 < FFTLEN; ++1i) {
M[m_ptr] [i] = power_in[i];

// max (lambda, |[N(w)/g(w) |
for (k = 0; k < FFTLEN; ++k) {

float g;

mag_N_X = sqrt(l - noisel[k]/power_in[k]);
g = mag_N_X > lambda ? mag_N_X : lambda;
fft_out([k] = rmul (g, fft_outl[kl]);

18

// Back into time domain
ifft (FFTLEN, fft_out);

for (k = 0; k < FFTLEN; ++k) {
outframel[k] = fft_out[k].r;
}

/*****‘k**********‘k******‘k*************‘k******‘k***‘k*******************************/
/* multiply outframe by output window and overlap-add into output buffer =/
m=io_ptr0;

for (k=0;k<(FFTLEN-FRAMEINC) ; k++)

{ /* this loop adds into outbuffer =/
outbuffer[m] = outbuffer[m]+outframel[k]*outwinlk];
if (+#+m >= CIRCBUF) m=0; /* wrap if required =/

for (;k<FFTLEN;k++)
{

outbuffer[m] = outframel[k]*outwin[k]; /+ this loop over—-writes outbuffer =/
m++;

}
[k kkkhkkkhkkkhkkhkkhkkkkkkkkxkkxxx INTERRUPT SERVICE ROUTINE

****k*************************/
// Map this to the appropriate interrupt in the CDB file

void ISR_AIC (void)
{
short sample;
/+ Read and write the ADC and DAC using inbuffer and outbuffer «/
sample = mono_read_16Bit ();
inbuffer[io_ptr] = ((float)sample)*ingain;
/+* write new output data =/
mono_write_16Bit ((int) (outbuffer[io_ptr]x*outgain));

/+ update io_ptr and check for buffer wraparound =*/
if (++io_ptr >= CIRCBUF) io_ptr=0;

frame_ctr++;
started = 1;

/********************k~k***************************~k***k~k*****************************k**k/

19

