Mechanised Semantics for
Gated Static Single Assignment

Yann Herklotz' Delphine Demange® Sandrine Blazy?

CPP'23, 16" January

" Imperial College London

2 IRISA, Inria, CNRS, Univ de Rennes

Overview

@ Refresher on SSA
® Translation from SSA to GSA
€© Proof of SSA to GSA Translation

O Summary

Refresher on SSA

Refresher on SSA

Introduced in late 80's [Alpern et al., 1988]

Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT...

SSA: Variables with unigue definition point

Refresher on SSA

Introduced in late 80's [Alpern et al., 1988]

Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT...

SSA: Variables with unigue definition point

Straight-line code

Definitions: fresh variable, version number
Uses: rename variable, pick right version X := 1 X := 1
SSA

y = x+2 —> y; = X+2

X = y+x Xy 1= Y1¥Xg

Refresher on SSA

Introduced in late 80's [Alpern et al., 1988]

Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT...

SSA: Variables with unigue definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version

Control-flow join points \

Which version should be used? Depends! m = ko+l

Refresher on SSA

Introduced in late 80's [Alpern et al., 1988]

Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT...

SSA: Variables with unigue definition point

Straight-line code
Definitions: fresh variable, version number

Uses: rename variable, pick right version ’k‘ 1= g ‘ ’kz = i‘+2‘
Control-flow join points ’ks 1= ¢k, kz)‘
Which version should be used? Depends! m = k3+1

Dedicated instruction: ks := ¢(k;, k)
Based on control-flow, select right argument

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
¢-instructions already capture def/use dependencies

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
¢-instructions already capture def/use dependencies

SSA weaknesses
Semantics of ¢-instructions depends on control-flow
Non-local semantics of ¢-instructions

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
¢-instructions already capture def/use dependencies

SSA weaknesses
Semantics of ¢-instructions depends on control-flow
Non-local semantics of ¢-instructions

Gated SSA: Use gates to turn control into data-dependencies
Local execution of gates replacing ¢-instructions

Gated SSA: New Instructions

Gated SSA: extends ¢-instructions with gates

—

Simple join points: rq < v((pi, i)
Predicate p; discriminate arguments, local choice

Gated SSA: New Instructions

Gated SSA: extends ¢-instructions with gates
Simple join points: rq < v((pi, i)
Predicate p; discriminate arguments, local choice

Loop-header join point: rg < 1(fo, 1)
Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics

Gated SSA: New Instructions

Gated SSA: extends ¢-instructions with gates
Simple join points: rq < v((pi, i)
Predicate p; discriminate arguments, local choice

Loop-header join point: rg < 1(fo, 1)
Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics

Loop exit point: rq < n(p,rs)
Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

Gated SSA: State of affairs

Numerous variants of Gated SSA
Each come with own notion of dependencies
No formal semantics, partial and informal prose

Gated SSA: State of affairs

Numerous variants of Gated SSA
Each come with own notion of dependencies
No formal semantics, partial and informal prose

Our Contributions
e Describe a specification and control-flow semantics for Gated SSA.
e Focus on the control-flow independent semantics of gates.
e Describe implementation and proof in CompCertSSA.

Translation from SSA to GSA

Gated SSA (GSA): Example Generation

RTL
Control-flow graph for the following program:

int f(int n) {
int x = 1;
for (int i = 1; i1 < n; i++)
if (x <9) x = x + 2;
else if (x > 50) x = x + 1;
else x = 2 * x;

return x;

Gated SSA (GSA): Example Generation
sl

it = ¢(ip, i2)

X1 1= (X0, X5)

SSA
i <9] ¢ Additional nop instructions are inserted to

normalise control-flow graph.
Xo 1= Xy + 2 ‘ x1 > 50 ‘

N\
ex3::x1+1 ‘@ X4 :=2 % Xy ‘
/

\
G Inop ‘q Inop ‘ Inop ‘
.

@i]

e Variable assignments are made unique.

e Existing SSA Generation inserts ¢-instructions.

Gated SSA (GSA): Example Generation

Szl B N
g1
& e GSA
d < <9 : . . .
G e x| e Replace ¢-instructions by u- and ~-instructions,
xe = x +2 [x> 50] then insert n-instructions.
Qe | @x-—2x] * Predicates use normal

N\ /
G Inop ‘q Inop ‘ Inop ‘

x5 :=((x1 < 9, %),
(x1 > 9 A x; > 50,x3),
(x1 > 9Axy <50,x4))

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v, a regular expression P(s, v) which represents the set of all
paths in G from sto v.” — [Tarjan, 1981]

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v, a regular expression P(s, v) which represents the set of all
paths in G from sto v.” — [Tarjan, 1981]

* We translate path expressions to predicates.
e Path expression P(s, v) become predicate Pg .

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v, a regular expression P(s, v) which represents the set of all
paths in G from sto v.” — [Tarjan, 1981]

For every future v node, get a LY Vn
path-expression from the dominator s N v/
to each of its predecessors vy, vy, ..., Vy.

'Y(Ps,w yTT Ps,v,,)

Proof of SSA to GSA
Translation

How do We Verify These Opaque Predicates?

e Path expression algorithm is not formalised.
e Validate predicates in gates after-the-fact.

How do We Verify These Opaque Predicates?

e Path expression algorithm is not formalised.
e Validate predicates in gates after-the-fact.

Main issues
e Reasoning about predicates is global and dynamic.
e Reason about executed and non-executed paths.

How do We Verify These Opaque Predicates?

e Path expression algorithm is not formalised.
e Validate predicates in gates after-the-fact.

Main issues
e Reasoning about predicates is global and dynamic.
e Reason about executed and non-executed paths.

Key intuition
e Build local correctness rules about predicates for every node.
e Use them to build a proof about the evaluation of predicates.
® Key properties: coherence A mutual independence — validity.

Predicate Generation: Example

' P

@

10

Predicate Generation: Example

Ci5 = X1 < 9

g .= 2]

C47 = X1 <9

i22

10

Predicate Generation: Example

Cs5 = X1 < 9

Cs7 = X1 < 9

P4,7 =X1 < 9

10

Predicate Generation: Example

Cs5 = X1 < 9

Cs7 = X1 < 9

P4,7 =X1 < 9

C78 = X1 > 50 Cr10 = X4 > 50

X3 = X1 +1 ‘ @ Xs =2 % Xq ‘
’ P4,8 =x1 >50Ax1 <9 ‘ ’ P4_1‘0 =x3 >50Ax3 <9 ‘

%

10

Predicate Generation: Example

Cs5 = X1 < 9

Cs7 = X1 < 9

P4,7 =X1 < 9

C78 = X1 > 50 C710 = X4 > 50

X3 1= X1 + 1 ‘ @ X4 1= 2 % X4 ‘
Cs 12 = True.‘."..'“’ Psg=x1 >50A x4 <9 ‘ ’ P4_1Q =x1 >50AXx; <9 ‘
.-': Co,12 = True,-"‘"(42'140,12 = True
o =1 +1
P4'12 = True

X5 = P(X2, X3, X))

10

Coherence Property: Example

C415:X1<9 C4,7=X1<9

QP48:X1>50AX1<9\ @P410:x1 >50Ax <9

Cs12 = True
"-_ Cs,12 = True.‘_‘_,.vaJz = True

2

1

Coherence Property: Example

C7,10 = X1 > 50

Psg ‘ @ ‘ P4 10

2Ca12 = TrU€ .gig 1p = True

Cs,12 = True ™.

2

1

Coherence Property: Example

q Psg ‘ @ . P4 10

PsaNCss = Pas

1

Validity Property: Example

g Pl |

q Psg ‘ @ . P4 10

PsaNCis = P
pEmTe e
Invariant: P4 ; | True
12

Using an SMT Solver to Check Properties

Want to prove the following correct
PsaNCss = Pus

13

Using an SMT Solver to Check Properties

Want to prove the following correct
PsaNCss = Pus

Use Three-Valued Logic and SMT Solver show unsat
(P44 A Cs5—y Pas)

Using Three-Valued tukasiewicz Logic:

Syntactic elements in predicates might not be evaluable.

13

Using an SMT Solver to Check Properties

Want to prove the following correct
PsaNCss = Pus

Use Three-Valued Logic and SMT Solver show unsat
(P44 A Cs5—y Pas)

Using Three-Valued tukasiewicz Logic:

Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.

13

Summary

Summary and Future Work

Implementation within CompCertSSA
e Gated SSA: syntax and semantics
e Correct generation of Gated SSA
® Prove global validity of predicates using coherence and mutual independence.

14

Summary and Future Work

Implementation within CompCertSSA
e Gated SSA: syntax and semantics
e Correct generation of Gated SSA
® Prove global validity of predicates using coherence and mutual independence.

Limitations

e Conditions dependent on memory not supported in predicates.
e GSA predicate validation quite slow with validated SMT solver.

14

Summary and Future Work

Implementation within CompCertSSA
e Gated SSA: syntax and semantics
e Correct generation of Gated SSA
® Prove global validity of predicates using coherence and mutual independence.

Limitations
e Conditions dependent on memory not supported in predicates.
e GSA predicate validation quite slow with validated SMT solver.

Future work: Pure data-flow semantics, proof of Tarjan’s SSPE, well-formed GSA.

14

Thank You, Any Questions?

Gated SSA: New Instructions

Gated SSA: extends ¢-instructions with gates

Simple join point 15 (o)

Predicate p, discriminate arguments, local choice

Loop-header join point: I = (1o,)
Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics

Loop exit point: ra = n(p.1s)
Idea: decouple loop-carried variable from end-of-loop usage

Gate p signals when r; has reached a stable value

Predicate Generation: Example

G =Tue Gy = Tue

Artefact

Normalise Loops
single loop entry / latch
exit landing pads

e Join Points
ps at predecessors

RTL <(Renumber CFG }— RTL

GSA Generation GSA Destruction
SSA ﬁposteriori validated GSA ﬂnveriﬁed, tested ot

SSA Generation

Using an SMT Solver to Check Properties

Want to prove the following correct
Piahcis = Pus

Use Ternary Logic and SMT Solver show unsat
(PasCos — Pas)

Using Ternary tukasiewicz Logic:

Syntactic elements in predicates might not be evaluable.

Generate low-level formula for 5\ITCoq and veriT to obtain validated SMT Check

15

https://doi.org/10.1145/3573105.3575681
https://doi.org/10.5281/zenodo.6009632

Semantics of Gated SSA

Eta

i=rg<n(qr) rsEpqll byFrsSrs

Li s by F rs % rs'[rg > rs(r)]
Merge Merge,
i=rq<+~((q,r)) rstpgn i1

f:fd<—u(fo,f1) k€{0,1}
b, k- rs 2 rs’

b,k Frs 2 rs’

i b, ks rs'[ry — rs(r)] i b, ks rs'[ry — rs(rk)]

NJoin Join

fI() = [Inop()| FY I fI(l) = [tnop(/)] fY [
FE() - rs S rs FM(I) = lbm] FE() s rs

preds(k =1 b, ktrs' % rs”

FS(f,1,rs) — S(f,I',rs")

FS(f,1,rs) — S(f,I',rs")

References i

@ Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988).
Detecting equality of variables in programs.
In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL '88, page 1-11, New York, NY, USA. Association for Computing Machinery.

[§ Arenaz, M., Amoedo, P., and Tourifio, J. (2008).
Efficiently building the gated single assignhment form in codes with pointers in modern
optimizing compilers.
In Luque, E., Margalef, T., and Benitez, D., editors, Euro-Par 2008 - Parallel Processing, pages 360-369,
Berlin, Heidelberg. Springer Berlin Heidelberg.

@ Derrien, S., Marty, T., Rokicki, S., and Yuki, T. (2020).
Toward speculative loop pipelining for high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):4229-4239.

References ii

[§ Haviak, P. (1994).
Construction of thinned gated single-assignment form.
In Banerjee, U., Gelernter, D., Nicolau, A., and Padua, D., editors, Languages and Compilers for Parallel
Computing, pages 477-499, Berlin, Heidelberg. Springer Berlin Heidelberg.

@ Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990).
The program dependence web: A representation supporting control-, data-, and demand-driven
interpretation of imperative languages.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI'90, page 257-271, New York, NY, USA. Association for Computing Machinery.

@ Sampaio, D., Martins, R., Collange, C., and Pereira, F. M. Q. (2012).
Divergence analysis with affine constraints.
In 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing,
pages 67-74.

[3 Tarjan, R E. (1981).
Fast algorithms for solving path problems.
J. ACM, 28(3):594-614.

References i

@ Tristan, J.-B., Govereau, P., and Morrisett, G. (2011).
Evaluating value-graph translation validation for LLVM.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 11, page 295-305, New York, NY, USA. Association for Computing Machinery.
[§ Tu, P.and Padua, D. (1995).
Gated ssa-based demand-driven symbolic analysis for parallelizing compilers.

In Proceedings of the 9th International Conference on Supercomputing, |CS '95, page 414-423, New York,
NY, USA. Association for Computing Machinery.

	Refresher on SSA
	Translation from SSA to GSA
	Proof of SSA to GSA Translation
	Summary
	Appendix

