
Mechanised Semantics for
Gated Static Single Assignment

Yann Herklotz1 Delphine Demange2 Sandrine Blazy2

CPP’23, 16th January

1 Imperial College London
2 IRISA, Inria, CNRS, Univ de Rennes

1

Overview

1 Refresher on SSA

2 Translation from SSA to GSA

3 Proof of SSA to GSA Translation

4 Summary

2

Refresher on SSA

Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

3

Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version

Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

x := 1

y := x+2

x := y+x

x1 := 1

y1 := x1+2

x2 := y1+x1

SSA

3

Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!

Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

k1 := i1+1 k2 := i1+2

m1 := k?+1

3

Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

k1 := i1+1 k2 := i1+2

m1 := k3+1

k3 := φ(k1, k2)

3

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
φ-instructions already capture def/use dependencies

SSA weaknesses
Semantics of φ-instructions depends on control-flow
Non-local semantics of φ-instructions

Gated SSA: Use gates to turn control into data-dependencies
Local execution of gates replacing φ-instructions

4

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
φ-instructions already capture def/use dependencies

SSA weaknesses
Semantics of φ-instructions depends on control-flow
Non-local semantics of φ-instructions

Gated SSA: Use gates to turn control into data-dependencies
Local execution of gates replacing φ-instructions

4

Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
φ-instructions already capture def/use dependencies

SSA weaknesses
Semantics of φ-instructions depends on control-flow
Non-local semantics of φ-instructions

Gated SSA: Use gates to turn control into data-dependencies
Local execution of gates replacing φ-instructions

4

Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Predicate pi discriminate arguments, local choice

Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Predicate pi discriminate arguments, local choice
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics

Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Predicate pi discriminate arguments, local choice
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA: State of affairs

Numerous variants of Gated SSA
Each come with own notion of dependencies
No formal semantics, partial and informal prose

Our Contributions
• Describe a specification and control-flow semantics for Gated SSA.
• Focus on the control-flow independent semantics of gates.
• Describe implementation and proof in CompCertSSA.

6

Gated SSA: State of affairs

Numerous variants of Gated SSA
Each come with own notion of dependencies
No formal semantics, partial and informal prose

Our Contributions
• Describe a specification and control-flow semantics for Gated SSA.
• Focus on the control-flow independent semantics of gates.
• Describe implementation and proof in CompCertSSA.

6

Translation from SSA to GSA

Gated SSA (GSA): Example Generation
x := 10

i := 11

i < n3

x < 94

x := x + 25 x > 507

x := x + 18 x := 2 ∗ x10

i := i + 112

return x15

RTL
Control-flow graph for the following program:
int f(int n) {

int x = 1;

for (int i = 1; i < n; i++)

if (x < 9) x = x + 2;

else if (x > 50) x = x + 1;

else x = 2 * x;

return x;

}

7

Gated SSA (GSA): Example Generation
x0 := 10

i0 := 11

Inop2

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

Inop6 Inop9 Inop11

i2 := i1 + 112

Inop13

Inop14

return x115

i1 := φ(i0, i2)
x1 := φ(x0, x5)

x5 := φ(x2, x3, x4)

SSA
• Additional nop instructions are inserted to

normalise control-flow graph.
• Variable assignments are made unique.
• Existing SSA Generation inserts φ-instructions.

7

Gated SSA (GSA): Example Generation
x0 := 10

i0 := 11

Inop2

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

Inop6 Inop9 Inop11

i2 := i1 + 112

Inop13

Inop14

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)

GSA
• Replace φ-instructions by µ- and γ-instructions,

then insert η-instructions.
• Predicates use normal syntactic elements.

7

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

8

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

• We translate path expressions to predicates.
• Path expression P(s, v) become predicate Ps,v .

8

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

For every future γ node, get a
path-expression from the dominator s
to each of its predecessors v1, v2, ..., vn.

s

· · ·v1 vn

γ(Ps,v1 , · · · ,Ps,vn)

8

Proof of SSA to GSA
Translation

How do We Verify These Opaque Predicates?

• Path expression algorithm is not formalised.
• Validate predicates in gates after-the-fact.

Main issues
• Reasoning about predicates is global and dynamic.
• Reason about executed and non-executed paths.

Key intuition
• Build local correctness rules about predicates for every node.
• Use them to build a proof about the evaluation of predicates.
• Key properties: coherence ∧mutual independence =⇒ validity.

9

How do We Verify These Opaque Predicates?

• Path expression algorithm is not formalised.
• Validate predicates in gates after-the-fact.

Main issues
• Reasoning about predicates is global and dynamic.
• Reason about executed and non-executed paths.

Key intuition
• Build local correctness rules about predicates for every node.
• Use them to build a proof about the evaluation of predicates.
• Key properties: coherence ∧mutual independence =⇒ validity.

9

How do We Verify These Opaque Predicates?

• Path expression algorithm is not formalised.
• Validate predicates in gates after-the-fact.

Main issues
• Reasoning about predicates is global and dynamic.
• Reason about executed and non-executed paths.

Key intuition
• Build local correctness rules about predicates for every node.
• Use them to build a proof about the evaluation of predicates.
• Key properties: coherence ∧mutual independence =⇒ validity.

9

Predicate Generation: Example
x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x5 := φ(x2, x3, x4)

10

Predicate Generation: Example

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x1 < 94

P4,4 = True

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

10

Predicate Generation: Example

x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

10

Predicate Generation: Example

i2 := i1 + 112

x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

10

Predicate Generation: Example
x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

i2 := i1 + 112

P4,12 = True
x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

10

Coherence Property: Example
P4,4 = True4

P4,5 = x1 < 95 P4,7 = x1 < 97

P4,8 = x1 > 50 ∧ x1 < 98 P4,10 = x1 > 50 ∧ x1 < 910

P4,12 = True12

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

P4,4 ∧ c4,5 =⇒ P4,5

11

Coherence Property: Example
P4,44

P4,55 P4,77

P4,88 P4,1010

P4,1212

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

P4,4 ∧ c4,5 =⇒ P4,5

11

Coherence Property: Example
P4,44

P4,55 P4,77

P4,88 P4,1010

P4,1212

c4,5 = x1 < 9

x5 := φ(x2, x3, x4)
P4,4 ∧ c4,5 =⇒ P4,5

11

Validity Property: Example
P4,4 ⇓ True4

P4,5 ⇓ True5 P4,77

P4,88 P4,1010

P4,1212

c4,5 ⇓ True

x5 := φ(x2, x3, x4)
P4,4 ∧ c4,5 =⇒ P4,5

Invariant: P4,i ⇓ True
12

Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Three-Valued Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Three-Valued Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.

13

Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Three-Valued Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Three-Valued Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.

13

Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Three-Valued Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Three-Valued Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.

13

Summary

Summary and Future Work

Implementation within CompCertSSA
• Gated SSA: syntax and semantics
• Correct generation of Gated SSA
• Prove global validity of predicates using coherence and mutual independence.

Limitations
• Conditions dependent on memory not supported in predicates.
• GSA predicate validation quite slow with validated SMT solver.

Future work: Pure data-flow semantics, proof of Tarjan’s SSPE, well-formed GSA.

14

Summary and Future Work

Implementation within CompCertSSA
• Gated SSA: syntax and semantics
• Correct generation of Gated SSA
• Prove global validity of predicates using coherence and mutual independence.

Limitations
• Conditions dependent on memory not supported in predicates.
• GSA predicate validation quite slow with validated SMT solver.

Future work: Pure data-flow semantics, proof of Tarjan’s SSPE, well-formed GSA.

14

Summary and Future Work

Implementation within CompCertSSA
• Gated SSA: syntax and semantics
• Correct generation of Gated SSA
• Prove global validity of predicates using coherence and mutual independence.

Limitations
• Conditions dependent on memory not supported in predicates.
• GSA predicate validation quite slow with validated SMT solver.

Future work: Pure data-flow semantics, proof of Tarjan’s SSPE, well-formed GSA.

14

Thank You, Any Questions?

Paper

Artefact

Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Predicate pi discriminate arguments, local choice
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Predicate Generation: Example
x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

i2 := i1 + 112

P4,12 = True
x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

10

RTL
Normalise Loops

single loop entry / latch
exit landing pads RTL

Normalise Join Points
add no-ops at predecessors

RTLRenumber CFGRTLSSA Generation

SSA
GSA Generation

a posteriori validated GSA
GSA Destruction
unverified, tested SSA

Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Ternary Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Ternary Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.

13

15

https://doi.org/10.1145/3573105.3575681
https://doi.org/10.5281/zenodo.6009632

Semantics of Gated SSA
Eta
i = rd ← η(q, r) rs |=p q ⇓ 1 bη ` rs E

 rs′

bi :: bηc ` rs E
 rs′[rd 7→ rs(r)]

Mergeγ
i = rd ← γ(

»

(q, r)) rs |=p qn ⇓ 1

bM, k ` rs M
 rs′

i :: bM, k ` rs M
 rs′[rd 7→ rs(rn)]

Mergeµ
i = rd ← µ(r0, r1) k ∈ {0, 1}

bM, k ` rs M
 rs′

i :: bM, k ` rs M
 rs′[rd 7→ rs(rk)]

NJoin
f .I(l) = bInop(l ′)c f /g l ′

f .E(l) ` rs E
 rs′

` S(f , l , rs)→ S(f , l ′, rs′)

Join
f .I(l) = bInop(l ′)c f g l ′

f .M(l ′) = bbMc f .E(l) ` rs E
 rs′

preds(l ′)k = l bM, k ` rs′ M
 rs′′

` S(f , l , rs)→ S(f , l ′, rs′′)

References i

Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988).Detecting equality of variables in programs.
In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’88, page 1–11, New York, NY, USA. Association for Computing Machinery.
Arenaz, M., Amoedo, P., and Touriño, J. (2008).Efficiently building the gated single assignment form in codes with pointers in modernoptimizing compilers.
In Luque, E., Margalef, T., and Beńıtez, D., editors, Euro-Par 2008 – Parallel Processing, pages 360–369,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Derrien, S., Marty, T., Rokicki, S., and Yuki, T. (2020).Toward speculative loop pipelining for high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):4229–4239.

References ii
Havlak, P. (1994).Construction of thinned gated single-assignment form.
In Banerjee, U., Gelernter, D., Nicolau, A., and Padua, D., editors, Languages and Compilers for Parallel
Computing, pages 477–499, Berlin, Heidelberg. Springer Berlin Heidelberg.
Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990).The program dependence web: A representation supporting control-, data-, and demand-driveninterpretation of imperative languages.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, page 257–271, New York, NY, USA. Association for Computing Machinery.
Sampaio, D., Martins, R., Collange, C., and Pereira, F. M. Q. (2012).Divergence analysis with affine constraints.
In 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing,
pages 67–74.
Tarjan, R. E. (1981).Fast algorithms for solving path problems.
J. ACM, 28(3):594–614.

References iii

Tristan, J.-B., Govereau, P., and Morrisett, G. (2011).Evaluating value-graph translation validation for LLVM.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, page 295–305, New York, NY, USA. Association for Computing Machinery.
Tu, P. and Padua, D. (1995).Gated ssa-based demand-driven symbolic analysis for parallelizing compilers.
In Proceedings of the 9th International Conference on Supercomputing, ICS ’95, page 414–423, New York,
NY, USA. Association for Computing Machinery.

	Refresher on SSA
	Translation from SSA to GSA
	Proof of SSA to GSA Translation
	Summary
	Appendix

