
Mechanised Semantics for
Gated Static Single Assignment

Yann Herklotz1 Delphine Demange2 Sandrine Blazy2

CPP’23, 16th January

1 Imperial College London
2 IRISA, Inria, CNRS, Univ de Rennes

1



Overview

1 Refresher on SSA

2 Translation from SSA to GSA

3 Proof of SSA to GSA Translation

4 Summary

2



Refresher on SSA



Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument
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Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version

Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

x := 1

y := x+2

x := y+x

x1 := 1

y1 := x1+2

x2 := y1+x1

SSA
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Refresher on SSA
Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction: k3 := φ(k1, k2)Based on control-flow, select right argument

k1 := i1+1 k2 := i1+2

m1 := k3+1

k3 := φ(k1, k2)
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Benefits and Shortcomings of SSA

SSA strengths
CFG-based representation: simple operational semantics
φ-instructions already capture def/use dependencies

SSA weaknesses
Semantics of φ-instructions depends on control-flow
Non-local semantics of φ-instructions

Gated SSA: Use gates to turn control into data-dependencies
Local execution of gates replacing φ-instructions
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Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

#          »

(pi , ri))Predicate pi discriminate arguments, local choice

Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value
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Gated SSA: State of affairs

Numerous variants of Gated SSA
Each come with own notion of dependencies
No formal semantics, partial and informal prose

Our Contributions
• Describe a specification and control-flow semantics for Gated SSA.
• Focus on the control-flow independent semantics of gates.
• Describe implementation and proof in CompCertSSA.
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Translation from SSA to GSA



Gated SSA (GSA): Example Generation
x := 10

i := 11

i < n3

x < 94

x := x + 25 x > 507

x := x + 18 x := 2 ∗ x10

i := i + 112

return x15

RTL
Control-flow graph for the following program:
int f(int n) {

int x = 1;

for (int i = 1; i < n; i++)

if (x < 9) x = x + 2;

else if (x > 50) x = x + 1;

else x = 2 * x;

return x;

}
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Gated SSA (GSA): Example Generation
x0 := 10

i0 := 11

Inop2

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

Inop6 Inop9 Inop11

i2 := i1 + 112

Inop13

Inop14

return x115

i1 := φ(i0, i2)
x1 := φ(x0, x5)

x5 := φ(x2, x3, x4)

SSA
• Additional nop instructions are inserted to

normalise control-flow graph.
• Variable assignments are made unique.
• Existing SSA Generation inserts φ-instructions.
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Gated SSA (GSA): Example Generation
x0 := 10

i0 := 11

Inop2

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

Inop6 Inop9 Inop11

i2 := i1 + 112

Inop13

Inop14

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)

GSA
• Replace φ-instructions by µ- and γ-instructions,

then insert η-instructions.
• Predicates use normal syntactic elements.

7



Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]
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Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

• We translate path expressions to predicates.
• Path expression P(s, v) become predicate Ps,v .
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Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

For every future γ node, get a
path-expression from the dominator s
to each of its predecessors v1, v2, ..., vn.

s

· · ·v1 vn

γ(Ps,v1 , · · · ,Ps,vn)
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Proof of SSA to GSA
Translation



How do We Verify These Opaque Predicates?

• Path expression algorithm is not formalised.
• Validate predicates in gates after-the-fact.

Main issues
• Reasoning about predicates is global and dynamic.
• Reason about executed and non-executed paths.

Key intuition
• Build local correctness rules about predicates for every node.
• Use them to build a proof about the evaluation of predicates.
• Key properties: coherence ∧mutual independence =⇒ validity.
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Predicate Generation: Example
x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x5 := φ(x2, x3, x4)
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Predicate Generation: Example

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x1 < 94

P4,4 = True

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9
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x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9
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Predicate Generation: Example

i2 := i1 + 112

x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50
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Predicate Generation: Example
x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

i2 := i1 + 112

P4,12 = True
x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True
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Coherence Property: Example
P4,4 = True4

P4,5 = x1 < 95 P4,7 = x1 < 97

P4,8 = x1 > 50 ∧ x1 < 98 P4,10 = x1 > 50 ∧ x1 < 910

P4,12 = True12

x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

P4,4 ∧ c4,5 =⇒ P4,5
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P4,88 P4,1010

P4,1212

x5 := φ(x2, x3, x4)
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Coherence Property: Example
P4,44

P4,55 P4,77

P4,88 P4,1010

P4,1212

c4,5 = x1 < 9

x5 := φ(x2, x3, x4)
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Validity Property: Example
P4,4 ⇓ True4

P4,5 ⇓ True5 P4,77

P4,88 P4,1010

P4,1212

c4,5 ⇓ True

x5 := φ(x2, x3, x4)
P4,4 ∧ c4,5 =⇒ P4,5

Invariant: P4,i ⇓ True
12



Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Three-Valued Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Three-Valued Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.
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Summary and Future Work

Implementation within CompCertSSA
• Gated SSA: syntax and semantics
• Correct generation of Gated SSA
• Prove global validity of predicates using coherence and mutual independence.

Limitations
• Conditions dependent on memory not supported in predicates.
• GSA predicate validation quite slow with validated SMT solver.

Future work: Pure data-flow semantics, proof of Tarjan’s SSPE, well-formed GSA.
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Thank You, Any Questions?

Paper

Artefact

Gated SSA: New Instructions

Gated SSA: extends φ-instructions with gates
Simple join points: rd ← γ(

#          »

(pi , ri))Predicate pi discriminate arguments, local choice
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate predicate for iterations
Introduce a special node, with built-in looping semantics
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Predicate Generation: Example
x1 < 94

P4,4 = True

x2 := x1 + 25

P4,5 = x1 < 9
x1 > 507

P4,7 = x1 < 9

x3 := x1 + 18

P4,8 = x1 > 50 ∧ x1 < 9
x4 := 2 ∗ x110

P4,10 = x1 > 50 ∧ x1 < 9

i2 := i1 + 112

P4,12 = True
x5 := φ(x2, x3, x4)

c4,5 = x1 < 9 c4,7 = x1 < 9

c7,8 = x1 > 50 c7,10 = x1 > 50

c5,12 = True

c8,12 = True c10,12 = True

10

RTL
Normalise Loops

single loop entry / latch
exit landing pads RTL

Normalise Join Points
add no-ops at predecessors

RTLRenumber CFGRTLSSA Generation

SSA
GSA Generation

a posteriori validated GSA
GSA Destruction
unverified, tested SSA

Using an SMT Solver to Check Properties
Want to prove the following correct

P4,4 ∧ c4,5 =⇒ P4,5

Use Ternary Logic and SMT Solver show unsat
¬(P4,4 ∧ c4,5 →Ł P4,5)

Using Ternary Łukasiewicz Logic:
Syntactic elements in predicates might not be evaluable.

Generate low-level formula for SMTCoq and veriT to obtain validated SMT Check.
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Semantics of Gated SSA
Eta
i = rd ← η(q, r) rs |=p q ⇓ 1 bη ` rs E

 rs′

bi :: bηc ` rs E
 rs′[rd 7→ rs(r)]

Mergeγ
i = rd ← γ(

#        »

(q, r)) rs |=p qn ⇓ 1

bM, k ` rs M
 rs′

i :: bM, k ` rs M
 rs′[rd 7→ rs(rn)]

Mergeµ
i = rd ← µ(r0, r1) k ∈ {0, 1}

bM, k ` rs M
 rs′

i :: bM, k ` rs M
 rs′[rd 7→ rs(rk )]

NJoin
f .I(l) = bInop(l ′)c f /g l ′

f .E(l) ` rs E
 rs′

` S(f , l , rs)→ S(f , l ′, rs′)

Join
f .I(l) = bInop(l ′)c f g l ′

f .M(l ′) = bbMc f .E(l) ` rs E
 rs′

preds(l ′)k = l bM, k ` rs′ M
 rs′′

` S(f , l , rs)→ S(f , l ′, rs′′)
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