
Fuzzing High-Level Synthesis Tools
Zewei Du

Imperial College London, UK
Email: zewei.du19@imperial.ac.uk

Yann Herklotz
Imperial College London, UK

Email: yann.herklotz15@imperial.ac.uk

Nadesh Ramanathan
Imperial College London, UK

Email: n.ramanathan14@imperial.ac.uk

John Wickerson
Imperial College London, UK

Email: j.wickerson@imperial.ac.uk

Abstract—High-level synthesis (HLS) is becoming an increas-
ingly important part of the computing landscape, even in safety-
critical domains where correctness is key. As such, HLS tools are
increasingly relied upon. In this paper, we investigate whether
they are trustworthy.

We have subjected three widely used HLS tools – LegUp,
Xilinx Vivado HLS, and the Intel HLS Compiler – to a rigorous
fuzzing campaign using thousands of random, valid C programs
that we generated using a modified version of the Csmith tool. For
each C program, we compiled it to a hardware design using the
HLS tool under test and checked whether that hardware design
generates the same output as an executable generated by the
GCC compiler. When discrepancies arose between GCC and the
HLS tool under test, we reduced the C program to a minimal
example in order to zero in on the potential bug. Our testing
campaign has revealed that all three HLS tools can be made
either to crash or to generate wrong code when given valid C
programs, and thereby underlines the need for these increasingly
trusted tools to be more rigorously engineered. Out of 6700 test
cases, we found 272 programs that failed in at least one tool, out
of which we were able to identify at least 6 unique bugs.

I. INTRODUCTION

High-level synthesis (HLS), which refers to the automatic
translation of software into hardware, is becoming an increas-
ingly important part of the computing landscape. It promises
to increase the productivity of hardware engineers by raising
the abstraction level of their designs, and it promises software
engineers the ability to produce application-specific hardware
accelerators without having to understand hardware desciption
languages (HDL) such as Verilog and VHDL. It is even being
used in high-assurance settings, such as financial services [1],
control systems [2], and real-time object detection [3]. As
such, HLS tools are increasingly relied upon. In this paper,
we investigate whether they are trustworthy.

The approach we take in this paper is fuzzing. This is
an automated testing method in which randomly generated
programs are given to compilers to test their robustness [4],
[5], [6], [7], [8], [9]. The generated programs are typically
large and rather complex, and they often combine language
features in ways that are legal but counter-intuitive; hence they
can be effective at exercising corner cases missed by human-
designed test suites. Fuzzing has been used extensively to test
conventional compilers; for example, Yang et al. [8] used it
to reveal more than three hundred bugs in GCC and Clang .
In this paper, we bring fuzzing to the HLS context.

1 unsigned int b = 0x1194D7FF;
2 int a[6] = {1, 1, 1, 1, 1, 1};
3

4 int main() {
5 for (int c = 0; c < 2; c++)
6 b = b >> a[c];
7 return b;
8 }

Figure 1. Miscompilation bug found in Xilinx Vivado HLS v2018.3, v2019.1
and v2019.2. The program returns 0x006535FF but the correct result is
0x046535FF.

An example of a compiler bug found by fuzzing

Figure 1 shows a program that produces the wrong result
during RTL simulation in Xilinx Vivado HLS.1 The bug was
initially revealed by a randomly generated program of around
113 lines, which we were able to reduce to the minimal
example shown in the figure. The program repeatedly shifts
a large integer value b right by the values stored in array a.
Vivado HLS returns 0x006535FF, but the result returned by
GCC (and subsequently confirmed manually to be the correct
one) is 0x046535FF.

The circumstances in which we found this bug illustrate
some of the challenges in testing HLS tools. For instance,
without the for-loop, the bug goes away. Moreover, the bug
only appears if the shift values are accessed from an array. And
– particularly curiously – even though the for-loop only has
two iterations, the array a must have at least six elements; if
it has fewer than six, the bug disappears. Even the seemingly
random value of b could not be changed without masking
the bug. It seems unlikely that a manually generated test
program would bring together all of the components necessary
for exposing this bug. In contrast, producing counter-intuitive,
complex but valid C programs is the cornerstone of fuzzing
tools. For this reason, we find it natural to adopt fuzzing for
our HLS testing campaign.

1This program, like all the others in this paper, includes a main function,
which means that it compiles straightforwardly with GCC. To compile it with
an HLS tool, we rename main to main_, synthesise that function, and then
add a new main function as a testbench that calls main_.

Our contribution
This paper reports on our campaign to test HLS tools by

fuzzing.
• We use Csmith [8] to generate thousands of valid C

programs from within the subset of the C language that is
supported by all the HLS tools we test. We also augment
each program with a random selection of HLS-specific
directives.

• We give these programs to three widely used HLS tools:
Xilinx Vivado HLS [10], LegUp HLS [11] and the Intel
HLS Compiler, which is also known as i++ [12]. When
we find a program that causes an HLS tool to crash, or to
generate hardware that produces a different result from
GCC, we reduce it to a minimal example with the help
of the C-Reduce tool [13].

• Our testing campaign revealed that all three tools could
be made to crash while compiling or to generate wrong
RTL. In total, 6700 test cases were run through each tool
out of which 272 test cases failed in at least one of the
tools. Test case reduction was then performed on some of
these failing test cases to obtain at least 6 unique failing
test cases.

• To investigate whether HLS tools are getting more or
less reliable over time, we also tested three different
versions of Vivado HLS (v2018.3, v2019.1, and v2019.2).
We found that in general there about half as many
failures in versions v2019.1 and v2019.2 compared to
v2018.3. However, there were also test-cases that only
failed in versions v2019.1 and v2019.2, meaning bugs
were probably introduced due to the addition of new
features.

The overall aim of our paper is to raise awareness about the
(un)reliability of current HLS tools, and to serve as a call-to-
arms for investment in better-engineered tools. We hope that
future work on developing more reliable HLS tools will find
our empirical study a valuable source of motivation.

II. RELATED WORK

The only other work of which we are aware on fuzzing HLS
tools is that by Lidbury et al. [9], who tested several OpenCL
compilers, including an HLS compiler from Altera (now Intel).
They were only able to subject that compiler to superficial
testing because so many of the test-cases they generated led
to it crashing. In comparison to our work: where Lidbury et
al. generated target-independent OpenCL programs that could
be used to test HLS tools and conventional compilers alike,
we specifically generate programs that are tailored for HLS
(e.g. with HLS-specific pragmas) with the aim of testing the
HLS tools more deeply. Another difference is that where
we test using sequential C programs, they test using highly
concurrent OpenCL programs, and thus have to go to great
lengths to ensure that any discrepancies observed between
compilers cannot be attributed to the inherent nondeterminism
of concurrency.

Other stages of the FPGA toolchain have been subjected
to fuzzing. Herklotz et al. [14] tested several FPGA synthesis

tools using randomly generated Verilog programs. Where they
concentrated on the RTL-to-netlist stage of hardware design,
we focus our attention on the earlier C-to-RTL stage.

Several authors have taken steps toward more rigorously
engineered HLS tools that may be more resilient to testing
campaigns such as ours.

• The Handel-C compiler by Perna and Woodcock [15]
has been mechanically proven correct, at least in part,
using the HOL theorem prover. However, the tool does
not support C as input directly, so is not amenable to
fuzzing.

• Ramanathan et al. [16] proved their implementation of
C atomic operations in LegUp correct up to a bound
using model checking. However, our testing campaign
is not applicable to their implementation because we do
not generate concurrent C programs.

• In the SPARK HLS tool [17], some compiler passes, such
as scheduling, are mechanically validated during com-
pilation [18]. Unfortunately, this tool is not yet readily
available to test properly.

• Finally, the Catapult C HLS tool [19] is designed only
to produce an output netlist if it can mechanically prove
it equivalent to the input program. It should therefore
never produce wrong RTL. In future work, we intend to
test Catapult C alongside Vivado HLS, LegUp, and Intel
i++.

III. METHOD

This section describes how we conducted our testing cam-
paign, the overall flow of which is shown in Figure 2.
In §III-A, we describe how we configure Csmith to generate
HLS-friendly random programs for our testing campaign.
In §III-B, we discuss how we augment those random programs
with directives and the necessary configuration files for HLS
compilation. In §III-C, we discuss how we set up compilation
and co-simulation checking for the three HLS tools under
test. Finally, in §III-D, we discuss how we reduce problematic
programs in order to obtain minimal examples of bugs.

A. Generating programs via Csmith

For our testing campaign, we require a random program
generator that produces C programs that are both semantically
valid and feature-diverse; Csmith [8] meets both these criteria.
Csmith is designed to ensure that all the programs it gener-
ates are syntactically valid (i.e. there are no syntax errors),
semantically valid (for instance: all variable are defined before
use), and free from undefined behaviour (undefined behaviour
indicates a programmer error, which means that the compiler is
free to produce any output it likes, which renders the program
useless as a test-case). Csmith programs are also deterministic,
which means that their output is fixed at compile-time; this
property is valuable for compiler testing because it means
that if two different compilers produce programs that produce
different results, we can deduce that one of the compilers must
be wrong.

Csmith

pragma
generation

GCC

HLS

co-simulation
checking

reduction

C program

C program +
directives

executable

Verilog program fail

crash

Figure 2. The overall flow of our approach to fuzzing HLS tools.

Property/Parameter Change

statement_ifelse_prob Increased
statement_for_prob Reduced
statement_arrayop_prob Reduced
statement_break/goto/continue_prob Reduced
float_as_ltype_prob Disabled
pointer_as_ltype_prob Disabled
union_as_ltype_prob Disabled
more_struct_union_type_prob Disabled
safe_ops_signed_prob Disabled
binary_bit_and/or_prob Disabled
--no-packed-struct Enabled
--no-embedded-assigns Enabled
--no-argc Enabled
--max-funcs 5
--max-block-depth 2
--max-array-dim 3
--max-expr-complexity 2

Table I
SUMMARY OF IMPORTANT CHANGES TO CSMITH’S FEATURE

PROBABILITIES AND PARAMETERS TO GENERATE HLS-FRIENDLY
PROGRAMS FOR OUR TESTING CAMPAIGN.

Additionally, Csmith allows users control over how it gen-
erates programs. For instance, the probabilities of choosing
various C constructs can be tuned. This is vital for our work
since we want to generate programs that are HLS-friendly.

Table I lists the main changes that we put in place to ensure
that HLS tools are able to synthesise all of our generated
programs. Our overarching aim is to make the programs tricky
for the tools to handle correctly (in order to maximise our
chances of exposing bugs), while keeping the synthesis and
simulation times low (in order to maximise the rate at which
tests can be run). To this end, we increase the probability of
generating if statements in order to increase the number of
control paths, but we reduce the probability of generating for
loops and array operations since they generally increase run
times but not hardware complexity. Relatedly, we reduce the
probability of generating break, goto, continue and return
statements, because with fewer for loops being generated,
these statements tend to lead to uninteresting programs that
simply exit prematurely.

More importantly, we disable the generation of several
language features to enable HLS testing. First, we ensure that
all mathematical expressions are safe and unsigned, to ensure
no undefined behaviour. We also disallow assignments being
embedded within expressions, since HLS generally does not
support them. We eliminate any floating-point numbers since

they typically involve external libraries or use of hard IPs on
FPGAs, which in turn make it hard to reduce bugs to their
minimal form. We also disable the generation of pointers for
HLS testing, since pointer support in HLS tools is either absent
or immature [10]. We disable the generation of unions as these
were not supported by some of the tools such as LegUp 4.0.

To decide whether a problematic feature should be disabled
or reported as a bug, the tool in question is taken into account.
Unfortunately there is no standard subset of C that is supported
by HLS tools; every tool chooses a slightly different subset.
It is therefore important to choose the right subset in order
to maximise the number of real bugs found in each tool,
while avoiding generating code that the tool does not support.
Therefore, we disable a feature if it fails gracefully (i.e. with
an error message stating the issue) in one of the tools. If the
HLS tool fails in a different way though, such as generating a
wrong design or crashing during synthesis, the feature is kept
in our test suite.

We enforce that the main function of each generated pro-
gram must not have any input arguments to allow for HLS
synthesis. We disable structure packing within Csmith since
the “#pragma pack(1)” directive involved causes conflicts in
HLS tools because it is interpreted as an unsupported pragma.
We also disable bitwise AND and OR operations because
when applied to constant operands, some versions of Vivado
HLS errored out with ‘Wrong pragma usage.’

Finally, we tweak several integer parameters that influence
program generation. We limit the maximum number of func-
tions (five) and array dimensions (three) in our random C
programs, in order to reduce the design complexity and size.
We also limit the depth of statements and expressions, to
reduce the synthesis and simulation times.

B. Augmenting programs for HLS testing

We augment the programs generated by Csmith to prepare
them for HLS testing. We do this in two ways: program
instrumentation and directive injection. This involves either
modifying the C program or accompanying the C program
with a configuration file, typically a tcl file. Finally, we must
also generate a tool-specific build script per program, which
instructs the HLS tool to create a design project and perform
the necessary steps to build and simulate the design.

a) Instrumenting the original C program: We generate
a synthesisable testbench that executes the main function of
the original C program. This top-level testbench contains a

custom XOR-based hash function that takes hashes of the
program state at several points during execution, combines all
these hashes together, and then returns this value. By making
the program’s output sensitive to the program state in this
way, we maximise the likelihood of detecting bugs when
they occur. Csmith-generated programs do already include
their own hashing function, but we replaced this with a
simple XOR-based hashing function because we found that
the Csmith one led to infeasibly long synthesis times.

b) Injecting HLS directives: Directives are used to in-
struct HLS tools to optimise the resultant hardware to meet
specific performance, power and area targets. Typically, a HLS
tool identifies these directives and subjects the C code to cus-
tomised optimisation passes. In order to test the robustness of
these parts of the HLS tools, we randomly generated directives
for each C program generated by Csmith. Some directives can
be applied via a separate configuration file, others require us to
add labels in the C program (e.g. to identify loops), and a few
directives require placing pragmas at particular locations in a
C program. We generate three classes of directives: those for
loops, those for functions, and those for variables. For loops,
we randomly generate directives including loop pipelining
(with rewinding and flushing), loop unrolling, loop flattening,
loop merging, loop tripcount, loop inlining, and expression
balancing. For functions, we randomly generate directives
including function pipelining, function-level loop merging,
function inlining, and expression balancing. For variables, we
randomly generate directives including array mapping, array
partitioning and array reshaping.

C. Testing various HLS tools

Having generated HLS-friendly programs and automatically
augmented them with directives and meaningful testbenches,
we are now ready to provide them to HLS tools for testing. For
each HLS tool in turn, we compile the C program to RTL and
then simulate the RTL. Independently, we also compile the C
program using GCC and execute it. Although each HLS tool
has its own built-in C compiler that could be used to obtain
the reference output, we prefer to obtain the reference output
ourselves in order to minimise our reliance on the tool being
tested.

To ensure that our testing is scalable for a large number of
large, random programs, we also enforce several time-outs: we
set a 5-minute time-out for C execution and a 2-hour time-out
for C-to-RTL synthesis and RTL simulation. We do not count
time-outs as bugs, but we record them.

D. Reducing buggy programs

Once we discover a program that crashes the HLS tool or
whose C/RTL simulations do not match, we further scrutinise
the program to identify the root cause(s) of the undesirable
behaviour. As the programs generated by Csmith can be
fairly large, we must systematically reduce these programs to
identify the source of a bug.

Reduction is performed by iteratively removing some part of
the original program and then providing the reduced program

Tool Unique Bugs

Xilinx Vivado HLS (all versions) ≥ 2
LegUp HLS ≥ 3
Intel i++ ≥ 1

Table II
UNIQUE BUGS FOUND IN EACH TOOL. THE “≥” SIGN SIGNIFIES A LOWER

BOUND ON THE NUMBER OF UNIQUE BUGS FOUND AFTER TEST-CASE
REDUCTION.

to the HLS tool for re-synthesis and co-simulation. The goal
is to find the smallest program that still triggers the bug. We
apply two consecutive methods of reduction in this work. The
first step is to reduce the labels and pragmas that were added
afterwards to make sure that these do not affect the behaviour
of the program. These are reduced until there are no more
declarations left or the bug does not get triggered anymore. We
then use the C-Reduce tool [13] to automatically reduce the
remaining C program. C-Reduce is an existing reducer for C
and C++ and runs the reduction steps in parallel to converge as
quickly as possible. It is effective because it reduces the input
while preserving semantic validity and avoiding undefined
behaviour. It has various reduction strategies, such as delta
debugging passes and function inlining, that help it converge
rapidly to a test-case that is small enough to understand and
step through.

However, the downside of using C-Reduce with HLS tools
is that we are not in control of which lines and features are
prioritised for removal. As a consequence, we can easily end
up with C-Reduce producing programs that are not synthe-
sisable, despite being valid C. Even though C-Reduce does
not normally introduce undefined behaviour, it can introduce
behaviour that is unsupported in the HLS tools. An example is
the reduction of a function call, where the reducer realises that
a mismatch is still observed when the function call’s arguments
are removed, and the function pointer is assigned a constant
instead. This is however often unsupported in HLS tools, since
a function pointer does not have a concrete interpretation in
hardware, because in the absence of instructions, functions are
not associated with a particular memory location. Once un-
handled behaviour is introduced at any point in the reduction,
the test-cases will often zero in on that unhandled behaviour,
even though it does not actually represent an interesting bug.
To prevent this, we use a script to guide C-Reduce away from
introducing these unhandled behaviours as much as possible.
This script involves adding -fsanitize=undefined to the
GCC options in order to abort when undefined behaviour is
detected at runtime, and erroring out whenever any warning
is encountered while running the HLS tool (except common
warnings that are known to be harmless).

IV. EVALUATION

We generate 6700 test-cases and provide them to three HLS
tools: Vivado HLS, LegUp HLS and Intel i++. We use the
same test-cases across all tools for fair comparison. We were
able to test three different versions of Vivado HLS (v2018.3,
v2019.1 and v2019.2). We tested one version of Intel i++

Xilinx Vivado HLS
v2019.1

Intel i++ 18.1

LegUp 4.0

1 (1)4 (0)

26 (540)79 (20)

162 (6)

0 (5)

0 (0)

5856

Figure 3. A Venn diagram showing the number of failures in each tool out
of 6700 test-cases that were run. Overlapping regions mean that the test-cases
failed in multiple tools. The numbers in parentheses represent the number of
test-cases that timed out.

(version 18.1), and one version of LegUp (4.0). LegUp 7.5
is GUI-based and therefore we could not script our tests.
However, we were able to manually reproduce bugs found
in LegUp 4.0 in LegUp 7.5.

A. Results across different HLS tools

Figure 3 shows a Venn diagram of our results. We see that
167 (2.5%), 83 (1.2%) and 26 (0.4%) test-cases fail in LegUp,
Vivado HLS and Intel i++ respectively. Despite i++ having the
lowest failure rate, it has the highest time-out rate (540 test-
cases), because of its remarkably long compilation time. Note
that the absolute numbers here do not necessary correspond
to the number of bugs in the tools, because a single bug in a
language feature that appears frequently in our test suite could
cause many programs to crash or fail. Hence, we reduce many
of the failing test-cases to identify unique bugs, as summarised
in Table II. We write ‘≥’ in the table to indicate that all the
bug counts are lower bounds – we did not have time to go
through the test-case reduction process for every failure.

B. Results across versions of an HLS tool

Besides comparing the reliability of different HLS tools,
we also investigated the reliability of Vivado HLS over time.
Figure 4 shows the results of giving 3645 test-cases to Vivado
HLS v2018.3, v2019.1 and v2019.2. Test-cases that pass and
fail in the same tools are grouped together into a ribbon. For
instance, the topmost ribbon represents the 31 test-cases that
fail in all three versions of Vivado HLS. Other ribbons can be
seen weaving in and out; these indicate that bugs were fixed
or reintroduced in the various versions. The diagram demon-
strates that Vivado HLS v2018.3 contains the most failing test-
cases compared to the other versions, having 62 test-cases fail
in total. Interestingly, as an indicator of reliability of HLS
tools, the blue ribbon shows that there are test-cases that fail
in v2018.3, pass in v2019.1 but then fail again in v2019.2.

As in our Venn diagram, the absolute numbers in Figure 4
do not necessary correspond to the number of bugs. However,
we can deduce from this diagram that there must be at least six

v2018.3 v2019.1 v2019.2

31

26

6

62

36
41

Figure 4. A Sankey diagram that tracks 3645 test-cases through three different
versions of Vivado HLS. The ribbons collect the test-cases that pass and fail
together. The black bars are labelled with the total number of test-case failures
per version. The 3573 test-cases that pass in all three versions are not depicted.

1 int a[2][2][1] = {{{0},{1}},{{0},{0}}};
2

3 int main() {
4 a[0][1][0] = 1;
5 }

Figure 5. This program causes an assertion failure in LegUp HLS when
NO_INLINE is set.

unique bugs in Vivado HLS, given that a ribbon must contain
at least one unique bug. In addition to that, it can then be seen
that Vivado HLS v2018.3 must have at least 4 individual bugs,
of which two were fixed and two others stayed in Vivado HLS
v2019.1. However, with the release of v2019.1, new bugs were
introduced as well.

C. Some specific bugs found

This section describes some of the bugs that were found in
the various tools that were tested. We describe two bugs in
LegUp and one in Vivado HLS; in each case, the bug was
first reduced automatically using C-Reduce, and then reduced
further manually to achieve the minimal test-case. Although
we did find test-case failures in Intel i++, the long compilation
times for that tool meant that we did not have time to reduce
any of the failures down to an example that is minimal enough
to present here.

1) LegUp assertion error: The code shown in Figure 5
leads to an assertion error in LegUp 4.0 and 7.5 even though it
should compile without any errors. An assertion error counts
as a crash of the tool, as it means that an unexpected state
was reached by this input. This shows that there is a bug in
one of the compilation passes in LegUp, however, due to the
assertion the bug is caught in the tool before it produces an
incorrect design.

The buggy test-case has to do with initialisation and as-
signment to a three-dimensional array, for which the above
piece of code is the minimal example. However, in addition to
that it requires the NO_INLINE flag to be set, which disables
function inlining. The code initialises the array with zeroes
except for a[0][1][0], which is set to one. Then the main

1 volatile int a = 0;
2 int b = 1;
3

4 int main() {
5 int d = 1;
6 if (d + a)
7 b || 1;
8 else
9 b = 0;

10 return b;
11 }

Figure 6. An output mismatch: LegUp HLS returns 0 but the correct result
is 1.

function assigns one to that same location. This code on its
own should not actually produce a result and should just
terminate by returning 0, which is also what the design that
LegUp generates does when the NO_INLINE flag is turned off.

2) LegUp miscompilation: The test-case in Figure 6 pro-
duces an incorrect Verilog in LegUp 4.0 and 7.5, which
means that the results of RTL simulation is different to the
C execution.

In the code above, b has value 1 when run in GCC, but has
value 0 when run with LegUp. If the volatile keyword is
removed from a, then the Verilog produces the correct result.
As a and d are constants, the if statement should always
produce go into the true branch, meaning b should never be
set to 0. The true branch of the if statement only executes
an expression which is not assigned to any variable, meaning
the initial state of all variables should not change. However,
LegUp HLS generates a design which enters the else branch
instead and assigns b to be 0. The cause of this bug seems
to be the use of volatile keyword, which interferes with the
analysis that attempts to simplify the if statement.

3) Vivado HLS miscompilation: Figure 7 shows code that
does not output the right result when compiled with all Vivado
HLS versions. It returns 0x0 with Vivado HLS, instead of
0xF. This test-case is much larger compared to the other test-
cases that were reduced. We could not reduce this program
any further, as everything in the code was necessary to trigger
the bug.

The array a is initialised to all zeroes, as well as the other
global variables g and c, so as to not introduce any undefined
behaviour. However, g is also given the volatile keyword,
which ensures that the variable is not optimised away. The
function d then accumulates the values b that it is passed into
a hash stored in c. Each b is eight bits wide, so function e
calls the function seven times for some of the bits in the 64-bit
value of f that it is passed. Finally, in the main function, the
array is initialised partially with a for loop, after which the
e function is called twice, once on the volatile function and
once on a constant. Interestingly, the second function call with
the constant is also necessary to trigger the bug.

4) Intel i++ miscompilation:

1 volatile unsigned int g = 0;
2 int a[256] = {0};
3 int c = 0;
4

5 void d(char b) {
6 c = (c & 4095) ^ a[(c ^ b) & 15];
7 }
8

9 void e(long f) {
10 d(f); d(f >> 8); d(f >> 16); d(f >> 24);
11 d(f >> 32); d(f >> 40); d(f >> 48);
12 }
13

14 int main() {
15 for (int i = 0; i < 56; i++)
16 a[i] = i;
17 e(g);
18 e(-2L);
19 return c;
20 }

Figure 7. An output mismatch: Vivado HLS returns 0x0 but the correct result
is 0xF.

V. CONCLUSION

We have shown how existing fuzzing tools can be modified
so that their outputs are compatible with HLS tools. We have
used this testing framework to run 6,700 test-cases through
three different HLS tools, and 3,645 test-cases through three
different version of Vivado HLS to show how bugs are fixed
and introduced. In total, we found at least 6 unique bugs in all
the tools. These bugs include crashes as well as instances of
generated designs not behaving in the same way as the original
code.

One can always question how much bugs found by fuzzers
really matter, given that they are usually found by combining
language features in ways that are vanishingly unlikely to
happen ‘in the wild’ [20]. This question is especially pertinent
for our particular context of HLS tools, which are well-known
to have restrictions on the language features that they handle.
Nevertheless, we would argue that although the test-cases we
generated do not resemble the programs that humans write,
the bugs that we exposed using those test-cases are real,
and could also be exposed by realistic programs. Moreover,
it is worth noting that HLS tools not exclusively provided
with human-written programs to compile: they are often fed
programs that have been automatically generated by another
compiler. Ultimately, we believe that any errors in an HLS
tool are worth identifying because they have the potential to
cause problems, either now or in the future. And when HLS
tools do go wrong (or indeed any sort of compiler for that
matter), it is particularly infuriating for end-users because it
is so difficult to identify whether the fault lies with the tool
or with the program it has been given to compile.

Further work could be done on supporting more HLS tools,
especially ones that claim to prove that their output is correct

before terminating. This could give an indication on how
effective these proofs are, and how often they are actually
able to complete their equivalence proofs during compilation
in a feasible timescale.

Conventional compilers have become quite resilient to
fuzzing over the last decade, so recent work on fuzzing com-
pilers has had to employ increasingly imaginative techniques
to keep finding new bugs [21]. In comparison, we have found
that HLS tools – at least, as they currently stand – can be
made to exhibit bugs even using the relatively basic fuzzing
techniques that we employed in this project.

As HLS is becoming increasingly relied upon, it is impor-
tant to make sure that HLS tools are also reliable. We hope that
this work further motivates the need for rigorous engineering
of HLS tools, either by validating that each output the tool
produces is correct or by proving the HLS tool itself correct
once and for all.

REFERENCES

[1] EE Journal, “Silexica expands into fintech industry bringing next-
generation compute acceleration,” Press release, June 2020. [Online].
Available: https://bit.ly/hls-fintech

[2] LegUp Computing, “Migrating motor controller C++ software from a
microcontroller to a PolarFire FPGA with LegUp high-level synthesis,”
White Paper, June 2020. [Online]. Available: https://bit.ly/hls-controller

[3] PR Newswire, “Mentor’s Catapult HLS enables Chips&Media to
deliver deep learning hardware accelerator IP in half the time,” Press
release, January 2019. [Online]. Available: https://bit.ly/hls-objdetect

[4] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2013, pp. 197–208.

[5] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in GCC and LLVM,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 294–305.

[6] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[7] C. Zhang, T. Su, Y. Yan, F. Zhang, G. Pu, and Z. Su, “Finding and
understanding bugs in software model checkers,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 763–773.

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283–294.

[9] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core com-
piler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: Association for Computing Machinery, 2015, pp.
65–76.

[10] Xilinx, “Vivado high-level synthesis,” 2020. [Online]. Available:
https://bit.ly/39ereMx

[11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: an open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, 9 2013.

[12] Intel, “SDK for OpenCL applications,” 2020. [Online]. Available:
https://intel.ly/30sYHz0

[13] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for C compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and
Implementation, 2012, pp. 335–346.

[14] Y. Herklotz and J. Wickerson, “Finding and understanding bugs in FPGA
synthesis tools,” in FPGA. ACM, 2020, pp. 277–287.

[15] J. Perna and J. Woodcock, “Mechanised wire-wise verification of
Handel-C synthesis,” Science of Computer Programming, vol. 77, no. 4,
pp. 424 – 443, 2012.

[16] N. Ramanathan, S. T. Fleming, J. Wickerson, and G. A. Constantinides,
“Hardware synthesis of weakly consistent C concurrency,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA,
February 22-24, 2017, J. W. Greene and J. H. Anderson, Eds. ACM,
2017, pp. 169–178. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3021733

[17] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a high-level syn-
thesis framework for applying parallelizing compiler transformations,”
in 16th International Conference on VLSI Design, 2003. Proceedings.,
Jan 2003, pp. 461–466.

[18] R. Chouksey and C. Karfa, “Verification of scheduling of conditional
behaviors in high-level synthesis,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, pp. 1–14, 2020. [Online]. Available:
https://doi.org/10.1109/TVLSI.2020.2978242

[19] Mentor, “Catapult high-level synthesis,” 2020. [Online]. Available:
https://bit.ly/32xhADw

[20] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler
fuzzing: how much does it matter?” Proc. ACM Program. Lang., vol. 3,
no. OOPSLA, pp. 155:1–155:29, 2019.

[21] K. Even-Mendoza, C. Cadar, and A. Donaldson, “Closer to the edge:
Testing compilers more thoroughly by being less conservative about
undefined behaviour,” in IEEE/ACM International Conference on Au-
tomated Software Engineering, New Ideas and Emerging Results Track
(ASE-NIER 2020), 09 2020.

https://bit.ly/hls-fintech
https://bit.ly/hls-controller
https://bit.ly/hls-objdetect
https://bit.ly/39ereMx
https://intel.ly/30sYHz0
http://dl.acm.org/citation.cfm?id=3021733
http://dl.acm.org/citation.cfm?id=3021733
https://doi.org/10.1109/TVLSI.2020.2978242
https://bit.ly/32xhADw

	Introduction
	Related Work
	Method
	Generating programs via Csmith
	Augmenting programs for HLS testing
	Testing various HLS tools
	Reducing buggy programs

	Evaluation
	Results across different HLS tools
	Results across versions of an HLS tool
	Some specific bugs found
	LegUp assertion error
	LegUp miscompilation
	Vivado HLS miscompilation
	Intel i++ miscompilation

	Conclusion
	References

