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Abstract—High-level synthesis (HLS) is becoming an increas-
ingly important part of the computing landscape, even in safety-
critical domains where correctness is key. As such, HLS tools are
increasingly relied upon. But are they trustworthy?

We have subjected four widely used HLS tools – LegUp, Xilinx
Vivado HLS, the Intel HLS Compiler and Bambu – to a rigorous
fuzzing campaign using thousands of random, valid C programs
that we generated using a modified version of the Csmith tool.
For each C program, we compiled it to a hardware design using
the HLS tool under test and checked whether that hardware
design generates the same output as an executable generated
by the GCC compiler. When discrepancies arose between GCC
and the HLS tool under test, we reduced the C program to a
minimal example in order to zero in on the potential bug. Our
testing campaign has revealed that all four HLS tools can be made
either to crash or to generate wrong code when given valid C
programs, and thereby underlines the need for these increasingly
trusted tools to be more rigorously engineered. Out of 6700 test
cases, we found 1178 programs that failed in at least one tool,
out of which we were able to discern at least 8 unique bugs.

I. INTRODUCTION

High-level synthesis (HLS), which refers to the automatic
translation of software into hardware, is becoming an in-
creasingly important part of the computing landscape. It
promises hardware engineers an increase in productivity by
raising the abstraction level of their designs, and it promises
software engineers the ability to produce application-specific
hardware accelerators without having to understand hardware
description languages (HDL) such as Verilog and VHDL.
HLS is being used in an ever greater range of domains,
including such high-assurance settings as financial services [1],
control systems [2], and real-time object detection [3]. As
such, HLS tools are increasingly relied upon, even though
“high-level synthesis research and development is inherently
prone to introducing bugs or regressions in the final circuit
functionality” [4, Section 3.4.6]. In this paper, we investigate
whether they are trustworthy and give an empirical evaluation
of their reliability.

The approach we take is fuzzing. This is an automated
testing method in which randomly generated programs are
given to compilers to test their robustness [5], [6], [7], [8],
[9], [10]. The generated programs are typically large and rather
complex, and they often combine language features in ways
that are legal but counter-intuitive; hence they can be effective
at exercising corner cases missed by human-designed test
suites. Fuzzing has been used extensively to test conventional
compilers; for example, Yang et al. [9] used it to reveal more
than three hundred bugs in GCC and LLVM. In this paper, we
bring fuzzing to the HLS context.

1 unsigned int x = 0x1194D7FF;
2 int arr[6] = {1, 1, 1, 1, 1, 1};
3

4 int main() {
5 for (int i = 0; i < 2; i++)
6 x = x >> arr[i];
7 return x;
8 }

Figure 1. Miscompilation bug in Xilinx Vivado HLS. The generated RTL
returns 0x006535FF but the correct result is 0x046535FF.

Example 1 (A miscompilation bug in Vivado HLS). Figure 1
shows a program that produces the wrong result during
RTL simulation in Xilinx Vivado HLS v2018.3, v2019.1
and v2019.2.1 The bug was initially revealed by a randomly
generated program of around 113 lines, which we were
able to reduce to the minimal example shown in the figure.
This bug was also reported to Xilinx and confirmed to be
a bug.2The program repeatedly shifts a large integer value
x right by the values stored in array arr. Vivado HLS
returns 0x006535FF, but the result returned by GCC (and
subsequently confirmed manually to be the correct one) is
0x046535FF.

The example above demonstrates the effectiveness of
fuzzing. It seems unlikely that a human-written test-suite
would discover this particular bug, given that it requires several
components all to coincide before the bug is revealed!

Yet this example also begs the question: do bugs found
by fuzzers really matter, given that they are usually found
by combining language features in ways that are vanishingly
unlikely to happen ‘in the real world’ [11]. This question is
especially pertinent for our particular context of HLS tools,
which are well-known to have restrictions on the language
features that they handle. Nevertheless, although the test-cases
we generated do not resemble the programs that humans write,
the bugs that we exposed using those test-cases are real, and
could also be exposed by realistic programs. Ultimately, we
believe that any errors in an HLS tool are worth identifying
because they have the potential to cause problems, either now
or in the future. And problems caused by HLS tools going
wrong (or indeed any sort of compiler for that matter) are
particularly egregious, because it is so difficult for end-users

1This program, like all the others in this paper, includes a main function,
which means that it compiles straightforwardly with GCC. To compile it with
an HLS tool, we rename main to result, synthesise that function, and then
add a new main function as a testbench that calls result.

2Link to Xilinx bug report redacted for review.



to identify whether the fault lies with their design or the HLS
tool.

A. Our approach and results

Our approach to fuzzing HLS tools comprises three steps.
First, we use Csmith [9] to generate thousands of valid C
programs from within the subset of the C language that is
supported by all the HLS tools we test. We also augment each
program with a random selection of HLS-specific directives.
Second, we give these programs to four widely used HLS
tools: Xilinx Vivado HLS [12], LegUp HLS [13], the Intel
HLS Compiler, which is also known as i++ [14] and finally
Bambu [15]. Third, if we find a program that causes an HLS
tool to crash, or to generate hardware that produces a different
result from GCC, we reduce it to a minimal example with the
help of the C-Reduce tool [16].

Our testing campaign revealed that all four tools could be
made to generate an incorrect design. In total, 6700 test cases
were run through each tool out of which 1178 test cases failed
in at least one of the tools. Test case reduction was then
performed on some of these failing test cases to obtain at
least 8 unique failing test cases.

To investigate whether HLS tools are getting more or less
reliable over time, we also tested three different versions of
Vivado HLS (v2018.3, v2019.1, and v2019.2). We found far
fewer failures in versions v2019.1 and v2019.2 compared to
v2018.3, but we also identified a few test-cases that only failed
in versions v2019.1 and v2019.2, which suggests that some
new features may have introduced bugs.

In summary, the overall aim of our paper is to raise
awareness about the reliability (or lack thereof) of current HLS
tools, and to serve as a call-to-arms for investment in better-
engineered tools. We hope that future work on developing
more reliable HLS tools will find our empirical study a
valuable source of motivation.

II. RELATED WORK

The only other work of which we are aware on fuzzing
HLS tools is that by Lidbury et al. [10], who tested several
OpenCL compilers, including an HLS compiler from Altera
(now Intel). They were only able to subject that compiler
to superficial testing because so many of the test-cases they
generated led to it crashing. In comparison to our work:
where Lidbury et al. generated target-independent OpenCL
programs that could be used to test HLS tools and conventional
compilers alike, we specifically generate programs that are
tailored for HLS (e.g. with HLS-specific pragmas and only
including supported constructs) with the aim of testing the
HLS tools more deeply. Another difference is that where
we test using sequential C programs, they test using highly
concurrent OpenCL programs, and thus have to go to great
lengths to ensure that any discrepancies observed between
compilers cannot be attributed to the inherent nondeterminism
of concurrency.

Other stages of the FPGA toolchain have been subjected
to fuzzing. Herklotz et al. [17] tested several FPGA synthesis
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Figure 2. The overall flow of our approach to fuzzing HLS tools.

tools using randomly generated Verilog programs. Where they
concentrated on the RTL-to-netlist stage of hardware design,
we focus our attention on the earlier C-to-RTL stage.

Several authors have taken steps toward more rigorously
engineered HLS tools that may be more resilient to testing
campaigns such as ours. The Handel-C compiler by Perna and
Woodcock [18] has been mechanically proven correct, at least
in part, using the HOL theorem prover; however, the tool does
not support C as input directly, so is not amenable to fuzzing.
Ramanathan et al. [19] proved their implementation of C
atomic operations in LegUp correct up to a bound using model
checking; however, our testing campaign is not applicable to
their implementation because we do not generate concurrent
C programs. In the SPARK HLS tool [20], some compiler
passes, such as scheduling, are mechanically validated during
compilation [21]; unfortunately, this tool is no longer available.
Finally, the Catapult C HLS tool [22] is designed only to
produce an output netlist if it can mechanically prove it
equivalent to the input program; it should therefore never
produce wrong RTL. In future work, we intend to test Catapult
C alongside Vivado HLS, LegUp, and Intel i++.

III. METHOD

The overall flow of our testing approach is shown in
Figure 2. This section describes how test-cases are generated
(§III-A), executed (§III-B), and reduced (§III-C).

A. Generating test-cases

Csmith exposes several parameters through which the user
can adjust how often various C constructs appear in the
randomly generated programs. Table I describes how we
configured these parameters. Our overarching aim is to make
the programs tricky for the tools to handle correctly (in order
to maximise our chances of exposing bugs), while keeping
the synthesis and simulation times low (in order to maximise
the rate at which tests can be run). For instance, we increase
the probability of generating if statements so as to increase
the number of control paths, but we reduce the probability of
generating for loops and array operations since they generally
increase run times but not hardware complexity. We disable
various features that are not supported by HLS tools such
as assignments inside expressions, pointers, and union types.
We avoid floating-point numbers since they typically involve
external libraries or use of hard IPs on FPGAs, which make
it hard to reduce bugs to a minimal form.



Table I
SUMMARY OF CHANGES TO CSMITH’S PROBABILITIES AND PARAMETERS.

Property/Parameter Change

statement_ifelse_prob Increased
statement_for_prob Reduced
statement_arrayop_prob Reduced
statement_break/goto/continue_prob Reduced
float_as_ltype_prob Disabled
pointer_as_ltype_prob Disabled
union_as_ltype_prob Disabled
more_struct_union_type_prob Disabled
safe_ops_signed_prob Disabled
binary_bit_and/or_prob Disabled
--no-packed-struct Enabled
--no-embedded-assigns Enabled
--no-argc Enabled
--max-funcs 5
--max-block-depth 2
--max-array-dim 3
--max-expr-complexity 2

To prepare the programs generated by Csmith for HLS
testing, we modify them in two ways. First, we inject random
HLS directives, which instruct the HLS tool to perform cer-
tain optimisations, including: loop pipelining, loop unrolling,
loop flattening, loop merging, expression balancing, function
pipelining, function-level loop merging, function inlining, ar-
ray mapping, array partitioning, and array reshaping. Some
directives can be applied via a separate configuration file
(.tcl), some require us to add labels to the C program (e.g. to
identify loops), and some require placing pragmas at particular
locations in the C program.

The second modification we make has to do with the top-
level function. Each program generated by Csmith ends its
execution by printing a hash of all its variables’ values, in the
hope that any miscompilations will be exposed through this
hash value. We found that Csmith’s built-in hash function led
to infeasibly long synthesis times, so we replaced it with our
own simple XOR-based one.

Finally, we generate a synthesisable testbench that executes
the main function of the original C program, and a tool-specific
script that instructs the HLS tool to create a design project and
then build and simulate the design.

B. Compiling the test-cases using the HLS tools

For each HLS tool in turn, we compile the C program
to RTL and then simulate the RTL. We also compile the C
program using GCC and execute it. Although each HLS tool
has its own built-in C compiler that could be used to obtain
the reference output, we prefer to obtain the reference output
ourselves in order to minimise our reliance on the tool that is
being tested.

To ensure that our testing scales to a large number of large
programs, we also enforce several time-outs: we set a 5-minute
time-out for C execution and a 2-hour time-out for C-to-RTL
synthesis and RTL simulation. We do not count time-outs as
bugs, but we do record them.
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Figure 3. The number of failures per tool out of 6700 test-cases. Overlapping
regions mean that the same test-cases failed in multiple tools. The numbers
in parentheses report how many test-cases timed out.

C. Reducing buggy programs

Once we discover a program that crashes the HLS tool or
whose C/RTL simulations do not match, we systematically
reduce it to its minimal form using the C-Reduce tool [16],
in the hope of identifying the root cause. This is done by
successively removing or simplifying parts of the program,
checking that the bug remains at each step.

We also check at each stage of the reduction process that
the reduced program remains within the subset of the language
that is supported by the HLS tools; without this check, C-
Reduce only zeroed in on programs that were outside of this
subset and hence did not represent real bugs.

IV. EVALUATION

We generate 6700 test-cases and provide them to four HLS
tools: Vivado HLS, LegUp HLS, Intel i++ and Bambu. We
use the same test-cases across all tools for fair comparison
(except the HLS directives, which have tool-specific syntax).
We were able to test three different versions of Vivado HLS
(v2018.3, v2019.1 and v2019.2). We tested one version of Intel
i++ (version 18.1), LegUp (4.0) and Bambu (v0.9.7). LegUp
7.5 is GUI-based and therefore we could not script our tests.
However, we were able to manually reproduce all the bugs
found in LegUp 4.0 in LegUp 7.5.

A. Results across different HLS tools

Figure 3 shows a Venn diagram of our results. We see that
918 (13.7%), 167 (2.5%), 83 (1.2%) and 26 (0.4%) test-cases
fail in Bambu, LegUp, Vivado HLS and Intel i++ respectively.
Despite i++ having the lowest failure rate, it has the highest
time-out rate (540 test-cases), because of its remarkably long
compilation time. Note that the absolute numbers here do
not necessarily correspond to the number of bugs in the
tools, because a single bug in a language feature that appears
frequently in our test suite could cause many programs to crash
or fail. Hence, we reduce many of the failing test-cases in an
effort to identify unique bugs; these are summarised in the
table below.

We write ‘≥’ above to emphasise that all the bug counts
are lower bounds – we did not have time to go through the
rather arduous test-case reduction process for every failure.



Tool Unique Bugs

Xilinx Vivado HLS v2019.1 ≥ 2
LegUp HLS ≥ 3
Intel i++ ≥ 1
Bambu HLS ≥ 2

v2018.3 v2019.1 v2019.2

31

26

6

62

36
41

Figure 4. A Sankey diagram that tracks 3645 test-cases through three different
versions of Vivado HLS. The ribbons collect the test-cases that pass and fail
together. The black bars are labelled with the total number of test-case failures
per version. The 3573 test-cases that pass in all three versions are not depicted.

B. Results across versions of an HLS tool

Besides comparing the reliability of different HLS tools,
we also investigated the reliability of Vivado HLS over time.
Figure 4 shows the results of giving 3645 test-cases to Vivado
HLS v2018.3, v2019.1 and v2019.2. Test-cases that pass and
fail in the same tools are grouped together into a ribbon. For
instance, the topmost ribbon represents the 31 test-cases that
fail in all three versions of Vivado HLS. Other ribbons can be
seen weaving in and out; these indicate that bugs were fixed or
reintroduced in the various versions. We see that Vivado HLS
v2018.3 had the most test-case failures (62). Interestingly, as
an indicator of reliability of HLS tools, the blue ribbon shows
that there are test-cases that fail in v2018.3, pass in v2019.1
but then fail again in v2019.2. As in our Venn diagram, the
absolute numbers here do not necessary correspond to the
number of actual bugs, but we can deduce that there must
be at least six unique bugs in Vivado HLS, given that each
ribbon corresponds to at least one unique bug.

C. Some specific bugs found

We now describe three more of the bugs we found: one
crash bug in LegUp, and a miscompilation in Intel and Bambu
respectively. As in Example 1, each bug was first reduced auto-
matically using C-Reduce, and then reduced further manually
to achieve the minimal test-case.

Example 2 (A crash bug in LegUp). The program shown
below leads to an internal compiler error (an unhandled
assertion in this case) in LegUp 4.0 and 7.5.
1 int a[2][2][1] = {{{0},{1}},{{0},{0}}};
2 int main() { a[0][1][0] = 1; }

It initialises a 3D array with zeroes, and then assigns to
one element. The bug only appears when function inlining
is disabled (NO_INLINE).

1 static volatile int a[9][1][7];
2 int main() {
3 int tmp = 1;
4 for (int b = 0; b < 2; b++) {
5 a[0][0][0] = 3;
6 a[0][0][0] = a[0][0][0];
7 }
8 for (int i = 0; i < 9; i++)
9 for (int k = 0; k < 7; k++)

10 tmp ˆ= a[i][0][k];
11 return tmp;
12 }

Figure 5. Miscompilation bug in Intel i++. It should return 2 because 3 ˆ
1 = 2, however, Intel i++ returns 0 instead.

1 static int b = 0x10000;
2 static volatile short a = 0;
3

4 int main() {
5 a++;
6 b = (b >> 8) & 0x100;
7 return b;
8 }

Figure 6. Miscompilation bug in Bambu. As the value of b is shifted to the
right by 8, the output should be 0x100. However, Bambu outputs 0.

Example 3 (A miscompilation bug in Intel i++). Figure 5
shows a miscompilation bug that was found in Intel i++. Intel
i++ does not seem to notice the assignment to 3 in the previous
for loop, or tries to perform some optimisations that seem to
analyse the array incorrectly and therefore results in a wrong
value being returned.

Example 4 (A miscompilation bug in Bambu). Figure 6 shows
a miscompilation bug in Bambu, where the result of the value
in b is affected by the increment operation on a.

V. CONCLUSION

We have shown how an existing fuzzing tool can be modi-
fied so that its output is suitable for HLS, and then used it in
a campaign to test the reliability of three modern HLS tools.
In total, we found at least 8 unique bugs across all the tools,
including crashes and miscompilation bugs.

Further work could be done on supporting more HLS tools,
especially ones that claim to prove that their output is correct
before terminating, such as Catapult-C [22].

Conventional compilers have become quite resilient to
fuzzing over the last decade, so recent work on fuzzing com-
pilers has had to employ increasingly imaginative techniques
to keep finding new bugs [23]. In comparison, we have found
that HLS tools – at least, as they currently stand – can be
made to exhibit bugs even using the relatively basic fuzzing
techniques that we employed in this project.

As HLS is becoming increasingly relied upon, it is impor-
tant to make sure that HLS tools are also reliable. We hope that
this work further motivates the need for rigorous engineering
of HLS tools, whether that is by validating that each output
the tool produces is correct or by proving the HLS tool itself
correct once and for all.
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