
FPGA '20 paper

Mis-synthesis bug found in Vivado 2019.1. 
Mistakenly outputs 1'b1 when input is 2'b01.

Finding and Understanding Bugs in FPGA Synthesis Tools
Yann Herklotz* and John Wickerson†

Imperial College London
*yann.herklotz15@imperial.ac.uk, †j.wickerson@imperial.ac.uk

Motivation
Problem:

FPGAs are becoming more common in cloud computing for 
application-specific hardware accelerators.

Solution:
We can test the tools using the following method:

Any bugs found can then be reported to the tool vendors and will 
hopefully be fixed before end users are affected.

Random Verilog generation.1

2 Synthesise to a netlist.

3 Prove equivalence of netlist and design.

4 Reduce failed testcases.

Results

Stability in Vivado:

Tracking the same set of testcases across four versions of Vivado. e white 
rectangles indicate the total number of failing testcases per version. Each 
ribbon tracks a particular group of testcases. e interleaving of ribbons 
shows how bugs may have been introduced or fixed in each version.

Verilog 
design Synthesis is the process being tested. 

Currently the following tools are supported:

Vivado
artus
Yosys
XST

e design is passed to the tools and should 
output a Verilog netlist that is functionally 
equivalent to the input.

Definitions for any modules that are 
instantiated in the netlist are manually 
implemented so that it simulates properly.

2. Synthesis

4. Reduction

Verilog 
netlist

Crash

Fail

If the synthesis crashes or the 
equivalence check fails, the original 
design is reduced to locate the cause.

As synthesis and the equivalence 
checks are extremely slow, minimising 
the number of reductions necessary is 
the main concern.

e first step is to generate the random 
Verilog. e main goals of the Verilog 
generation are the following:

1. Verilog generation

Generate correct and deterministic Verilog.

Generate efficient Verilog in terms of 
synthesis time and time taken to perform an 
equivalence check.

Generate complex behavioural Verilog.

We perform an equivalence check between the 
original design and the synthesised netlist. is is 
done by proving that the output of the design is 
always the same as the output of the netlist. 

e steps to perform the equivalence check are the 
following:

3. Equivalence check

Combine the Verilog design and netlist into a 
testbench with an assertion saying that the 
outputs should always be equivalent.

Convert testbench to SMT-LIBv2.

Check the equivalence by passing it to an 
SMT solver.

Synthesis tools are unreliable, which could lead to the FPGA 
behaving incorrectly, even if the design was proven to behave 
correctly.

To help in reporting the bugs, failing testcases are also 
automatically reduced to a minimal representation.

5 bugs found in Vivado.
5 bugs found and fixed in Yosys.

1 bug found in artus.
2 bugs found in XST.

is was implemented in a tool called Verismith1 and was used to test the 
main FPGA synthesis tools:

1 hps://github.com/ymherklotz/verismith


