Formal Verification of High-Level Synthes:

Yann Herklotz, James D. Pollard, Nadesh Ramanathan and John Wickerson

Designing Hardware for an FPGA Using HLS

Field-programmable gate arrays (FPGA) are a good
alternative to CPU's for many applications.

High-level synthesis (HLS) is a promising method to
program them.

1. C code 1s translated to
hardware, described in
Verilog.

2. Verilog hardware
description is then placed
onto an FPGA using a logic
synthesis tool.

Integrate Verilog Semantics into Coq

Verilog semantics adapted from Loow et al. [2019].

Small-step over clock edges:

Big-step within each clock edge:

v

52

IMD&(U le_ Tolo (

evelwiocd e

main() {
. . . x5 =3
Main translation is from a {t39 [stack(0)] = x&
control-flow graph into a <l = 6

finite state-machine with data int32[stack(4)] = x4

path (FSMD). xl =1 |
x3 = stack(0) (int)
x2 = int32[x3 + x1 * 4 + 0]

HTL is an intermediate
language representing a 3
FSMD to ease the translation.

return x2

CompCert 3AC code

Execution Time Compared to Existing Unverified

HLS Tools

b o

S

Current HLS Tools Are Unreliable

. . o o Tool Run-time errors
Run-time errors present in all existing Vivado HLS | 23%
HLS tools. Intel i++ 0.4%
: . Bambu 0.9.7-dev 0.3%
Ope bug was found in Vericert pretty LegUp 4.0 0.1%
printing, but none present when fixed. S — 5-03% 0%

Extending CompCert to Formally Verify HLS

Create a Formally Verified HLS tool called Vericert, based on

CompCert.

CompCert

Clight — -+ — CminorSel — 3AC — LTL —— - Z aarch64

h 4

Vericert HTL

RAM

insertion

> Verilog

Example of translation from C into Verilog

// Data-path
always Q(posedge clk)
case (state)
32'd1l1l: reg_2 <= d_out;
32'd8: reg_b <= 32'd3;
32'd7: begin
u_en <= (7 u_en); wr_en <= 32'dl;
d_in <= reg_b; addr <= 32'dO;
end
32'd6: reg_4 <= 32'd6;
32'd5: begin
u_en <= (7 u_en); wr_en <= 32'dl;
d_in <= reg_4; addr <= 32'dl;
end
32'd4: reg_1 <= 32'd1l;
32'd3: reg_3 <= 32'd0;
32'd2: begin
u_en <= (7 u_en); wr_en <= 32'd0;
addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4};
end
32'dl: begin finish = 32'dl; return_val = reg_2; end
default: ;
endcase

// Control logic
always Q@(posedge clk)
if ({reset == 32'd1l}) state <= 32'dS8;
else case (state)
32'dl1l: state <= 32'd1l;
32'd8: state <= 32'd7;
32'd7: state <= 32'd6;
32'd6: state <= 32'db;
32'db5: state <= 32'd4;
endcase
endmodule

Vericert HLS
Translation

32'd4:
32'd3:
32'd2:
32'dl: ;

default: ;

state <= 32'd3;
state <= 32'd2;

state <= 32'dl1;

Data path Verilog
block generated by
Vericert.

Control logic
block generated
by Vericert.

Vericert compared to LegUp on 27 out of 30 PolyBench/C benchmarks.

Bad news: When divisions are present, Vericert is 27x slower than LegUp.

Better news: When divisions are replaced by an iterative division
algorithm, Vericert is only 2x slower than LegUp.

Future Work

Scheduling: reduce performance gap by executing multiple instructions in
a clock cycle. This would also solve issue with division by pipelining a
hardware division operation.

Resource sharing: support proper function calls by sharing function
implementation.

Globals: Increase language support and implement multiple memories.

100 |
s
A
s
2
E}D < 10
S B
+~
O
2
LR =
o 10p
Y B
£ |
S 8 n
=R i
S s
-
=
O =
X3
62 1F
i Vericert LegUp no-opt no-chaining LegUp no-opt
=~ B O — - +
 EE Yy 8E ERTESE RIS AL B RESE L 6
E} E} = =2 "nm g a0 QL T o E} > oo EE = EE IS Ei 0
S Q ¢ ® o =T g 2 538 O e > B O
$E8Szg> 8 g E fzFT =7
o 2 - E: O < S — - 3% EE
Q ' o0 —
O e
P>
@)
o=

