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The Need to Design Hardware Accelerators

Application-specific hardware accelerators are increasingly being needed in
industries.

e Using a CPU everywhere not
always the best choice.

¢ Application-specific integrated m
circuits (ASIC) are the ideal —_—

choice, but very expensive to
o/

create. *—>"’

¢ Field-programmable gate arrays
(FPGA) act as reprogrammable HD.O
hardware, therefore can be
made application-specific.




Where does the flexibility of FPGAs come from?

e FPGA’s are programmable circuits with two main components.

¢ Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

e RAMs provide accessible storage.
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So How do we Program an FPGA?

FPGAs contain LUTs and
programmable interconnects.

Programmed using hardware
description languages.

Simulation quite slow.

High-Level Synthesis is an
alternative.

Faster testing through execution.
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Motivation for Formal Verification

High-level synthesis is often quite unreliable:
e We fuzzed HLS tools (Herklotz et al. [2021]) and found they failed on

simple random test cases.

Tool Run-time errors
Vivado HLS 1.23%

Intel i++ 0.4%

Bambu 0.9.7-dev  0.3%

LegUp 4.0 0.1%




Solution

x86
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HTL Verilog

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.
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Example: 3AC

main() {
xb = 3
e Three address code (3AC) int32[stack(8)] = x5
instructions are represented X4 = 6
as a control-flow graph int32[stack(4)] = x4
(CFQ). x1 =1
e Each instruction links to the x3 = stack(6) (int)

x2 = int32[x3 + x1 * 4 + 0]
return x2

next one.



HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic := Z* + Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;



Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

Control-flow is translated into a finite state-machine.
Each 3AC instructions translated into equivalent Verilog statements.
Call stack implemented as Verilog array.

Pointers for loads and stores translated to array addresses.
® Byte addressed to word addressed.



Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
® Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= ( ~ u_en);

wr_en <= 0;
addr <= reg_b / 4;



Translation (HTL — Verilog)

// Control logic

always @(posedge clk)
if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1:
32'd5: state <= 32'd4; default: ;

endcase

endmodule

Finally, translate the FSMD
into Verilog.

This includes a RAM
interface.

Data path is translated into a
case statement.

RAM loads and stores
automatically turn off RAM.

Control logic is translated
into another case statement
with a reset.
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Verilog Semantics (Adapted from L66w et al. (2019))

e Top-level semantics are small-step operational semantics.
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e At each clock tick, the whole module is executed using big-step

semantics.
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Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
¢ Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.
® Abstract values like the program counter now correspond to values in
registers.
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Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool Run-time errors
Vivado HLS 1.23%

Intel i++ 0.4%

Bambu 0.9.7-dev  0.3%

LegUp 4.0 0.1%

Vericert 6:-:63% 0%




Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e HLS tool proven correct in Coq by proving translation of CFG into
FSMD.
e Small optimisations implemented such as RAM Inference.
e Performance without divisions comparable to LegUp without
optimisations.
Future Work
Make Vericert not only correct, but competitive.
¢ Implement scheduling and resource sharing.
e Add external module support.
e Add global variable support.
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Thank you

Documentation
[=] 242 [u]
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https://vericert.ymhg.org https://github.com/ymherklotz/vericert

OOPSLA’21 Preprmt

https://ymhg.org/papers/fvhls_oopsla21.pdf
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