Formal Verification of High-Level
Synthesis

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, John Wickerson

Imperial College S

London

The Need to Design Hardware Accelerators

Application-specific hardware accelerators are increasingly being needed in
industries.

e Using a CPU everywhere not
always the best choice.

¢ Application-specific integrated m
circuits (ASIC) are the ideal —_—

choice, but very expensive to
o/

create. *—>"’

¢ Field-programmable gate arrays
(FPGA) act as reprogrammable HD.O
hardware, therefore can be
made application-specific.

Where does the flexibility of FPGAs come from?

e FPGA’s are programmable circuits with two main components.

¢ Look up tables (LUTs) provide flexible logic gates. They are connected
by configurable switches.

e RAMs provide accessible storage.

LUT

X

T
KEOREAS
2

L7

00
5
/2

R
::':.'.’
’z"
XS

L%

—
/7
TR
R
%
0,:0
K

2
o

%
%
0,
XK
s

%
0'0
RX

%%
5%
K

2

%

X7

2

CIRRY
5

V)
559
X%
X%
2

X7
X
%
X2
<
/29
'/':0
XA

o

"%
%
5%
0
X
&

SR

So How do we Program an FPGA?

FPGAs contain LUTs and
programmable interconnects.

Programmed using hardware
description languages.

Simulation quite slow.

High-Level Synthesis is an
alternative.

Faster testing through execution.

7;:'/':'#3 8 Deve Iofmzvff'
it wain () Z

for(iaT i=0 ; i< H;ias) i
vetorn i)

Coﬂri l aTion

> cPo

Motivation for Formal Verification

High-level synthesis is often quite unreliable:
e We fuzzed HLS tools (Herklotz et al. [2021]) and found they failed on

simple random test cases.

Tool Run-time errors
Vivado HLS 1.23%

Intel i++ 0.4%

Bambu 0.9.7-dev 0.3%

LegUp 4.0 0.1%

Solution

x86
CminorSel aarch64

1

HTL Verilog

Support for: all control flow, fixedpoint, non-recursive functions and local
arrays/structs/unions.

Outline

Example

Example: 3AC

main() {
xb = 3
e Three address code (3AC) int32[stack(8)] = x5
instructions are represented X4 = 6
as a control-flow graph int32[stack(4)] = x4
(CFQ). x1 =1
e Each instruction links to the x3 = stack(6) (int)

x2 = int32[x3 + x1 * 4 + 0]
return x2

next one.

HTL Overview

The representation of the finite state-machine with datapath is abstract and
called HTL.

Definition datapath :=Z* +— Verilog.stmnt
Definition controllogic := Z* + Verilog.stmnt

Record module: Type := mkmodule {
mod_datapath: datapath;
mod_controllogic: controllogic;
mod_reset: reg;
mod_ram: ram_spec;

Translation (3AC — HTL)

Translation from control-flow graph into a finite state-machine with
datapath.

Control-flow is translated into a finite state-machine.
Each 3AC instructions translated into equivalent Verilog statements.
Call stack implemented as Verilog array.

Pointers for loads and stores translated to array addresses.
® Byte addressed to word addressed.

Memory Inference Pass

e An HTL — HTL translation removes loads and stores.
® Replaced by accesses to a proper RAM.

stack[reg_5 / 4]
becomes
u_en <= (~ u_en);

wr_en <= 0;
addr <= reg_b / 4;

Translation (HTL — Verilog)

// Control logic

always @(posedge clk)
if ({reset == 32'd1}) state <= 32'd8;
else case (state)

32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
32'd6: state <= 32'd5; 32'd1:
32'd5: state <= 32'd4; default: ;

endcase

endmodule

Finally, translate the FSMD
into Verilog.

This includes a RAM
interface.

Data path is translated into a
case statement.

RAM loads and stores
automatically turn off RAM.

Control logic is translated
into another case statement
with a reset.

Outline

Verification

Verilog Semantics (Adapted from L66w et al. (2019))

e Top-level semantics are small-step operational semantics.

I Y S e

e At each clock tick, the whole module is executed using big-step

semantics.
wodole. Top (};

2, 2

el uwo(u/e

Main Challenges in Proof

Translation of memory model
Abstract/infinite memory model translated into concrete/finite RAM.

Integration of Verilog Semantics
¢ Verilog semantics differs from CompCert’s main assumptions of
intermediate language semantics.
® Abstract values like the program counter now correspond to values in
registers.

Outline

Results

tely 27 x slower

ivision approxima

with d

The bad news

‘ Vericert! [l LegUp no-opt no-chaining il f LegUp no-opt ‘

0 0 10 1
=} — —
—

dn8a7 03 aAnze)al BWI} co_yzowxunjmm._ O3 SAlEI3 Rl

17

uelpaw
W}
AOS1I}
MJAs

NglAs
WWwAs
pc-19pies
Aoulssnu
Aw
dwopn)

n
pg-1qooel
pL-1qooef
pg-iesy
Awwnsag
JaAwad
wwa3d
Neysiem-pAoy
PT-PIPs
uiginp
uagjiop
90UBIIBAOD
Avsajoyo
8o1q

seje

pe

wwg

wwg

bout 2 x slower

ithout division a

Wi

The better news

‘ Vericert! [l LegUp no-opt no-chaining il £ LegUp no-opt ‘

0 <+ N o~
==

[}

—

2
S

dn8a7 01 aAl3e1a1 BWIY UOIINdaXTFNSaT 0} dAlle)al BALY

18

uelpaw
W}
AJOSI14}

SJAs

MglAs
WWwAs
pc-19ptes
Aoulssnu
AW
dwopn

n
pe-1qo2e|
p-tqooel
pg-iesy
AWWwNsa3
FEVVEY]
wws3
lleysiem-pAoy
PZ-Pip
uiginp
uagjiop
90UelIBAOD
Asjse10y0
goiq

seje

pe

wwg

wwyg

Fuzzing Vericert with Csmith

Fuzzed Vericert with Csmith to check correctness theorem.

Tool Run-time errors
Vivado HLS 1.23%

Intel i++ 0.4%

Bambu 0.9.7-dev 0.3%

LegUp 4.0 0.1%

Vericert 6:-:63% 0%

Conclusion

Written a formally verified high-level synthesis tool in Coq based on
CompCert.
e HLS tool proven correct in Coq by proving translation of CFG into
FSMD.
e Small optimisations implemented such as RAM Inference.
e Performance without divisions comparable to LegUp without
optimisations.
Future Work
Make Vericert not only correct, but competitive.
¢ Implement scheduling and resource sharing.
e Add external module support.
e Add global variable support.

20

Thank you

Documentation
[=] 242 [u]

'h
=]

https://vericert.ymhg.org https://github.com/ymherklotz/vericert

OOPSLA’21 Preprmt

https://ymhg.org/papers/fvhls_oopsla21.pdf

21

https://vericert.ymhg.org
https://github.com/ymherklotz/vericert
https://ymhg.org/papers/fvhls_oopsla21.pdf

