
PLDI 2020: Student Research Competition — Yann Herklotz

Formally Verified High-level
Synthesis

Using CompCert to translate C to Verilog

Yann Herklotz - Imperial College London

High-level Synthesis

• Transform software (C) into hardware (Verilog).

• Behavioural description into hardware description.

2

Yann Herklotz - Imperial College London

High-level Synthesis

• Transform software (C) into hardware (Verilog).

• Behavioural description into hardware description.

2

• Requires automatic parallelisation of code.

• Often unpredictable.

• Quite fragile with what features are supported in C.

Yann Herklotz - Imperial College London

Formally Verified High-level Synthesis

3

Yann Herklotz - Imperial College London

Formally Verified High-level Synthesis

3

Implementation

OpenCL SDK Mainstream

Language

Yann Herklotz - Imperial College London

Formally Verified High-level Synthesis

3

Implementation

OpenCL SDK Mainstream

Language

Proof
Kundu et al.

Karfa et al.

SPARK

Yann Herklotz - Imperial College London

Formally Verified High-level Synthesis

3

Implementation

OpenCL SDK Mainstream

Language

Proof
Kundu et al.

Karfa et al.

SPARK

Mechanised

Handel C - Perna and
Woodcock 2010

Yann Herklotz - Imperial College London

Formally Verified High-level Synthesis

3

Implementation

OpenCL SDK Mainstream

Language

Proof
Kundu et al.

Karfa et al.

SPARK

Mechanised

Handel C - Perna and
Woodcock 2010

Our Contribution

Yann Herklotz - Imperial College London

Extending CompCert to Support Verilog

4

Clight C#minor RTL LTL PPC

CompCert

Yann Herklotz - Imperial College London

Extending CompCert to Support Verilog

Clight C#minor RTL LTL PPC

DFG/STMD Verilog

CompCert

Formal HLS

4

Yann Herklotz - Imperial College London

Verilog

5

• Verilog is a hardware description language.

Yann Herklotz - Imperial College London

Verilog

5

• Verilog is a hardware description language.

• Verilog designs can then be placed onto an FPGA.

Yann Herklotz - Imperial College London

Verilog

5

• Verilog is a hardware description language.

• Verilog designs can then be placed onto an FPGA.

• We used existing operational semantics for Verilog (Lööw et
al. 2019) and mechanised them in Coq.

• Had to modify them to support declarations properly.

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

• Many optimisations performed at various stages in the CompCert pipeline.

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

• Many optimisations performed at various stages in the CompCert pipeline.

• RTL is the first backend language and independent of any details of the CPU.

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

• Many optimisations performed at various stages in the CompCert pipeline.

• RTL is the first backend language and independent of any details of the CPU.

• Lower level languages become more specific to the CPU (register allocation,
pipelining…)

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

• Many optimisations performed at various stages in the CompCert pipeline.

• RTL is the first backend language and independent of any details of the CPU.

• Lower level languages become more specific to the CPU (register allocation,
pipelining…)

• We need a new intermediate language to support hardware optimisations
(scheduling, parallelisation of loops…).

Yann Herklotz - Imperial College London

Why Branch off at RTL?

6

• Many optimisations performed at various stages in the CompCert pipeline.

• RTL is the first backend language and independent of any details of the CPU.

• Lower level languages become more specific to the CPU (register allocation,
pipelining…)

• We need a new intermediate language to support hardware optimisations
(scheduling, parallelisation of loops…).

• Choose to use a state machine with datapath representation.

Yann Herklotz - Imperial College London

Translation Algorithm

7

1 int main() {
2 int max = 5;
3 int acc = 0;
4

5 for (int i = 0; i < max; i++) {
6 acc += i;
7 }
8

9 return acc + 2;
10 }

Yann Herklotz - Imperial College London

Translation Algorithm

7

1 int main() {
2 int max = 5;
3 int acc = 0;
4

5 for (int i = 0; i < max; i++) {
6 acc += i;
7 }
8

9 return acc + 2;
10 }

• Translation of simple accumulator into
hardware.

Yann Herklotz - Imperial College London

Translation Algorithm

7

1 main() {
2 11: x3 = 5
3 10: x2 = 0
4 9: x1 = 0
5 8: nop
6 7: if (x1 <s x3) goto 6 else goto 3
7 6: x2 = x2 + x1 + 0 (int)
8 5: x1 = x1 + 1 (int)
9 4: goto 7
10 3: x4 = x2 + 2 (int) goto 1
11 2: x4 = 0
12 1: return x4
13 }

• Translation of simple accumulator into
hardware.

• Generate RTL from C with CompCert.

Yann Herklotz - Imperial College London

Translation Algorithm

7

1 main() {
2 control {
3 11: goto 10
4 10: goto 9
5 9: goto 8
6 8: goto 7
7 7: goto if x1 <s x3 goto 6 else goto 3
8 6: goto 5
9 5: goto 4
10 4: goto 7
11 3: goto 1
12 2: goto 1
13 1: goto 1
14 }
15 data {
16 11: x3 = 5
17 10: x2 = 0
18 9: x1 = 0
19 8: nop
20 7: nop
21 6: x2 = x2 + x1 + 0 (int)
22 5: x1 = x1 + 1 (int)
23 4:
24 3: x4 = x2 + 2 (int)
25 2: x4 = 0
26 1: ret = x4
27 }
28 }

• Translation of simple accumulator into
hardware.

• Generate RTL from C with CompCert.

• Split the up each instruction into a state
transition and a data operation.

Yann Herklotz - Imperial College London

1 module main(reg_7, reg_8, clk, finish, ret);
2 input [0:0] reg_7;
3 input [0:0] reg_8;
4 input [0:0] clk;
5 output reg [0:0] finish;
6 output reg [31:0] ret;
7 always @(posedge clk)
8 if ((reg_8 == 1'd1)) state <= 4'd11;
9 else
10 case (state)
11 4'd8: state <= 3'd7;
12 3'd4: state <= 3'd7;
13 2'd2: state <= 1'd1;
14 4'd10: state <= 4'd9;
15 3'd6: state <= 3'd5;
16 1'd1: state <= 1'd1;
17 4'd9: state <= 4'd8;
18 3'd5: state <= 3'd4;
19 2'd3: state <= 1'd1;
20 4'd11: state <= 4'd10;
21 3'd7: state <= ({$signed(reg_1) < $signed(reg_3)} ?
22 3'd6 : 2'd3);
23 default:;
24 endcase
25 always @(posedge clk)
26 case (state)
27 4'd8: ;
28 3'd4: ;
29 2'd2: reg_4 <= 32'd0;
30 4'd10: reg_2 <= 32'd0;
31 3'd6: reg_2 <= {reg_2 + {reg_1 + 32'd0}};
32 1'd1: begin
33 finish <= 1'd1;
34 ret <= reg_4;
35 end
36 4'd9: reg_1 <= 32'd0;
37 3'd5: reg_1 <= {reg_1 + 32'd1};
38 2'd3: reg_4 <= {reg_2 + 32'd2};
39 4'd11: reg_3 <= 32'd5;
40 3'd7: ;
41 default:;
42 endcase
43 reg [31:0] reg_4;
44 reg [31:0] reg_2;
45 reg [31:0] state;
46 reg [31:0] reg_1;
47 reg [31:0] reg_3;
48 endmodule

Translation Algorithm

7

• Translation of simple accumulator into
hardware.

• Generate RTL from C with CompCert.

• Split the up each instruction into a state
transition and a data operation.

• This state machine can be translated
directly to a syntactical representation of
Verilog.

Yann Herklotz - Imperial College London

1 module main(reg_7, reg_8, clk, finish, ret);
2 input [0:0] reg_7;
3 input [0:0] reg_8;
4 input [0:0] clk;
5 output reg [0:0] finish;
6 output reg [31:0] ret;
7 always @(posedge clk)
8 if ((reg_8 == 1'd1)) state <= 4'd11;
9 else
10 case (state)
11 4'd8: state <= 3'd7;
12 3'd4: state <= 3'd7;
13 2'd2: state <= 1'd1;
14 4'd10: state <= 4'd9;
15 3'd6: state <= 3'd5;
16 1'd1: state <= 1'd1;
17 4'd9: state <= 4'd8;
18 3'd5: state <= 3'd4;
19 2'd3: state <= 1'd1;
20 4'd11: state <= 4'd10;
21 3'd7: state <= ({$signed(reg_1) < $signed(reg_3)} ?
22 3'd6 : 2'd3);
23 default:;
24 endcase
25 always @(posedge clk)
26 case (state)
27 4'd8: ;
28 3'd4: ;
29 2'd2: reg_4 <= 32'd0;
30 4'd10: reg_2 <= 32'd0;
31 3'd6: reg_2 <= {reg_2 + {reg_1 + 32'd0}};
32 1'd1: begin
33 finish <= 1'd1;
34 ret <= reg_4;
35 end
36 4'd9: reg_1 <= 32'd0;
37 3'd5: reg_1 <= {reg_1 + 32'd1};
38 2'd3: reg_4 <= {reg_2 + 32'd2};
39 4'd11: reg_3 <= 32'd5;
40 3'd7: ;
41 default:;
42 endcase
43 reg [31:0] reg_4;
44 reg [31:0] reg_2;
45 reg [31:0] state;
46 reg [31:0] reg_1;
47 reg [31:0] reg_3;
48 endmodule

Translation Algorithm

7

• Translation of simple accumulator into
hardware.

• Generate RTL from C with CompCert.

• Split the up each instruction into a state
transition and a data operation.

• This state machine can be translated
directly to a syntactical representation of
Verilog.

Yann Herklotz - Imperial College London

1 module main(reg_7, reg_8, clk, finish, ret);
2 input [0:0] reg_7;
3 input [0:0] reg_8;
4 input [0:0] clk;
5 output reg [0:0] finish;
6 output reg [31:0] ret;
7 always @(posedge clk)
8 if ((reg_8 == 1'd1)) state <= 4'd11;
9 else
10 case (state)
11 4'd8: state <= 3'd7;
12 3'd4: state <= 3'd7;
13 2'd2: state <= 1'd1;
14 4'd10: state <= 4'd9;
15 3'd6: state <= 3'd5;
16 1'd1: state <= 1'd1;
17 4'd9: state <= 4'd8;
18 3'd5: state <= 3'd4;
19 2'd3: state <= 1'd1;
20 4'd11: state <= 4'd10;
21 3'd7: state <= ({$signed(reg_1) < $signed(reg_3)} ?
22 3'd6 : 2'd3);
23 default:;
24 endcase
25 always @(posedge clk)
26 case (state)
27 4'd8: ;
28 3'd4: ;
29 2'd2: reg_4 <= 32'd0;
30 4'd10: reg_2 <= 32'd0;
31 3'd6: reg_2 <= {reg_2 + {reg_1 + 32'd0}};
32 1'd1: begin
33 finish <= 1'd1;
34 ret <= reg_4;
35 end
36 4'd9: reg_1 <= 32'd0;
37 3'd5: reg_1 <= {reg_1 + 32'd1};
38 2'd3: reg_4 <= {reg_2 + 32'd2};
39 4'd11: reg_3 <= 32'd5;
40 3'd7: ;
41 default:;
42 endcase
43 reg [31:0] reg_4;
44 reg [31:0] reg_2;
45 reg [31:0] state;
46 reg [31:0] reg_1;
47 reg [31:0] reg_3;
48 endmodule

Translation Algorithm

7

• Translation of simple accumulator into
hardware.

• Generate RTL from C with CompCert.

• Split the up each instruction into a state
transition and a data operation.

• This state machine can be translated
directly to a syntactical representation of
Verilog.

Yann Herklotz - Imperial College London

Proving Equivalence of Translation

8

Yann Herklotz - Imperial College London

Proving Equivalence of Translation

8

• Relational specification of translation to a state-machine with datapath (STMD).

Yann Herklotz - Imperial College London

Proving Equivalence of Translation

8

• Relational specification of translation to a state-machine with datapath (STMD).

• Assuming that this relation holds, we prove a forward simulation based on the
semantics of RTL and our STMD.

Yann Herklotz - Imperial College London

Proving Equivalence of Translation

8

• Relational specification of translation to a state-machine with datapath (STMD).

• Assuming that this relation holds, we prove a forward simulation based on the
semantics of RTL and our STMD.

• We then do the same between the STMD representation and Verilog.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

• No support for global memory and floating point.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

• No support for global memory and floating point.

• No hardware specific optimisations performed.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

• No support for global memory and floating point.

• No hardware specific optimisations performed.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

• No support for global memory and floating point.

• No hardware specific optimisations performed.

• Working on finishing all the proofs, and then implementing scheduling.

Yann Herklotz - Imperial College London

Limitations and Future Work

9

• Most proofs have been implemented and we can properly use it now.

• No support for global memory and floating point.

• No hardware specific optimisations performed.

• Working on finishing all the proofs, and then implementing scheduling.

• Design a better intermediate language to handle operations in the same clock cycle.

Yann Herklotz - Imperial College London

Thank you

