Formally Verified High-level
Synthesis

Using CompCert to translate C to Verilog

PLDI 2020: Student Research Competition — Yann Herklotz

High-level Synthesis

* Transform software (C) into hardware (Verilog).

* Behavioural description into hardware description.

Yann Herklotz - Imperial College London 2

High-level Synthesis

* Transform software (C) into hardware (Verilog).

* Behavioural description into hardware description.
* Requires automatic parallelisation of code.

* Often unpredictable.

* Quite fragile with what features are supported in C.

Yann Herklotz - Imperial College London 2

Formally Verified High-level Synthesis

Yann Herklotz - Imperial College London 3

Formally Verified High-level Synthesis

Implementation

OpenCL SDK

Yann Herklotz - Imperial College London 3

Formally Verified High-level Synthesis

SPARK

Implementation Proof

Kundu et al.
VIVADO'
Karfa et al.

OpenCL SDK

Yann Herklotz - Imperial College London 3

Formally Verified High-level Synthesis

Handel C - Perna and
SPARK Woodcock 2010

Implementation (Proof

(intel®>

OpenCL SDK

Kundu et al.

Karfa et al.

Yann Herklotz - Imperial College London 3

Formally Verified High-level Synthesis

Handel C - Perna and
SPARK Woodcock 2010

Implementation (Proof

(intel®>

OpenCL SDK

Kundu et al.

Karfa et al.

Our Contribution

Yann Herklotz - Imperial College London 3

Extending CompCert to Support Verilog

Yann Herklotz - Imperial College London 4

Extending CompCert to Support Verilog

DFG/STMD

Yann Herklotz - Imperial College London 4

Verilog

* Verilog is a hardware description language.

Development

RI00 Ri08 RI09
4
R
1 2
nr i
€40
s}
- cis
U u
L €]
AN
vees| (i
llll [J

| I (4 s |
i ' L W2 swig MW W22 — 3 w2 ”"
AR nrlm C’!]@

W”UDOHUDUHHUUUUHHD ﬁ

Yann Herklotz - Imperial College London

Verilog

* Verilog is a hardware description language.

 Verilog designs can then be placed onto an FPGA.

IA"R” ||AI| rlle IDD

f)“DDGHUDUHHUDUUHI‘W

Yann Herklotz - Imperial College London 5

Verilog

* Verilog is a hardware description language.

 Verilog designs can then be placed onto an FPGA.

¢ § b b DGE
; ,i@",'%‘ Qﬁl , F|PCA ; T AT,
evelopmen a

]:uuut _iﬁi"f"
luuu:ﬁ‘ :

@ T alallalal #l17 lij

e v v

* We used existing operational semantics for Verilog (LOOW et
al. 2019) and mechanised them in Coq.

* Had to modify them to support declarations properly.

Yann Herklotz - Imperial College London 5

Why Branch off at RTL?

Yann Herklotz - Imperial College London 6

Why Branch off at RTL?

* Many optimisations performed at various stages in the CompCert pipeline.

Yann Herklotz - Imperial College London 6

Why Branch off at RTL?

* Many optimisations performed at various stages in the CompCert pipeline.

* RTL is the first backend language and independent of any details of the CPU.

Yann Herklotz - Imperial College London 6

Why Branch off at RTL?

* Many optimisations performed at various stages in the CompCert pipeline.
* RTL is the first backend language and independent of any details of the CPU.

* Lower level languages become more specific to the CPU (register allocation,
pipelining...)

Yann Herklotz - Imperial College London 6

Why Branch off at RTL?

* Many optimisations performed at various stages in the CompCert pipeline.
* RTL is the first backend language and independent of any details of the CPU.

* Lower level languages become more specific to the CPU (register allocation,
pipelining...)

* We need a new intermediate language to support hardware optimisations
(scheduling, parallelisation of loops...).

Yann Herklotz - Imperial College London 6

Why Branch off at RTL?

* Many optimisations performed at various stages in the CompCert pipeline.
* RTL is the first backend language and independent of any details of the CPU.

* Lower level languages become more specific to the CPU (register allocation,
pipelining...)

* We need a new intermediate language to support hardware optimisations
(scheduling, parallelisation of loops...).

* Choose to use a state machine with datapath representation.

Yann Herklotz - Imperial College London 6

Translation Algorithm

int main() {
int max = 5;
int acc = 0;

for (int i = 0; i < max; i++) {

acc += 1;

+

return acc + 2;

Translation Algorithm

* Translation of simple accumulator into
hardware.

int main() {
int max = 5;
int acc = 0;

for (int i = 0; i < max; i++) {
acc += 1;

+

return acc + 2;

Translation Algorithm

* Translation of simple accumulator into

hardware.

main() {

et * Generate RTL from C with CompCert.

9: x1 =0

3: mnop

7: if (x1 <s x3) goto 6 else goto 3

6: x2 =x2 + x1 + 0 (int)

5: x1 =x1 + 1 (int)

4. goto 7

3: x4 = x2 + 2 (int) goto 1

2: x4 =0

1: return x4

Translation Algorithm

main() {
control A
11: goto 10
10: goto 9

9: goto & * Translation of simple accumulator into

. goto 7

: goto if x1 <s x3 goto 6 else goto 3 hardware

. goto 5
: goto 4

ore 1 * Generate RTL from C with CompCert.

: goto 1
. goto 1

oy * Split the up each instruction into a state
; transition and a data operation.

= N W 0o N O

11: x3
10: x2
9: x1 =0

: nop

: nop

. x2 = x2 + x1 + 0 (int)
: x1 = x1 + 1 (int)

- x4 = x2 + 2 (int)
x4 = 0
- ret = x4

= N W 01 N O

Translation Algorithm

module main(reg_7, reg_8, clk, finish, ret);
input [0:0] reg_7;
input [0:0] reg_8;
input [0:0] clk;

reg [0:0] finish;

reg [31:0] ret;

always @(posedge clk)

* Translation of simple accumulator into

output
output

4'd8: 3'd7;

o s < hardware.

4'd10: <= 4'd9;

3'd6: = 3'db;

1'd1: = 1'd1;

4'd9: = 4'd8; 4

e * Generate RTL from C with CompCert.
4'd11: state <= 4'd10;

3'd7: state <= ({$signed(reg_1) < $signed(reg_3)} 7

3'dé : 2'd3);

 Split the up each instruction into a state
transition and a data operation.

2'd2: reg_4 <= 32'd0;

4'd10: reg_2 <= 32'd0;

3'd6: reg_2 <= {reg_2 + {reg_1 + 32'd0}};
1'dl: begin

casen <= 110 * This state machine can be translated

= Ion N directly to a syntactical representation of

default:; °
endcase erl Og.
re : re
T

inpuct LVUIU]

CLlK;

output reg [0:0] finish;
output reg [31:0] ret;
always Q@(posedge clk)
== 1'dl)) state <= 4'dl1l;

if ((reg_8
else

case (state)

4'd8:
3'd4:
2'd2:
4'd10:
3'd6:
1'd1l:
4'd9:
3'd5:
2'd3:
4'd11:
3'd7:

state <= 3'd7;
state <= 3'd7;
state <= 1'd1l;
state <= 4'd9;
<= 3'd5;
<= 1'd1l;
<= 4'd8;
<= 3'd4;
<= 1'd1l;
state <= 4'd10;

state
state
state
state
state

Translation Algorithm

state <= ({$signed(reg_1) < $signed(reg_3)} 7

default:;

endcase

3'd6

always @(posedge clk)
case (state)

. 2'd3);

Translation of simple accumulator into
hardware.

Generate RTL from C with CompCert.

Split the up each instruction into a state
transition and a data operation.

This state machine can be translated
directly to a syntactical representation of
Verilog.

Translation Algorithm

aerault: ;
endcase

always Q@(posedge clk)
case (state)

4'd8: ;
3'd4d: ;
2'd2: reg_ 4 <= 32'dO;
4'd10: reg_2 <= 32'd0;
3'd6: reg_2 <= {reg_2 + {reg_1 + 32'd0}};
1'dl: begin
finish <= 1'd1;
ret <= reg_4;
end
4'd9: reg_1 <= 32'dO;
3'd5: reg_1 <= {reg_1 + 32'd1l};
2'd3: reg_4 <= {reg_2 + 32'd2};
4'd1l: reg_3 <= 32'db;
3'd7: ;
default:;

endcase

reg
reg
reg

(31:0] reg_4;
(31:0] reg_2;
31:0] state;

Translation of simple accumulator into
hardware.

Generate RTL from C with CompCert.

Split the up each instruction into a state
transition and a data operation.

This state machine can be translated
directly to a syntactical representation of
Verilog.

Proving Equivalence of Translation

Yann Herklotz - Imperial College London 8

Proving Equivalence of Translation

* Relational specification of translation to a state-machine with datapath (STMD).

Yann Herklotz - Imperial College London 8

Proving Equivalence of Translation

* Relational specification of translation to a state-machine with datapath (STMD).

* Assuming that this relation holds, we prove a forward simulation based on the
semantics of RTL and our STMD.

Yann Herklotz - Imperial College London 8

Proving Equivalence of Translation

* Relational specification of translation to a state-machine with datapath (STMD).

* Assuming that this relation holds, we prove a forward simulation based on the
semantics of RTL and our STMD.

* We then do the same between the STMD representation and Verilog.

Yann Herklotz - Imperial College London 8

Limitations and Future Work

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

* No support for global memory and floating point.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

* No support for global memory and floating point.

* No hardware specific optimisations performed.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

* No support for global memory and floating point.

* No hardware specific optimisations performed.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

* No support for global memory and floating point.

* No hardware specific optimisations performed.

* Working on finishing all the proofs, and then implementing scheduling.

Yann Herklotz - Imperial College London 9

Limitations and Future Work

* Most proofs have been implemented and we can properly use it now.

* No support for global memory and floating point.

* No hardware specific optimisations performed.

* Working on finishing all the proofs, and then implementing scheduling.

* Design a better intermediate language to handle operations in the same clock cycle.

Yann Herklotz - Imperial College London 9

Thank you

Yann Herklotz - Imperial College London

