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Abstract 1 Introduction

The Gated Static Single Assignment (GSA) form was pro- Important program optimisations in compilers require global
posed by Ottenstein et al. in 1990, as an intermediate rep- reasoning on the values that are computed by the program.
resentation for implementing advanced static analyses and More precisely, one has to be able to statically infer facts
optimisation passes in compilers. Compared to SSA, GSA about program instructions that span several basic blocks in
records additional data dependencies and provides more con-the program’s control- ow graph. Furthermore, this global
text, making optimisations more e ective and allowing one  reasoning has to account for side-e ects, such as variable
to reason about programs as data- ow graphs. modi cations, memory writes, or observable outputs. More
Many practical implementations have been proposed that generally, dependencies between instructions have to be
follow, more or less faithfully, Ottenstein et al.’s seminal carefully analysed. Implementations of these optimisations
paper. But many discrepancies remain between these, de-are therefore subtle and particularly error-prone.
pending on the kind of dependencies they are supposedto  To overcome these di culties, many techniques have been
track and to leverage in analyses and code optimisations. proposed by the compiler community. These range from
In this paper, we present a formal semantics for GSA, adequate program intermediate representations (IRs) to so-
mechanised in Coq. In particular, we clarify the nature and phisticated auxiliary data structures that complement the
the purpose of gates in GSA, and de ne control- ow insensi- program representation. Most notably, Rosen et[al] pro-
tive semantics for them. We provide a speci cation that can  posed the static single assignment (SSA) form in the late 80’s,
be used as a reference description for GSA. We also specify awhich enables an extensive global redundancy elimination
translation from SSA to GSA and prove that this speci cation of computations. In SSA, each variable has a single de nition
is semantics-preserving. We demonstrate that the approach point: each time a variable is modi ed in the initial program,
is practical by implementing the speci cation as a validated a new version of that variable is introduced. To ensure this
translation within the CompCertSSA veri ed compiler. property on programs with branches and junction points,
SSA provides a dedicated instruction, thenstruction. At
a control- ow junction point with, say, three predecessors,
ag-instruction G, = q'Ge Ge G° selects among the three
versionsG, G andG of G the one which should be assigned
Keywords: Veri ed Compilation, SSA, Gated SSA to G, depending on the control- ow execution path that led
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the SSA property, leading to an IR devoted to compilation
targeting data- ow architectures and simulators. In GSdy,
instructions are augmented with control- ow information,
so that they become referentially transparent in the fol-
lowing sense: while in the traditional SSA form, one needs
to keep track of the execution control- ow to select the
correct argument of a@-instruction, the GSA form extends
g-instructions with gatesi.e. Boolean conditions character-
ising the control- ow paths leading to thag-instruction
and hence determining whicfj-argument has to be selected.
For example, suppose an S§Anstruction G = q1Ge G°

is placed at a junction point whose corresponding branch-
ing point is a test on conditior2. In GSA, they-instruction
would be gated as follow& = 112« @+12« GP°, meaning

if condition 2 evaluates to true, then it will selech, other-
wise it will select&. The selection of thg-arguments is
no longer guided by the dynamic control- ow predecessor
that led there, but is uniquely determined by the gate that
evaluates to true. Note that the gate’s conditions will refer to
program variables and are be evaluated with respect to the
current execution state. Most of the successful applications
of GSA can be found in the domain of parallelising compil-
ers [3, 16 29 where dependency analysis plays a crucial
role. More recently, GSA has also been applied to the eld of
high-level synthesis11], and thread divergence and thread
aggregation for e cient compilation to GPUs [25].

Despite the impressive advances in the eld of compiler
veri cation, where optimisation techniques are becoming
more realistic and closer to the ones used in production non-
veri ed compilers, GSA-based techniques remain largely
unexplored. This can be explained (i) by the lack of a ref-
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Normalise Join Points
add no-ops at predecess

(4]

Renumber CFG l
RTL [21] RTL
GSA Generation GSA Destruction

Figure 1. Key phases to integrate GSA into CompCertSSA.
This work comprises the phases in the shaded boxes in addi-
tion to the de nition of the GSA language. The other phases
which are not shaded are provided by either CompCert or
CompCertSSA.

Normalise Loops
RTL — single loop entry / latch> RTL
exit landing pads

SSA Generation
[4]

This paper is organised as follows. First, Section 2 illus-
trates GSA form through an example. In Section 3, we recall
the required background on CompCertSSA, the formally ver-

i ed SSA middle-end where we integrate our formalisation.
Section 4 de nes our GSA representation. Section 5 details
our conversion from SSA to GSA and its proof of correct-
ness. Section 6 describes the key phases we implement to
integrate GSA into CompCertSSA: this comprises a normal-
isation of loops, the translation from SSA to GSA, as well
as an non-veri ed destruction phase of GSA back to SSA
(see Fig. 1). Related work is discussed in Section 7, followed
by concluding remarks.

erence GSA form, as the notion of dependence is carefully 2 Motivating Example
tuned to each precise use case, and (ii) by the absence of ane illustrate and explain informally the GSA form on a

clear and precise semantic description of GSA in the com-

piler literature, especially regarding the evaluation of gates.
The GSA form is central and crucial for these compilation
techniques, as it provides a useful base on top of which more
sophisticated analyses and optimisations can be built.

In this paper, we aim to bridge the semantic gap existing
between GSA and the well-understood SSA form. Providing
a fully edged and fully veri ed GSA code optimiser is far

beyond the scope of the paper. Instead, we focus here on
essential components of GSA, i.e. the speci cation, construc-

tion and semantics of gates. We conducted our formalisation
in the Coq proof assistant. Our contributions are as follows:

1. We de ne a semantics for GSA in Section 4, featuring
a control- ow insensitive semantics for gates;

2. We provide a formal speci cation of a GSA construc-
tion algorithm in Section 5, and we prove it implies
the semantic preservation of SSA;

3. We apply our work to a realistic SSA-based middle-end,
demonstrating empirically the validity and relative
completeness of our speci cation in Section 6.
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simple example program. Let us consider the following C
code snippet, where function takes as input an integes
and computes a result using a for-loop.

int f(int n) {
int x = 1;

for (int i = 1; 1 < n; i++)
if (x < 9) x = x + 2;
else if (x > 50) x = x + 1;
else x = 2 x x;

return x;

In a compiler chain, programs are usually represented as
a control- ow graph (CFG) of instructions, which simpli es
their processing through analyses and optimisations. Fig. 2a
illustrates this CFG representation, called RTL in CompCert.

In SSA (Fig. 2b), each variable is de ned exactly once: this
makes the link between the program point where a variable
is de ned and the program point where it is used explicit in
the syntax. SSA extends RTL withtinstructions that handle
control- ow joins. At node 12 theq-instruction expresses



Mechanised Semantics for Gated SSA

@eso.

(a) RTL form

(b) SSA form
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i1 = ¢lig, ip® i = ptip, ip®

x1 1= ¢h1xp, X5° X1 = ptxg, x5°

46<°]
G=G.2]| @ G>50] >50]
— N\ N

dc-6. 1] @Ge=2G]| =2 G]
/

Tnop | Inop |

x5= yiixg < 9 x2°,
txp 97 x1>5Qx3°
ix; 97 x1  5Qx4°°

(c) GSA form

Figure 2. Example program illustrating Gated SSA compared to RTL and SSA.

that G gets the value of eithe&, G or G;, depending on
whether the control- ow of execution dynamically origi-
nates from nodes, 9, or 11respectively. Ag-block (grey
nodes in Fig. 2b) groups all the-instructions at a given
junction node (e.g. nod8). In addition to that, the CFG is
normalised in the following sense: (i) onlgnop instructions,
i.e. no-op instructions, can lead to a junction point, and (ii)
all nodes are syntactically reachable from the entry node.

GSA (Fig. 2c) in turn extends SSA. In G8Ainstructions
are replaced by - andWinstructions, and new instructions
called[ -instructions are introduced. These instructions are
meant to better re ect control-dependencies. Indeed, they
include strictly more information tharg-instructions, and
therefore allow for the formulation of di erent types of se-
mantics, such as demand-driven or data- ow driven execu-
tions. An SSAg-instruction becomes either @instruction
whenitis located at a simple junction point (e.g. noti®, or a
" -instruction when it is located at a loop-header (e.g. n@®je
TheWinstructions are augmented with gates, namely pred-
icates characterising the control- ow path corresponding
to the reaching de nition of each of the-arguments. For
Winstructions, the selection of the argument is based on the
predicate evaluating to true. For instance, at natiz predi-
cates guarding th&¥arguments represent paths from node
to nodel2 they are mutually exclusive, and each time node
12is reached through the program execution, only one of
them is satis ed.

Regarding loops, GSA uses two kinds of instructions. At
loop headers, GSA usesinstructions, to re ect the loop
construct; they update variables modi ed in the loop body,
thereby handling loop-carried dependencies properly. When
loops have a single entry point and a single latchinstruc-
tions are of the formG = "~ 1G* G°, whereG is the initial
value before entering the loop, ang is the version ofG
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modi ed inside the loop body. Intuitively, arguments of a
" -instruction are not guarded like iWinstructions, since
no useful predicate helps to distinguish whé or G is the
right version to use. Indeed, the execution is always owing
from the loop-latch back to the header, and yet, guarding
the selection ofg with the True predicate wouldn’t always
be correct. At loop exits, GSA introducgsinstructions (e.g.
nodel4). An[ -instruction G=[ 12+ G° selects a loop-de ned
variableG, when the loop-exit conditior2 is satis ed. Intu-
itively, [ -instructions introduce new variables to decouple
loop-carried dependencies from variable uses occurring after
the loop has ended.

Another folklore intuition about GSA is that thé&V, " -
and[ -instructions make it referentially transparent: each of
them denotes an equality between the left-hand side variable
and their arguments, that only holds when theath condition
expressed by the Boolean predicate is true.

We argue that the main challenge in understanding GSA
lies in the de nition, speci cation, and construction of gates.
First, depending on the application use cases, these gates
re ect di erent subsets of dependencies. It is currently an
open problem to determine which dependencies must be
kept track of to correctly re ect the semantics of the initial
SSA program. Second, it is currently unclear in the recent
literature which algorithms are precisely used to generate
these gates. Seminal papers are cited, but without giving
many details about the concrete implementations, let alone
a concise speci cation thereof. We argue that gates are the
most critical component of GSA, and that they must be bet-
ter understood and mastered by the community. Another
challenge is that gates must be interpreted as path predicates,
rei ed in the very code of GSA programs. Hence, for gates to
make proper sense, we need to de ne what it means to eval-
uate a gate. In fact, the situation is much more subtle than
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one might rst think: gates involve program variables that 8 = Inoph° no-op instr.
may be de ned or not, depending on the path that is actually | A Iop'>#AR<¢ arith. operator>; on A
taken during the execution. This raises several challenges | Icond®>eR eje;° conditional>; on A
related to the underlying logic behind the apparently simple . other RTL instructions
syntax of gates. These are the challenging and interesting | = ;7! 8 instruction map
problems that we tackle in this work. & = A _917&0 g-instruction
To do this, we employ a compiler-correctness approach. @ = ;7! § g-block map
Our goal is to devise a reference GSA form, and provide it 5 = 1 9° SSA function

with a formal semantics re ecting the control- ow insensi-

tivity of the semantics of gates. In this context, GSA is correct Figure 3. Syntax of SSA.
when it re ects all the dependencies required to, provably,

mimic the semantics of the initial SSA program.

3 Background on SSA in CompCertSSA 51 |°=binopt®c  5vI°

We integrate our formalisation work into the CompCert-  S154ersemP 1St 54%rseme

SSA compiler4], which is an extension of the CompCert

C compiler (. CompCert is programmed and veri ed us- 571 |° = hInoptl®c 5v |9 5 1% = blsc

ing Coq [1§. The compiler itself is written as a sequence
of 20 compiler passes, from the CompCert C source lan-
guage down to assembly, going through 8 intermediate lan- * S154ersem® ISt 54%ps%me
guages. Among them is RTL (Register Transfer Language), a
CFG-based representation of programs, and on which most
CompCert’s optimisations are performed. Compiler passes
are either programmed and veri ed in Coq using simulation
techniques, or programmed in OCaml and veri ed in Coq,
using translation validation. The correctness theorem states ) ) o
that the compilation is semantics-preserving. It decomposes anges over pseudo-registers. Thep instruction is a no-op
into theorems for each of the 20 compilation passes. instruction, it just branches to its explicit successoirhelop

CompCertSSA extends CompCert with an SSA-based Op_instructioq applies an operatof, to a list of pseudo.—registers
timising middle-end. The middle-end is plugged in at the R, stores its result in a registely and branches to its succes-
level of RTL, and includes a validated SSA construction, SSA-SOT node;. TheIcond instruction conditionally branches to
based optimisations, as well as an SSA destruction phase,1 0" l2 depending on the value of the condition operatey
going back to RTL, on which register allocation takes place. @Pplied toA. The® map stores blocks af-instructions. We
The SSA form in CompCertSSA was designed to be as closeWrite 5 ®%° for the g-block at node . A g-instruction writ-
as possible to the RTL form. In particular, it reuses all regular €A q*A° assigns to the value of one of its operands
instructions, arithmetic and conditional operators. In . L o

This section introduces the syntax and semantics of SSAof !N SSA, there is a clear distinction between RTL-like in-

CompCertSSA, and recalls some related background notions.Structions andg-instructions: both are stored in distinct
maps; this simpli es the conversion to SSA, and allows for a

Notations. For option types, we writehc (read: some  smooth integration in CompCert. Atj-blocks, are located at

predsi® =1 1" rso rsf

Figure 4. Semantics of SSA (excerpt).

x) for the presence of valu§ and; (read: none)forthe  junction points, and the CFG is normalised so that onhop
absence of value. We write :: Cfor a list with head and instructions can lead to a junction point. Last, SSA functions
tail G andn for the empty list. Vectors are writterg, andg; are equipped with a well-formedness predicatedfSSA™,
denotes the -th element of E. capturing essential properties of SSA functions: structural
) constraints, unique de nitions and strictness propertie§ [
3.1 SSA Representation The placement ofj-instructions in SSA relies on the no-

An SSA functionb (see Fig. 3) is modelled as a record made of tion of dominance between node4 (. A node8dominates
a CFG of instructions over pseudo-registers, and a map a node9(written 8 9 if every path from the entry node to
for g-instructions.l is modelled as a partial map from nodes  9goes through8 Node8strictly dominates9(written 8 9
to single instructions. The instruction setincludes arithmetic when8 9but8< 9 We write8+ 9to mean that8does not
operations, memory loads and stores, conditional and un- dominate9 The (unique) immediate dominator of a no®e
conditional jumps, function calls, and a return statement. is the strict dominator of9that does not strictly dominate
Each instruction explicitly carries the labels of successor in- any other strict dominator of9 In Fig. 2b, we havd 3,
structions. In the following] ranges over node labels, ard 5« 12and noded is the immediate dominator of nod&2
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3.2 Semantics of SSA
The small-step semantics of SSA is de ned as a relation

" ( N (% between a global environment and stateg
and(© associating to a program loaded inthe set of all its
observable behaviours, comprising a tragef external ac-
tions, emitted by certain speci c instructions such as external
function calls. Observable behaviours include terminating,
diverging and going wrong?21]. In this paper, to simplify the
presentation, and we omit . For the sake of completeness,
we keep the trace in small-step execution steps, although the
instructions we present in this paper do not emit observable
events, and thus step with the empty trace

Semantic states are writte§15 dersem°. They carry the
current function 5, a program counted, a maprs from
pseudo-registers to values, and a memory stateOther
semantic states include call states and return states. For the
sake of presentation, in this paper, we focus on regular states,
as we only expose the intra-procedural part of SSA.

Figure 4 gives the most relevant semantic rules for SSA.
The rules for instructions other thamnop closely match their
RTL counter-part from CompCert, we thus omit them for
space reasons. Indeed, the most important rules are the one
for the Inop instruction, becausg-blocks can only be placed
at junction points in the CFG, and onlynop can lead to
a junction point. The rst rule of Fig. 4 gives the rule for
executing aninop instruction at program pointl, when its
successol® is not a junction point (i.e.5 v 19. Here, the
standard RTL rule applies, as there is geblock to execute,
and execution steps t& without modifying the registers
staters. The second rule corresponds to the case whi€re
is a junction point (i.e5 v 19. In that case, a (potentially
empty)g-block1, exists, and is executed before reaching the
regular instruction atl®. All its g-instructions are executed
in parallel and their result is assigned to their respective

destination registersl(ss: " rs «f» rs9). A giveng-instruction
uses only one of its operands, theth, where: is determined

by a conventional numbering of the predecessors of each
of the CFG nodespfedsI®, = 1). The execution updates
the registers state tos®, so that the value of each register
assigned irl, becomes the value of the-th operand of the
correspondingy-instruction in rs.

4 Gated SSA Representation

To de ne our Gated SSA form, we take inspiration from
previous existing work on GSAY, 9,12 13 16 23 28 29.
Precisely, we de ne GSA as an extension of the SSA form pre-
sented in the previous section. The syntax for GSA therefore
follows the syntax for SSA closely, and many SSA concepts
translate to GSA.
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8 = Inopi° no-op instr.
Iop 1>g0 R 8 arith. op.>; on
Ay 150 R 9 ith R
Icondi>ge A oo ) conditional>; on
| di>e R 0 ditional R
| ...
I o= ;718 regular instr. map
8 = A T AA° merge instr.
| A W20 A%

M o= 7' & merge-block map
§ = A [1?2R selection instr.
E :=.,7§ selection-block map
5 = 1] eM<E®° GSA function

= 1> R0 cond. op>.on AR

Falsej Truej Undef
| 2j2]?21_?2]71" 22

predicates

Figure 5. Syntax of GSA.

4.1 Syntax of GSA

The de nition of a function is shown in Fig. 5. It includes
three maps, a map for the CFG over regular instructions
(as in SSA), amall for merge instructions, i.e/¥ and " -
instructions, and a maj for [ -instructions. This separation
makes it a natural extension of SSA, because only the map
E has to be newly constructed in GSA. The mip has the
same structure a® in SSAg-instructions have either been
converted to either - or Winstructions. Each of thé/ and

E maps, which contain the new GSA instructions, are maps
from program counters to blocks of GSA instructions.

We distinguish two categories of GSA instructions. First,
merge instructionmiclude ™ - andWinstructions, and replace
the SSAg-instructions.” -instructions, writtendy 1A A°,
are the simplest ones; they are placed at loop headers fand
is the loop-carried register. When the loop is initially reached,
this instruction assigns the value @§ to A;. When the loop is
subsequently re-entered from its back-edge, the instruction
assigns the value o% to Ay. This instruction does not have
predicates guarding its arguments, and therefore behaves
just like its g-instruction counterpart, based on the executed
control- ow. Winstructions, written asfy ~ W1?;¢ A°°, are
the other replacement fog-instructions. Here, instead of
having to rely on control- ow to select a register to assign to
Ay, itincludes, for each registel, a predicate?; indicating
when that register should be selected. Consider for instance
the instructionG = q1Ge G- G° at hodel2in Fig. 2b, and
its correspondingVinstruction at nodel2in Fig. 2c. Each
predicate describes a path from dominator noglef node
12to node 12 This is enough to discriminate paths with,
respectivelyG, G, or G as a reaching de nition forGs.
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To de ne the semantics dfv and| -instructions, we rst

rs Fp True+1 rs =p Falset+ 0 rs Fp Undef+ % need to de ne the semantics for GSA predicates. The evalua-
tion of predicateg=p, is de ned by induction on the structure
rsFc2+1 rsiEp?21+11 rIsiEp?22+1 of the predicate (see Fig. 6, where refers to the evaluation

of conditions borrowed from SSA). We emphasise, however,
that predicates are part of the syntax, and composed of (po-
rsEc2+1 rsiEp 21+l s Fp 22+ 1 tentially negated) conditions t.hat refer to program variables.
Hence, we need a local environmenstto evaluate a pred-
icate. Importantly, we also note that a predicate can either
(i) evaluate to the Boolean valuésand 1 or (ii) be non-
Figure 6. Evaluation of GSA predicates. evaluablgrepresented by an evaluation tin Fig. 6) since

it can refer to program variables that may have never been
in scope. This subtlety is in contrast with a simple Boolean
semantics where predicates evaluate to either true or false.

The semantics of merge instructions is handled when ex-
ecuting Inoptl® instructions, as for they-instructions in
SSA (see bottom of Fig. 7). It is also the case for selection
instructions, which are inserted at loop exit landing pads
implemented withInop instructions. Note that a loop exit
landing pad could very well be the predecessor of a junction
point: in that case, we must handle both kinds of instructions.

The most important semantic rules for GSA are given in
Fig. 7, where GSA semantic states are writfEhS5 dersem°.

We again de ne two cases, whethd? is a junction point

or not, as merge-blocks are only placed at junction points.
If 19is not a junction point (ruleNJoin), the register state

is only updated by -instructions. Otherwise (rulgoin), I°

is a junction point, and the merge-block must be executed.
The[ -block is rst executed, updatings to rs® then the
merge-block is executed, updatimgf to rs®°

Let us now explain in deeper detail how to execlte
instructions and merge instructions. Ruketa (top of Fig. 7)
de nes how to execute a non-empty list ¢f-instructions.
Executing ar| -instruction 4 [ 1@<%equires predicate
@to evaluate tol: it must hold inrs. All [ -instructions are
evaluated in parallel: the value of the predicates and register
operands are determined in the current register stedeand
destination registers are updated.

The execution of a merge-block is similar to the execution
of aqg-block: it assigns in parallel to destination registers
the value (inrs% of one operand of each merge-instruction.
The novelty here ishowthis operand is chosen for each
4.2 Semantics of GSA ?nstruction. Fo_r‘ —instr.uctio_ns (rngMerge,,), the selection
is done only via: , designating the index of the control- ow
predecessor that leads t§ as was done fog-instruction. In
the case of a-instruction, we however ensure that it only
has two predecessors: the loop header, and the loop latch.
Hence, 2 fO1gand eitherAy or A is assigned tdy.

In the case oWinstructions (ruleMerge,), the selection
is guided by a predicate that evaluatestpand: does not
play any role. Indeed, in ruldlerge,, the=-th operandA,
is selected, fosome=. In particular,@ is not necessarily@.

1 oop-closed SSA form states that all variables de ned within the loop are V€ €nsure that our semantics stays deterministic by choos-
not used outside of the loop. ing the rst such =, whenever two predicate€), and @,

rsFp2+1l s Fp?1_ 72+ 11 max1

I"Sj:p2+1 1 rsj=p?1"?2+11min12

Secondselection instructiorege extra instructions intro-
duced when generating GSA and have no counter-part in
SSA. All[ -instructions, writtenAy [ 1?7+ A°, are placed at
loop exit nodes. These instructions indicate a termination
condition ? of the loop, which asserts that the registéy
is ready to use, and can be assignedijolintuitively, they
behave like predicated moves. We assume that the loops are
in loop-closed SSA formso that the registes is assigned
by a corresponding -instruction at the loop header.

Predicates play an essential role in the semantic$ -of
andWinstructions. In GSA, predicates are represented in
the IR. They are de ned according to the grammar given
at the end of Fig. 5. We recall that in GSA, predicates are
used to materialise path conditions under whichvor [
argument should be selected. Predicates are thus built out of
atomic condition® found in the initial SSA code, as well as
their negation2. Atomic conditions are pairs of a conditional
operator>; and operandsA. To re ect path condition com-
position, we need to include the conjunctich of predicates,
for nested conditionals, and the disjunctionof predicates,
for sequencing conditionals. Predicates also include the two
expected constantSrue and False and the special constant
Undef, representing a non-evaluable condition.

We do not need to add a negation operator on predicates,
as instructions in SSA do not contain them either: branch-
ing is only possible through simple, basic conditions, rather
than arbitrarily complex Boolean expressions (see Fig. 3).
This syntax for predicates is also su cient to treat switch
branches, modulo an encoding of branching conditions.

The semantics of GSA is essentially the same as the one of
SSA, since both representations use the same set of regular
instructions, and handle function calls similarly. The novelty

is how to execute GSA speci c instructions. At a high-level,
whenever aW, " - or [ -block is reached, all its instructions
are executed in parallel and their results are assigned to
their respective destination registers. This is similar to how
g-blocks are executed.
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Section 5.1 describes the main algorithm used to perform
the translation from SSA to GSA, as well as its formal speci-
Join cation. In Section 5.2, we give more details about the gen-
511 1° = bInopI®c 5y [0 5EL0 " rs A% 10 gration of p'redigates, expla}in predicates invgriants that hold

M in the speci cation. In Section 5.3, we explain how we spec-
predsi® =1 5M21%e: * 150 520 ify the translation from SSA to GSA at the instruction level.
CT15qersem® 1Tt 54%ps®8me Section 5.4 then goes over how the renaming of v_ariables is
performed after the nevj -instructions have been inserted,
) ) and describes invariants about this renaming. Section 5.5

Figure 7. Semantics of GSA (excerpt) then covers the main correctness theorem and gives an intu-
itive description of how it is proven using the speci cation.
Finally, Section 5.6 describes the main semantic invariant
used to prove the correctness theorem of the translation.

would be simultaneously true. However, as we explain in

Section 5.2, predicates guardidéarguments are provably g 1 Speci cation of GSA Construction

mutually exclusive in GSA. . . . . .
y This section describes the translation going from SSA to GSA.

) A diagram with an overview of the translation is given in
5 Conversion from SSA to GSA Fig. 8, where the main steps are in the center of the gure:
To convert SSA into GSA, thg-instructions need to be re- (i) generaté/¥ and " -instruction from g-instructions, (ii) in-
placed byW or " -instructions, depending on whether the  sert an[ -instruction for each’ -instruction, and (iii) register
g-instruction was at a simple junction point or at a loop  renaming for the inserted -instruction assignments. In addi-
header. In addition to that, extrp-instructions need to be  tion, there are also a predicate computation step and a loop
added to loop exits. The di culty of the transformationis  headers computation step which generate information used
the calculation of the predicates faW and[ -instructions, when generating merge- and-instructions.
as well as proving the necessary properties about the gen-  From an implementation point of view, the translation is
erated predicates. This is the main focus of this paper, and done sequentially, meaning there will be an intermediate
we explain it below, together with the salient properties of state of the code after the merge-instruction translation and
the conversion. The ney-instructions additionally require after the[ -instruction generation, where the GSA code does
fresh register names, and to update register uses accordingly. not account for the proper renaming yet. When writing a
We abstract over the related administrative duties, which speci cation for this translation, one would want to relate
mainly comprise technicalities. Full details are presentin the the SSAq-block directly to the nal merge-block, but with-
companion Coqg development [17]. out having to consider hovj -instructions are inserted, and
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thus how the renaming is performed. We therefore gener-
ate a predicate matri® containing all the predicates that
were generated during the translation and a renaming map
R which contains all the variables that are renamed and
their new name, together with their original de nition point.
We described in further detail the predicate matrix and the

Yann Herklotz, Delphine Demange, and Sandrine Blazy

node and all other CFG nodes. We then translate these regular
expressions to predicates by collecting and composing all
relevant conditions encountered on the paths of interest.
Such predicates will, intuitively, only be true whenever a path
in the language of that regular expression is taken. Kleene
stars in regular expression express in nitely many possible

renaming map in described in Section 5.4 and Section 5.2 paths with loops. Simply removing star-expressions during

respectively. Finally, the properties we need ab®R and

the CFG structure are validated after the translation, with
dedicated validators. This includes making use of an un-
trusted external SMT solver, whose result is itself validated
by SMTCoq [19]. We explain our encoding in Section 6.1.

Translation Speci cation. We now give in De nition 5.1
a formal speci cation for our translation from SSA to GSA.
It relates an SSA functiob to the translated GSA function
tf, relative toP andR. It is written PeR ~ 5  tf.

De nition 5.1 (SSA to GSA Translation Speci catian)

5 = 1| o(I)o tf = lltl’.M tI’.EtI’O
P coh P x 54¢f FRV
lel' }1, 8P @'\ M, B8IPI'!E
renaméRel ;M ;*E;° = 1l oM o E©

PR 5 tf

We explain here the main components of the speci ca-
tion, and how it is structured, leaving a detailed and formal
description for the next subsections.

The two functions are of the fornb = 1| «@° andtf =
1l 4+*M ¢*E¢°. In the second line of the speci cation, we
require the predicate matri® and the renaming mafR to
satisfy properties that tell us enough about their correctness
so that we can prove that the right argument will be picked in
Winstructions, and that the predicates [rinstructions will
always evaluate to true when they are reached. We explain
these requirements in Section 5.2 and Section 5.4.

The third line speci es how the code of the SSA and
GSA functions match. We introduce one code-matching re-
lation per type of instructions (regular instructions, merge-
instruction, and selection-instructions). We explain these
code correspondences in Section 5.3.

Finally, the renaming is performed after the threes kind
of maps are generated, so that variables introduced by an
[ -instruction are used after their de nition.

5.2 Speci cation of GSA Predicates

In GSA, predicates guard the register selectiotwrand] -
instructions. Hence, they should re ect the dynamic control-
ow of the program. Essentially, one must generate a predi-
cate for each path to th@instruction, so that the predicate
is true if and only if the path was picked.

One solution to this is to leverage the solution to the single-
source path problem expressed by Tarj@®]. The suggested
algorithm is use to build a regular expression on CFG edges,

the translation of path expressions to predicates provably
does not change the evaluation of the resulting predicate
itself: the predicate characterising paths already accounts
for cases where loops are not entered, hence entailing all
paths described by the star-expression-free predicate.

To reason about the meaning of predicates in the proof of
the semantic preservation, the solution to the single source
path expression problem needs to be formalised. Presenting
the details of Tarjan’s algorithm is far beyond the scope of
this paper. In fact, in this work, instead of verifying Tarjan’s
algorithm, we use a translation validation approach: we iden-
tify two properties, namelycoherencandwell-exclusivityon
predicates, which are su cient to prove the translation itself,
allowing us to abstract away from the implementation tech-
nicalities of Tarjan’s algorithm. We explain later in Section 6
how we validate these properties.

We rst calculate predicates on the initial SSA function;
then, we insert them in the GSA function, and the subsequent
renaming of variables will account for the insertion ¢f
instructions. We note that predicates characterise sets of CFG
paths: they hence constitute an information thatggobalon
the CFG of the initial SSA function. We therefore express
their essential properties relative to predicate matrix,
associating predicates, ik, to pairs of nodes in the CFG of
the initial SSA function5. Morally, the predicate associated
to 8+ 9 written P; ;, should represent a set of paths from
node8to node9in the CFG of5. For instance, for the CFG
in Fig. 2c%gisG > 50" G < 9.

Coherence.The rst property we formulate,coherencge
relates to the semantic correctness of predicates. Intuitively,
predicates should indeed be coherent with the CFG paths
they are supposed to represent. In particular, for a given node
9with < predecessors, the possible paths from a n8tte
each of the predecessors 8§hould enable a path fror@to 9
when extended with the (atomic) condition on the edge from
that predecessor t@ This is visualised in Fig. 9, taken from
Fig. 2b, but with elidednop nodes. In this gure, we take
node8to be node4, and we write each predicat®,; at node
. . An edge from node to 9is taken when the atomic con-
dition 2 ; holds. The coherence property intuitively states
that, P; ; ought to hold, as soon as one of the paths fr@m
to 9 corresponding to a predicat®; ; " 2 ;, where: is a
predecessor 09 has been taken.

We formalise this intuition with the three-place relation

that matches all possible paths between a single source CFGP coh 18+ 9 it states, for a function5, a predicate matrix
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(a) SSA example program taken from Fig. 2, with elidedp nodes (excerpt).

(c) Example of local coherendecoh148°.

Figure 9. lllustration of the coherence propertp coh 18+ 9for a node8such that8 9

P, and two nodessand 9 that the predicateP; ; is, locally,
coherent for nodeg8and 9

De nition 5.2 (Local Coherence)Let5 be an SSA function,
P a predicate matrix, an@and 9be two nodes in the CFG of
5. The relationP coh 18+ 9is de ned as follows:

CohNDom  CohEq
8¢ 9 SB)ADBUO

Pcoh18¢9 Pcohl88
CohSDom

k2predstj°
P coh18¢9

8 9

Pir "2 ;|1;9 Pij

In addition to the informal explanations we gave previ-
ously, coherence requires two other ingredients, appearing
in De nition 5.2, to be meaningful and provable.

The rstingredient is dominance. For nodésand 9 we
need to distinguish cases whegelominates9or not. Indeed,
recall that a predicate used at a no@eharacterises paths
from a dominator of9to 9 Hence, we never need to consider
paths from non-dominators 09to Q This explains the rst
rule CohNDom, which does not impose any constraint on
those predicates. Now, wheBdominates9 there are again
two cases to consider: eith&= 9or 8strictly dominates
9 In the rst case (ruleCohEq), we ask that predicat®;;
always evaluates to true, so that it models an empty path
from 8to & The second case (ru@hSDom) corresponds

2The de nition of semantic implication on predicates is standarei:=)
means that, for any register stats, if P evaluates tdl, then so doe®.

Q
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to the informal explanation given previously. We give two
examples of this rule, illustrated in Fig. 9c (whe8e 4 and
9= 12 and Fig. 9b (wher8=4and 9= 8).

The second ingredient we need is related to the inter-
action between semantic implication of predicates and the
evaluability of the predicates. Indeed, we need to make sure
that semantic implication does not hold vacuously because of
some yet-to-be-de ned or outdated program variable appear-
ing in the atomic conditions of the predicates Ih Predicates
sometimes re ect CFG paths that join in a non-structured
way: some sub-paths might therefore involve conditions on
locally de ned program variables, and the de nition points
of variables appearing in predicates do not necessarily domi-
nate the use point of a predicate.

To deal with this, we introduce a projection operator on
predicates, writter?] ;, which replaces any atomic condition
2 or 2in a predicate? with True as soon as conditio@
uses a program variable de ned at nodgin function 5.

In particular, when9is a junction point, variables de ned
by ag-instruction are abstracted away. Note that we only
project atomic conditions, and not the entire predicate. We
only abstract the variables that actualheedo be abstracted.
Intuitively, the projection operator in De nition 5.2 allows us
to specify which variables should be considered as relevant to
the truthfulness of predicat®; ;; indeed, to prove coherence
one would have to show that the projection does not change
the truthfulness of the predicate, either by showing that the
problematic variables are not present in the predicate, or by
showing that they do not a ect its evaluation.

Next, the following de nition uses the coherence relation
to express a global criteria on the entire predicate matrix.
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De nition 5.3 (Coherent Predicate Matrix)Let 5 be an
SSA function. A predicate matriR is said to be coherent,
written P coh, whenP coh 18 9for all 8and 9in P.

We emphasise here that the matrix does not need to in-
clude all pairs of nodes. In practice, it is su cient to keep
track of only the predicates required in the future GSA func-
tion, i.e., at futuré¥ and[ -instruction nodes (e.g. the pred-
icates of Fig. 9a). Hence, it is enough to build a matrix of
dimensiont | ©° # where# is the size of the CFG,

is the number of (non-loop headers) nodes holding-a
instruction and  the number of loop exit nodes. Informally,
for each of the nodes, one predicate is required to
describe paths from their immediate dominator to each of
the # nodes in the CFG of the function.

Mutual exclusivity. The second property we must es-
tablish about the generated predicates is that they are suf-
ciently informative: they indeed allow for a proper selec-
tion of the arguments inVinstructions. We formalise this
property using a notion of mutual exclusivity of predicates,
stating that they cannot be satis ed simultaneously.

De nition 5.4 (Mutually Exclusive Predicates) et?; and
?, be two predicates if?. They are said to be mutually ex-
clusive, written?1 < ?,, whenever for all register states
they cannot both evaluate to true, i.e.i§ Fp ?1 + 1, then
rsiFp 22+ 1.

Naturally, we cannot ask for all predicates in a predicate
matrix to be pairwise mutually exclusive. What we require
is that predicates to be used for the selection of any futuve
instruction’s pair of arguments be mutually exclusive. Hence,
we only consider non-loop-headers junction points loop-
header-instructions are future -instructions, that do not
resort on predicates.

De nition 5.5 (Well-Exclusive Predicate Matrix)Let 5 be
an SSA function. A predicate matrik is well-exclusivéor
5, written P =, when for all node=; in 5 that is not a loop
header, and that holds g-block, and any possible strict-
dominator3 of =4, i.e.3 =4, the following holds: for any
two distinct nodes=1*= 2 preds=4°, we haveP, ,, < Py ,.

We now summarise the calculation and validation of GSA
predicates. For ang-instruction at node= in the initial SSA
function 5, we calculate a predicate characterising all paths
from its immediate dominator nod8 to =. For each loop
exit node=in 5, we calculate a path predicate characterising
all paths from the corresponding loop-headerofo =. We
collect all these predicates in the predicate matixon
which we globally apply the projection operatdt_ on all
predicates columns, i.®;; is replaced by the projection
P; ;| ;. We nally check that the resulting predicate matrix
is indeed coherent and well-exclusive. The details of the
validator itself are given in Section 6.
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5.3 Speci cation for GSA Instructions

We turn now to the speci cation of how SSA instructions
are converted to GSA instructions. We do this by stating how
the respective instruction maps of the initial SSA function
5 and the GSA function are relating, on a per-node basis.
Indeed, such a one-to-one correspondence is possible, since
the conversion to GSA does not modify the structure of the
CFG. In fact, we insert loop exit landing pads prior to the
GSA conversion; the insertion ¢finstructions hence also
preserves the CFG structure.

We thus introduce three code-correspondences: relation
: "handles the regular instruction maps, relati¢n "' - "
handles the merge-block map, and relatibh”" ; ”handles
the selection-block map.

De nition 5.6 (Code-Correspondence Relations at Ndfe

ltpo=],20 3 |  88P oL ';’Mlloi
1, P o'\ M
P A QAR A ARK

8: "Ay? = 1Pn,predsll°k°'%o
P A qrA° A wAb
11 [° = bInoptl®c I
8BAI?7sA"A  [WA°2EU°) ?5=Py
PI' L E

Relation' , is straightforward: both functions should have
identical instructions at a nodé Relation' , states that, at
nodel, allg-instructions and merge-instructions are pairwise
related through 4. Recall thag-instructions are converted
either to " - or Winstructions, depending on whether they
were placed at loop headers B In our speci cation, we do
not need to distinguish between the two cases, and we allow
for ag-instruction being related either to ®instruction or
toa’ -instruction (if it has only two arguments: a rst one for
the loop initialisation and a second one for the loop iteration).
We make this (correct) speci cation permissive enough so
that it makes it possible to abstract over the correctness of the
calculation of loop-headers. The interesting case is whep a
instruction is converted to &Vinstruction at nodel: to each
register argumeng in the g-instruction, we associate in the
Winstruction the predicateP,, predgic, - this expresses thaf
should be selected on paths fronato the: -th predecessor
of I, with = a strict dominator ofl.

Third, for the selection-block map, the relatidn, states
that[ -instructions are inserted only at noddsholding an
Inop instruction in 5, and that the predicate used to select
the registerA in the [ -instruction is expressing paths from
a (loop-header) nodeto I, with  strictly dominatingl.

Note that in De nition 5.6, source and destination register
names are under-constrained. Technically speaking, at this
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point of the speci cation, the GSA function isot SSA. We
re-establish the SSA property and register-use consistency
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emits the trac€
8% %" Safel9%° " Comp9%° = OK1%°

using our global renaming post-phase that we describe next. , ,
o _ | 918 C" Gae! D Vinie!
5.4 Speci cation of Register Renaming As in CompCert's formal development, this backward sim-
Because GSA addsinstructions, and register de nitions  jation theorem is proven by showing a forward simulation
need to remain unique, we need to (i) generate fresh register petween C and GSA, and then proving that the semantics
names, and (ii) to readjust register uses to keep them con- ¢ GSA is deterministic. The forward simulation itself can
sistent: past a loop exit node, the fresh generated register pe gecomposed into individual forward simulations, one for

name should be used instead of the initial one. To this end,
we rely on a register renaming map, that we compute during
the insertion off -instructions.

Each of the loop-exit nodes will hold ap-instruction
A [ 1?7« &°, where Ay must be freshy? is the loop-exit
predicate, and is the variable de ned by the corresponding
" -instruction. So, in the renaming phase, we need to keep
track of how each variable de ned using &instruction will
be copied to the fresh registey at node;ei:. We store all of
this information in the following data-structure.

De nition 5.7 (Register Renaming Map Validity) et 5 be
an SSA function. A register renaming ma&pis valid with
respect to5 andtf, written 54f R v, if and only if the
following two conditions hold.

1. For allA, such thatR*A° = b*Ael,°c, (i) all A, are
fresh in 5 and registerA, is not fresh in5, (i) there
existsl, with A, " YA A° 2 tf"M1 |,,°, and (iii) there

existsA,  [1?+A° 2 tfEY,°.
2.ForalllandA;  gq*R° 2 5®1°, if R1AC = blAel,°c
thenl |, forall&

The implementation of the renaming pass is as follows.
For any registerAused at nodes, if 1Ael,° 2 R, then
Ais renamed ta4, if I, =. RegisterAis left unchanged
otherwise. Indeed, if, =, because the renaming map is
valid (De nition 5.7), we prove that aif -instruction A,

[ 1?7+ A° necessarily dominates nodg and therefore the new
registerA, should be used instead &f The actual renaming
pass ishijective assuming that the renaming. is valid with
respect to the initial SSA function. We apply this renaming
process usin@R on each of the mapM <E andl , through
the function renaméRel «M «E° = 1| &M %E® yielding
three renamed code maps.

5.5 Top-Level Correctness Theorem

The overall correctness theorem states the overall semantics
preservation between the initial C code and the GSA code
that is produced by the compiler.

Theorem 5.8. Let% be a safe C program (i.e. that does not go
wrong). Suppose the compilatiodp$ucceeds, and produces
a GSA prograr®g. Then, runningj from its initial state) i
emits a traceConly if running % from its initial state(jnit
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each of the compilation pass.

At the heart of the proof of the forward simulation for the
conversion from SSA to GSA, we need to exhibit a binary
(simulation) relation on execution SSA and GSA states, ,
which carry enough information to prove that both programs
behave the same, i.e. emit the same observable trace.

Lemma 5.9 states the forward lock-step simulation dia-
gram between GSA and SSA. It relates the states of an SSA
function with the states of a GSA function, and shows that,
for every execution step in SSA, there exists an execution
step in GSA which ensures both states stay related.

Lemma 5.9. Let5 be an SSA function, such thgfSSA15°.

Lettf be the corresponding generated GSA function, with the

companion predicate matrikand renaming majR, with

PR 5 tf.
81C6)1" (1! (2~ (17)1 9

92" )1l )2" (2')2

This lemma can be visualised as follows, where solid lines
are hypotheses, and dashed lines are conclusions.

(1 )1
e c,
(- )2

5.6 Simulation Relation

We now describe the simulation relation” , which relates
an SSA semantic state to a GSA semantic staf€é. As is

often the case in simulation proofs, the main di culty lies in
de ning that very simulation relation. We de ne the relation
as follows, and we prove it satis es Lemma 5.9.

De nition 5.10 (Simulation Relation)

51 RErs rs0
(833 | 9 rsfFpPy+1)

S15derse<0' T1 tfefors%e<o

8Ae« /8 freshi50 =)  rsP = rsipp
8A R=eR1AY = plAe2cand= | 3 rsO = rs1pb

RiErs rsO

3We only present the simulation relation on standard semantic states. The
details about other states can be found in our Coq development.
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Given an SSA functiorb, a GSA functiontf that is a
possible translation ob, their semantic states match at the
current program pointl, when their register states agree,
and a further property related to predicates holds.

The agreement between register statein SSA ands®
in GSA, written' j rs rsC is de ned in De nition 5.10.
The basic case states that if registis not fresh, it should
always be equal to its counter part in SSA. The second case,
whenAis fresh, is when it exists in the renaming mé The
relation holds when the de nition of the renamed register
strictly dominates the current point, which guarantees it will
have the same value as the register before the renaming.

The last property we need is the fact that the predicates at
the current nodd always evaluate to true 8 |, namely we
havers Fp P, +1for all strict dominators3 of I. For junction
points, we use the coherence property to prove that the next
predicate will evaluate to true, as at least one predecessor
evaluates to true. For instructions such &snstructions,” -
instructions andiop instructions that modify a register, we
rely on the fact that the modi ed register cannot appear in
the predicate due to the projection of the predicate at the
current node, to show that it will still evaluate to true.

Once we know that predicates evaluate to true at the cur-
rent pointl, we prove the behaviour of merge-instructions.
" -instructions are simple, as they behave ligeinstructions.
However, the di culty here is that a register’y de ned by
a -instruction will likely be in R*A¢® = btAel,°c. We need
to show that this renaming does not interfere, and we can
therefore useB8I' 1,,,, which comes from De nition 5.7 (2),
to show that we are not updating a register that was also
renamed somewhere &t

Proving the correctness a#finstructions relies on mutual
exclusivity: we prove that the same register is picked in

SSA and GSA, as we know that the predecessor’s predicate

evaluated to true, and that no other predecessor predicate
can be true. The three-valued logic allows us to ignore paths
that were never executed and whose conditions might not be
evaluable. Then, we use the coherence property to prove that
the predicate at the junction point will still to hold: at least
one predecessor evaluates to true, and any register modi ed
by theg-instruction has been projected away already.

Finally, for[ -instructions, the correctness comes directly
from the simulation relation' . The main problem in this
proof is showing that the nal register maps agree, as it is
modifying fresh variables. This requires proving that the
fresh variables exist ifR, and that the register that maps to
itin R is the one being assigned by theinstruction.

“We further need to maintain the invarianf + |, stating thatl is syntacti-
cally reachable in the CFG df, to reason about the dominance relation.
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Table 1. Number of lines of code (SLOC), generated using
cogwc in our development relative to CompCertSSA and to
CompcCert. Validated OCaml code is also included.

Spec Proof OCaml Total
CompCert 59439 69487 28703 157629
CompCertSSA 15693 27868 3161 46722
Dom. completeness 1413 2735 0 4148
GSA 6320 9035 1433 16788
Syntax & semantics 122 685 0 807
Generation 4359 4947 314 9620
SMTCoq integration 1839 3403 1119 6361

6 Implementation of the GSA Construction

within CompCertSSA

We implement our speci cation as a translation pass from
SSA to GSA. The main di culty is proving the coherence
and the well-exclusivity of the predicate matrix, which is
then used in the main SSA-to-GSA translation pass to assign
the predicates to th&V and[ -instructions. In Section 6.1,
we describe how we populate the predicate matrix, and the
proofs of coherence and well-exclusivity. We give further
details about our implementation in Section 6.2, including
a the additional compiler passes that we added. Section 6.3
then covers the integration of the external SMT solver and
its validation. Finally, Section 6.4 covers the main limitations
of the current implementation. To get a sense of the scale of
the implementation, we give in Table 1 the total number of
lines, relative to CompCert and CompCertSSA.

6.1 Generation and Validation of the Predicates

While translatingg-instructions and inserting -instructions,
we build up the predicate matriR. Each time a new predicate
is needed, and if it is not already present, the enRy is
populated using Tarjan’s algorithm. Even thou@could be
any dominator of the current node, we pick the immediate
dominator to minimise the number of computed paths.

The correctness of the generated predicates is validated
after-the-fact. To check coherence and well-exclusivity, we
use unsatis ability queries to an SMT solver, which outputs
a certi cate proving the unsatis ability. This certi cate can
then be checked using the proof checker from SMTCaf
which we directly integrate as a validator in our translation.
More information about the integration of the embedding
of three-valued logic into SMTCoq formulas is given in Sec-
tion 6.3. The correctness of the SMT solver states that, if
it nds that a negated predicate is unsatis able, then this
predicate unconditionally evaluates to true. This correctness
result is then used in the Coq proofs without having to trust
the SMT solver itself. Despite the induced cost of checking
SMT certi cates, relying on a solver was key, in the course of

5This negation is de ned as setting to 0, and bothO and % to 1.



Mechanised Semantics for Gated SSA

our formalisation, to cope with partial (or wrong) intuitions
we could have had about the su cient properties that GSA
ought to satisfy to be correct.

We also extend the predicate language with an implication
rule ?;! ?p), taken to be the implication as de ned by
ukasiewicz three-valued logic 3 [€], to be able to formulate
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Finally, we implement an unveri ed and trusted compiler
pass to translate GSA back to SSA, in order to generate ma-
chine code, and to be able to test programs by running them.
Proving the correctness of this pass is left as future work.
This translation is not easy to prove correct: one cannot as-
sume that the order of the arguments of thiinstruction

all the needed properties. Interestingly, if one were to use the corresponds to the order of the predecessors anymore.

same de nition of implication as in binary logic, the three-
valued logic would have no tautologies, making it impossible

Another technical point is that we need a completeness
result for the dominance test to implement and prove our

to express SMT queries properly, as all values being unde- translation to GSA. Here, we needed to integrate a veri ed,

ned would always be an acceptable assignment. Instead,
de nes animplicationwhere} ! 1 1, making it possible
to formulate tautologies.

Validating 88 9P coh 18+ 9is straightforward: it corre-
sponds directly to checking the coherence relation on the
predicates, where the logical implication is translated into
I . We then prove that this implies the coherence of the

predicate matrix. Validating the mutual exclusivity of predi-

but unpublished, formal development, proving the complete-
ness of the dominance test of CompCertSSA (shown as part
of CompCertSSA in Table 1).

6.3 Integration with SMTCoq

The proof of correctness for the validation of the coherence
and well-exclusivity of the predicate matrix heavily relies on
unsatis ability checks guaranteeing that the property indeed

cates is more involved. We encode the implication used in  always holds. Hence, the SMT solver should itself formally

De nition 5.4, i.e. if?5is 1, then?y is either% or O, into the
three-valued logic a®,! ?,! : ?,. Foranoded and
for <e= 2 preds @, the query(P;,, ! Pin! 1 Pip) "
(Pin! Pim! :P;in) proves the mutual exclusivity of
predicate®; ,, andP; , if it always evaluates to true, i.e. the
negation of the predicate is unsatis able.

6.2 Conversion to GSA and Other Compiler Passes

Convertingg-instructions to" - or Winstructions depends
on whether theg-instruction is at a loop header or not. We
use an e cient loop-header checkerd, 7] that we can safely

give this guarantee, either via a direct proof of correctness, or
by generating proof certi cates that would then be checked
with a veri ed certi cate checker.

In our GSA construction, we opted to use SMTCdAd]|
which includes a certi cate checker for theeriT [8] SMT
solver for its internal SMT formulas. The main use-case of
SMTCoqis to provide Coqtactics that call the SMT solver and
solve goals while proving theorems in Coq, but we wanted
to integrate the certi cate checker itself into our validator,
and eventually extract it to OCaml.

The certi cate checker can already be extracted. However,
to prove properties about GSA predicates, we need to embed
their three-valued logic in terms of SMTCoq formulas. In
turn, we need to prove this translation sound. SMTCoq sup-

trust: its correctness does not a ect the soundness of the ports linear arithmetic as a theory, so three-valued logic can

translation. Similarly, we do not need to formally establish
that[ -instructions are inserted at loop-exit nodes only, and it
is su cient to prove the correctness of the prior placement of
loop-exit landing padsihop instructions) during an RTL to

be implemented using min and max functions (see Fig. 6).
The translation and its soundness proof are rather tedious:

we perform a Tseytin transformation to atten the predicate,

before we can encode it e ciently as an SMTCoq formula

RTL pass. We avoid the need to reason about loop-header andysing arrays and sharing of redundant formulas and atoms.

exit nodes thanks to (i) the way we formulate our semantics
for GSA instructions and (ii) the preservation of the code
structure ensured by the generation algorithm of GSA from
SSA.

Inserting loop-exit landing pads prior to the GSA trans-
lation has many other bene ts. It saves us from having to
insert new nodes in the function during the actual SSA to

GSA translation, and the structure of the CFG is therefore
preserved. All the properties of SSA, such as the dominance
test, and the reachability of nodes can be reused directly from

6.4 Limitations

Unsupported Features. Currently, our extracted formal
development is able to compile all the expected CompCert
test programs successfully, and only fails on programs with
conditions that are dependent on memory, such as pointer
equality checks. These are currently unsupported, as it would
need a proof that stack allocations made when functions are
called do not make invalid pointers valid again, which could
change the result of executing the equality check. We could

SSA and on the original graph, which reduces the amount o erage the hypothesis of well-de ned C program semantics

of proofs that need to be performed.
Additionally, we normalise loops to ensure they have a

single entry point and a single latch, so that we can generate

" -instructions with a well-de ned, non-blocking semantics.
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to ensure this does not invalidate the construction of GSA.

Performance. The current validation increases compila-
tion time signi cantly which will have to be addressed in



CPP '23, January 16 17, 2023, Boston, MA, USA

the future. Running CompCertGSA without any validation
on the standard C tests included in CompCert takes around
4.5s. Then, running CompCertGSA with validation using
Z3 as atrusted SMT solver (without the SMTCoq checker)
takes around 156s. Finally, running CompCertGSA with full
validation including SMTCoq takes around 1872s. This large
di erence in execution time is mainly due to SMTCoq having
to use an older version of veriT as the SMT solver back end,
which seems to have large di erences in execution time for
some inputs. However, there are many other ways in which
the execution time could be improved. Firstly, the size of
the predicates could be simpli ed, which could be done in
an unveri ed and untrusted manner. Secondly, the handling

Yann Herklotz, Delphine Demange, and Sandrine Blazy

There have been various recent uses of GSA to either
perform equivalence checks or optimisations or high-level
synthesis B, 11,12 22 27. None of these transformations are
formally veri ed. Among them, Tristan et al[27] developed
an algorithm to detect the equivalence of the LLVM CFG be-
fore and after optimisation passes, and used a monadic GSA
language tracking the memory usage of each instruction.

Currently, our correctness proof relies on a SMT solver
veri er, based on SMTCoqglld. SMTCoq sends SMT queries
to an external, untrusted SMT solver, and then validates
the result by checking a proof certi cate generated by the
SMT solver. In our work, we rely on a extractable checker
provided by SMTCoq, and we integrate this checker within

of case statements could be improved, as a new predicate our work by formally proving the correctness of our encod-

is introduced for each branch which complicates the predi-
cates substantially. Finally, our interface to SMTCoq could
be more e cient, as it currently performs many reads and
writes to les to communicate with veriT, whereas queries
can be built in memory when using Z3.

7 Related Work

There are various, di erent informal de nitions of GSA in
the literature. GSA was rst introduced by Ottenstein et.al
[23]in 1990 as part of the program dependence web (PDW),
which was inspired by the extended SSA form developed by
Alpern et al [1]. It was later re ned by Campbell et a[9], de-
scribing di erent semantics that the PDW could have, such
as standard control- ow semantics, data- ow semantics, or
even demand-driven semantics. The purpose of the PDW
was mainly to produce a referentially transparent program
dependence grapH[3, which could target more exotic archi-
tectures that relied purely on data- ow. There are therefore
a large number of di erent gates that are de ned to support
various types of semantics.

However, GSA itself is well suited for symbolic analysis
over control- ow boundaries, thereby allowing for more
powerful optimisations than could be applied to SSA. There-
fore, Havlak[16] introduced the Thinned Gated Single As-
signment (TGSA) form, which retained the important parts
of Ottenstein et als GSA formulation related to symbolic
analysis. Tu and Padya8, 29] described a similar version of
GSA and developed an e cient way of building GSA, lever-
aging Tarjan’s algorithm to solve the single-source path ex-
pression problem?€. But these are formulations of various
di erent versions of GSA, that all behave slightly di erently.

In addition to that, they all operate over idealised languages
and none of them have a formal semantics; the de nitions
of the SSA language that is extended is not always clear,
as well as what the predicates exactly consist of, or how
these are evaluated. On the contrary, our formal semantics
of GSA operates over the RTL language of CompCert; it is
formalised in Coq and validated by our proof of correctness
of the construction pass.
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ing of predicates, their evaluation, and the corresponding
gueries into the SMTCoq framework. IsaSAT is one of the
few veri ed SAT solvers implemented in Isabelle [14, 15].

8 Conclusions and Future Work

We make a number of contributions towards the integration
of GSA-based techniques into veri ed compilers. This in-
cludes providing the rst formal semantics for GSA, proving
the semantics preservation of a speci cation for the SSA to
GSA conversion, and integrating the translation pass into
CompCertSSA, demonstrating its feasibility.

Proving the correctness of the translation to GSA does not
require formalising the notions of loop headers and loop exit
nodes, however, expressing optimisations or analysis passes
on GSA would require to do so. We could extend this work
with a set of well-formedness properties similar to the SSA
well-formedness from CompCertSSA.

Our semantics expresses the meaningdand| -instruc-
tions with predicates, thus making them control- ow in-
dependent. While we focus on this aspect in the paper, in
the future, we would like to formalise a data- ow or event-
driven semantics for GSA, where all control-dependencies
have been translated to data-dependencies. Such a language
could be used as a target for translation validation of com-
plex optimisations that are independent of control- ow. In
addition to that, such a language could also be used to target
back ends such as hardware directly.

Artefact Availability

The formal development, including its proofs is available as
an artefact [17].
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