
Mechanised Semantics for
Gated Static Single Assignment

Yann Herklotz
Imperial College London

London, UK
yann.herklotz15@imperial.ac.uk

Delphine Demange
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
delphine.demange@irisa.fr

Sandrine Blazy
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
sandrine.blazy@irisa.fr

Abstract
The Gated Static Single Assignment (GSA) form was pro-
posed by Ottenstein et al. in 1990, as an intermediate rep-
resentation for implementing advanced static analyses and
optimisation passes in compilers. Compared to SSA, GSA
records additional data dependencies and provides more con-
text, making optimisations more effective and allowing one
to reason about programs as data-flow graphs.

Many practical implementations have been proposed that
follow, more or less faithfully, Ottenstein et al.’s seminal
paper. But many discrepancies remain between these, de-
pending on the kind of dependencies they are supposed to
track and to leverage in analyses and code optimisations.

In this paper, we present a formal semantics for GSA,
mechanised in Coq. In particular, we clarify the nature and
the purpose of gates in GSA, and define control-flow insensi-
tive semantics for them. We provide a specification that can
be used as a reference description for GSA. We also specify a
translation from SSA to GSA and prove that this specification
is semantics-preserving. We demonstrate that the approach
is practical by implementing the specification as a validated
translation within the CompCertSSA verified compiler.

CCS Concepts:• Theory of computation ! Operational
semantics; Program veri�cation ; • Software and its en-
gineering ! Semantics.

Keywords: Verified Compilation, SSA, Gated SSA
ACM Reference Format:
Yann Herklotz, Delphine Demange, and Sandrine Blazy. 2023. Mech-
anised Semantics for Gated Static Single Assignment. InProceedings
of the 12th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP ’23), January 16–17, 2023, Boston, MA, USA.
ACM, New York, NY, USA, 15 pages.h�ps://doi.org/10.1145/3573105.
3575681

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CPP ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0026-2/23/01. . .$15.00
h�ps://doi.org/10.1145/3573105.3575681

1 Introduction
Important program optimisations in compilers require global
reasoning on the values that are computed by the program.
More precisely, one has to be able to statically infer facts
about program instructions that span several basic blocks in
the program’s control-flow graph. Furthermore, this global
reasoning has to account for side-effects, such as variable
modifications, memory writes, or observable outputs. More
generally, dependencies between instructions have to be
carefully analysed. Implementations of these optimisations
are therefore subtle and particularly error-prone.

To overcome these difficulties, many techniques have been
proposed by the compiler community. These range from
adequate program intermediate representations (IRs) to so-
phisticated auxiliary data structures that complement the
program representation. Most notably, Rosen et al. [24] pro-
posed the static single assignment (SSA) form in the late 80’s,
which enables an extensive global redundancy elimination
of computations. In SSA, each variable has a single definition
point: each time a variable is modified in the initial program,
a new version of that variable is introduced. To ensure this
property on programs with branches and junction points,
SSA provides a dedicated instruction, theq-instruction. At
a control-flow junction point with, say, three predecessors,
a q-instruction G4 = q¹G1• G2• G3º selects among the three
versionsG1,G2 andG3 of G, the one which should be assigned
to G4, depending on the control-flow execution path that led
to the junction point. The SSA form also has a built-in repre-
sentation for use-definition (use-def) chains, which provide
basic dependency information about the instructions of the
program: an instruction using an SSA variable depends on
the unique instruction defining that variable. This led to a
wide range ofsparseprogram optimisations, see e.g. Weg-
man and Zadeck[30], demonstrating the great success of
SSA, which is now available in many production compilers.

Since its introduction, several extensions of SSA have
been proposed to enrich the tracking of dependency infor-
mation between program instructions, as well as the tracking
of how properties propagate in SSA programs, see e.g. the
Static Single Information form [2] and its use in static anal-
ysis. The extension we study in this paper isGatedSSA,
which partially transforms control-flow dependencies into
data dependencies. Gated SSA (GSA) was introduced by Ot-
tenstein et al. [23] to extendprogram dependency graphswith

182

https://orcid.org/0000-0002-2329-1029
https://orcid.org/0000-0002-7029-3297
https://orcid.org/0000-0002-0189-0223
https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1145/3573105.3575681

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

the SSA property, leading to an IR devoted to compilation
targeting data-flow architectures and simulators. In GSA,q-
instructions are augmented with control-flow information,
so that they become “referentially transparent” in the fol-
lowing sense: while in the traditional SSA form, one needs
to keep track of the execution control-flow to select the
correct argument of aq-instruction, the GSA form extends
q-instructions with gates, i.e. Boolean conditions character-
ising the control-flow paths leading to thatq-instruction
and hence determining whichq-argument has to be selected.
For example, suppose an SSAq-instruction G3 = q¹G1• G2º
is placed at a junction point whose corresponding branch-
ing point is a test on condition2. In GSA, theq-instruction
would be gated as followsG3 = q¹¹2• G1º•¹2• G2ºº, meaning
if condition 2 evaluates to true, then it will selectG1, other-
wise it will selectG2. The selection of theq-arguments is
no longer guided by the dynamic control-flow predecessor
that led there, but is uniquely determined by the gate that
evaluates to true. Note that the gate’s conditions will refer to
program variables and are be evaluated with respect to the
current execution state. Most of the successful applications
of GSA can be found in the domain of parallelising compil-
ers [3, 16, 29] where dependency analysis plays a crucial
role. More recently, GSA has also been applied to the field of
high-level synthesis [11], and thread divergence and thread
aggregation for efficient compilation to GPUs [25].

Despite the impressive advances in the field of compiler
verification, where optimisation techniques are becoming
more realistic and closer to the ones used in production non-
verified compilers, GSA-based techniques remain largely
unexplored. This can be explained (i) by the lack of a ref-
erence GSA form, as the notion of dependence is carefully
tuned to each precise use case, and (ii) by the absence of a
clear and precise semantic description of GSA in the com-
piler literature, especially regarding the evaluation of gates.
The GSA form is central and crucial for these compilation
techniques, as it provides a useful base on top of which more
sophisticated analyses and optimisations can be built.

In this paper, we aim to bridge the semantic gap existing
between GSA and the well-understood SSA form. Providing
a fully fledged and fully verified GSA code optimiser is far
beyond the scope of the paper. Instead, we focus here on
essential components of GSA, i.e. the specification, construc-
tion and semantics of gates. We conducted our formalisation
in the Coq proof assistant. Our contributions are as follows:

1. We define a semantics for GSA in Section 4, featuring
a control-flow insensitive semantics for gates;

2. We provide a formal specification of a GSA construc-
tion algorithm in Section 5, and we prove it implies
the semantic preservation of SSA;

3. We apply our work to a realistic SSA-based middle-end,
demonstrating empirically the validity and relative
completeness of our specification in Section 6.

RTL
Normalise Loops

single loop entry / latch
exit landing pads

RTL
Normalise Join Points

add no-ops at predecessors
[4]

RTL
Renumber CFG

[21]RTL
SSA Generation

[4]

SSA
GSA Generation

a posteriori validated GSA
GSA Destruction
unverified, tested SSA

Figure 1. Key phases to integrate GSA into CompCertSSA.
This work comprises the phases in the shaded boxes in addi-
tion to the definition of the GSA language. The other phases
which are not shaded are provided by either CompCert or
CompCertSSA.

This paper is organised as follows. First, Section 2 illus-
trates GSA form through an example. In Section 3, we recall
the required background on CompCertSSA, the formally ver-
ified SSA middle-end where we integrate our formalisation.
Section 4 defines our GSA representation. Section 5 details
our conversion from SSA to GSA and its proof of correct-
ness. Section 6 describes the key phases we implement to
integrate GSA into CompCertSSA: this comprises a normal-
isation of loops, the translation from SSA to GSA, as well
as an non-verified destruction phase of GSA back to SSA
(see Fig. 1). Related work is discussed in Section 7, followed
by concluding remarks.

2 Motivating Example
We illustrate and explain informally the GSA form on a
simple example program. Let us consider the following C
code snippet, where functionf takes as input an integern
and computes a resultx using a for-loop.

int f(int n) {

int x = 1;

for (int i = 1; i < n; i++)

if (x < 9) x = x + 2;

else if (x > 50) x = x + 1;

else x = 2 * x;

return x;

}

In a compiler chain, programs are usually represented as
a control-flow graph (CFG) of instructions, which simplifies
their processing through analyses and optimisations. Fig. 2a
illustrates this CFG representation, called RTL in CompCert.

In SSA (Fig. 2b), each variable is defined exactly once: this
makes the link between the program point where a variable
is defined and the program point where it is used explicit in
the syntax. SSA extends RTL withq-instructions that handle
control-flow joins. At node 12, theq-instruction expresses

183

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

G:= 10

8:= 11

8< =3

G< 94

G:= G¸ 25 G> 507

G:= G¸ 18 G:= 2 � G10

8:= 8¸ 112

return G15

(a) RTL form

G0 := 10

80 := 11

Inop2

81 < =3

G1 < 94

G2 := G1 ¸ 25 G1 > 507

G3 := G1 ¸ 18 G4 := 2 � G110

Inop6 Inop9 Inop11

82 := 81 ¸ 112

Inop13

Inop14

return G115

𝑖1 := 𝜙 ¹𝑖0, 𝑖2º
𝑥1 := 𝜙 ¹𝑥0, 𝑥5º

𝑥5 := 𝜙 ¹𝑥2, 𝑥3, 𝑥4º

(b) SSA form

G0 := 10

80 := 11

Inop2

81 < =3

G1 < 94

G2 := G1 ¸ 25 G1 > 507

G3 := G1 ¸ 18 G4 := 2 � G110

Inop6 Inop9 Inop11

82 := 81 ¸ 112

Inop13

Inop14

return G615

𝑖1 := ` ¹𝑖0, 𝑖2º
𝑥1 := ` ¹𝑥0, 𝑥5º

𝑥5 := 𝛾 ¹ ¹𝑥1 < 9, 𝑥2º,

¹𝑥1 � 9 ^ 𝑥1 > 50, 𝑥3º,

¹𝑥1 � 9 ^ 𝑥1 � 50, 𝑥4º º

𝑥6 := [¹𝑖1 � 𝑛, 𝑥1º

(c) GSA form

Figure 2. Example program illustrating Gated SSA compared to RTL and SSA.

that G5 gets the value of eitherG2, G3 or G4, depending on
whether the control-flow of execution dynamically origi-
nates from node6, 9, or 11 respectively. Aq-block (grey
nodes in Fig. 2b) groups all theq-instructions at a given
junction node (e.g. node3). In addition to that, the CFG is
normalised in the following sense: (i) onlyInop instructions,
i.e. no-op instructions, can lead to a junction point, and (ii)
all nodes are syntactically reachable from the entry node.

GSA (Fig. 2c) in turn extends SSA. In GSA,q-instructions
are replaced bỳ - andW-instructions, and new instructions
called[-instructions are introduced. These instructions are
meant to better reflect control-dependencies. Indeed, they
include strictly more information thanq-instructions, and
therefore allow for the formulation of different types of se-
mantics, such as demand-driven or data-flow driven execu-
tions. An SSAq-instruction becomes either aW-instruction
when it is located at a simple junction point (e.g. node12), or a
` -instruction when it is located at a loop-header (e.g. node3).
TheW-instructions are augmented with gates, namely pred-
icates characterising the control-flow path corresponding
to the reaching definition of each of theq-arguments. For
W-instructions, the selection of the argument is based on the
predicate evaluating to true. For instance, at node12, predi-
cates guarding theW-arguments represent paths from node4
to node12; they are mutually exclusive, and each time node
12 is reached through the program execution, only one of
them is satisfied.

Regarding loops, GSA uses two kinds of instructions. At
loop headers, GSA uses` -instructions, to reflect the loop
construct; they update variables modified in the loop body,
thereby handling loop-carried dependencies properly. When
loops have a single entry point and a single latch,` -instruc-
tions are of the formG = ` ¹G0• G𝑖º, whereG0 is the initial
value before entering the loop, andG𝑖 is the version ofG

modified inside the loop body. Intuitively, arguments of a
` -instruction are not guarded like inW-instructions, since
no useful predicate helps to distinguish whenG0 or G𝑖 is the
right version to use. Indeed, the execution is always flowing
from the loop-latch back to the header, and yet, guarding
the selection ofG𝑖 with the True predicate wouldn’t always
be correct. At loop exits, GSA introduces[-instructions (e.g.
node14). An [-instructionG= [¹2• G̀º selects a loop-defined
variableG̀ when the loop-exit condition2 is satisfied. Intu-
itively, [-instructions introduce new variables to decouple
loop-carried dependencies from variable uses occurring after
the loop has ended.

Another folklore intuition about GSA is that theW-, ` -
and[-instructions make it referentially transparent: each of
them denotes an equality between the left-hand side variable
and their arguments, that only holds when thepath condition
expressed by the Boolean predicate is true.

We argue that the main challenge in understanding GSA
lies in the definition, specification, and construction of gates.
First, depending on the application use cases, these gates
reflect different subsets of dependencies. It is currently an
open problem to determine which dependencies must be
kept track of to correctly reflect the semantics of the initial
SSA program. Second, it is currently unclear in the recent
literature which algorithms are precisely used to generate
these gates. Seminal papers are cited, but without giving
many details about the concrete implementations, let alone
a concise specification thereof. We argue that gates are the
most critical component of GSA, and that they must be bet-
ter understood and mastered by the community. Another
challenge is that gates must be interpreted as path predicates,
reified in the very code of GSA programs. Hence, for gates to
make proper sense, we need to define what it means to eval-
uate a gate. In fact, the situation is much more subtle than

184

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

one might first think: gates involve program variables that
may be defined or not, depending on the path that is actually
taken during the execution. This raises several challenges
related to the underlying logic behind the apparently simple
syntax of gates. These are the challenging and interesting
problems that we tackle in this work.

To do this, we employ a compiler-correctness approach.
Our goal is to devise a reference GSA form, and provide it
with a formal semantics reflecting the control-flow insensi-
tivity of the semantics of gates. In this context, GSA is correct
when it reflects all the dependencies required to, provably,
mimic the semantics of the initial SSA program.

3 Background on SSA in CompCertSSA
We integrate our formalisation work into the CompCert-
SSA compiler [4], which is an extension of the CompCert
C compiler [20]. CompCert is programmed and verified us-
ing Coq [18]. The compiler itself is written as a sequence
of 20 compiler passes, from the CompCert C source lan-
guage down to assembly, going through 8 intermediate lan-
guages. Among them is RTL (Register Transfer Language), a
CFG-based representation of programs, and on which most
CompCert’s optimisations are performed. Compiler passes
are either programmed and verified in Coq using simulation
techniques, or programmed in OCaml and verified in Coq,
using translation validation. The correctness theorem states
that the compilation is semantics-preserving. It decomposes
into theorems for each of the 20 compilation passes.

CompCertSSA extends CompCert with an SSA-based op-
timising middle-end. The middle-end is plugged in at the
level of RTL, and includes a validated SSA construction, SSA-
based optimisations, as well as an SSA destruction phase,
going back to RTL, on which register allocation takes place.
The SSA form in CompCertSSA was designed to be as close
as possible to the RTL form. In particular, it reuses all regular
instructions, arithmetic and conditional operators.

This section introduces the syntax and semantics of SSA of
CompCertSSA, and recalls some related background notions.

Notations. For option types, we writebGc (read: “some
x”) for the presence of valueG, and; (read: “none”) for the
absence of value. We write� :: Cfor a list with head� and
tail C, andn for the empty list. Vectors are written#»E, andE𝑘
denotes the: -th element of#»E.

3.1 SSA Representation

An SSA function5 (see Fig. 3) is modelled as a record made of
a CFGI of instructions over pseudo-registers, and a mapΦ
for q-instructions.I is modelled as a partial map from nodes
to single instructions. The instruction set includes arithmetic
operations, memory loads and stores, conditional and un-
conditional jumps, function calls, and a return statement.
Each instruction explicitly carries the labels of successor in-
structions. In the following,l ranges over node labels, andA

8 ::= Inop¹;º no-op instr.
| Ad Iop ¹>a• #»A • ;º arith. operator>a on #»A
| Icond¹>c• #»A • ;1• ;2º conditional>c on #»A
| . . . other RTL instructions

I ::= ; 7! 8 instruction map
8𝜙 ::= Ad q ¹ #»Aº q-instruction
Φ ::= ; 7!

#»
8𝜙 q-block map

5 ::= ¹I •Φº SSA function

Figure 3. Syntax of SSA.

5 ”I ¹ lº = bInop¹l0ºc 5 •⋎ l0

` S¹ 5 •l•rs•mº
𝜖

! S¹ 5 •l0•rs•mº

5 ”I ¹ lº = bInop¹l0ºc 5 ⋎ l0 5 ”Φ¹l0º = b1𝜙c

preds¹l0º𝑘 = l 1𝜙• : ` rs
𝜙
⇝ rs0

` S¹ 5 •l•rs•mº
𝜖

! S¹ 5 •l0•rs0•mº

Figure 4. Semantics of SSA (excerpt).

ranges over pseudo-registers. TheInop instruction is a no-op
instruction, it just branches to its explicit successor;. TheIop
instruction applies an operator>a to a list of pseudo-registers
#»A, stores its result in a registerAd and branches to its succes-
sor node;. TheIcond instruction conditionally branches to
l1 or l2 depending on the value of the condition operator>c
applied to #»A. TheΦ map stores blocks ofq-instructions. We
write 5 ”Φ¹;º for the q-block at node;. A q-instruction writ-
tenAd q ¹ #»A𝑖 º assigns toAd the value of one of its operands
in #»A𝑖 .

In SSA, there is a clear distinction between RTL-like in-
structions andq-instructions: both are stored in distinct
maps; this simplifies the conversion to SSA, and allows for a
smooth integration in CompCert. Allq-blocks, are located at
junction points, and the CFG is normalised so that onlyInop

instructions can lead to a junction point. Last, SSA functions
are equipped with a well-formedness predicate,wfSSA¹”º,
capturing essential properties of SSA functions: structural
constraints, unique definitions and strictness properties [4].

The placement ofq-instructions in SSA relies on the no-
tion of dominance between nodes [10]. A node8dominates
a node9(written 8� 9) if every path from the entry node to
9goes through8. Node8strictly dominates9(written 8� 9)
when8� 9but 8< 9. We write8•� 9to mean that8does not
dominate9. The (unique) immediate dominator of a node9
is the strict dominator of9that does not strictly dominate
any other strict dominator of9. In Fig. 2b, we have1 � 3,
5 •� 12and node4 is the immediate dominator of node12.

185

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

3.2 Semantics of SSA

The small-step semantics of SSA is defined as a relation
� ` (

𝑡
! (0 between a global environment� and states(

and(0, associating to a program loaded in� the set of all its
observable behaviours, comprising a traceCof external ac-
tions, emitted by certain specific instructions such as external
function calls. Observable behaviours include terminating,
diverging and going wrong [21]. In this paper, to simplify the
presentation, and we omit� . For the sake of completeness,
we keep the trace in small-step execution steps, although the
instructions we present in this paper do not emit observable
events, and thus step with the empty tracen.

Semantic states are writtenS¹5 •l•rs•mº. They carry the
current function 5, a program counterl, a maprs from
pseudo-registers to values, and a memory statem. Other
semantic states include call states and return states. For the
sake of presentation, in this paper, we focus on regular states,
as we only expose the intra-procedural part of SSA.

Figure 4 gives the most relevant semantic rules for SSA.
The rules for instructions other thanInop closely match their
RTL counter-part from CompCert, we thus omit them for
space reasons. Indeed, the most important rules are the one
for the Inop instruction, becauseq-blocks can only be placed
at junction points in the CFG, and onlyInop can lead to
a junction point. The first rule of Fig. 4 gives the rule for
executing anInop instruction at program pointl, when its
successorl0 is not a junction point (i.e.5 •⋎ l0). Here, the
standard RTL rule applies, as there is noq-block to execute,
and execution steps tol0 without modifying the registers
staters. The second rule corresponds to the case wherel0
is a junction point (i.e.5 ⋎ l0). In that case, a (potentially
empty)q-block1𝜙 exists, and is executed before reaching the
regular instruction atl0. All its q-instructions are executed
in parallel and their result is assigned to their respective

destination registers (1𝜙• : ` rs
𝜙
⇝ rs0). A givenq-instruction

uses only one of its operands, the: -th, where: is determined
by a conventional numbering of the predecessors of each
of the CFG nodes (preds¹l0º𝑘 = l). The execution updates
the registers state tors0, so that the value of each register
assigned in1𝜙 becomes the value of the: -th operand of the
correspondingq-instruction in rs.

4 Gated SSA Representation
To define our Gated SSA form, we take inspiration from
previous existing work on GSA [3, 9, 12, 13, 16, 23, 28, 29].
Precisely, we define GSA as an extension of the SSA form pre-
sented in the previous section. The syntax for GSA therefore
follows the syntax for SSA closely, and many SSA concepts
translate to GSA.

8 ::= Inop¹;º no-op instr.
| Ad Iop ¹>a• #»A • ;º arith. op.>a on #»A
| Icond¹>c• #»A • ;1• ;2º conditional>c on #»A
| . . .

I ::= ; 7! 8 regular instr. map

8M ::= Ad ` ¹A0•A𝑖º merge instr.
| Ad W¹

»

¹?𝑖•A𝑖ºº
M ::= ; 7!

»
8M merge-block map

8[::= Ad [¹?•Asº selection instr.
E ::= ; 7!

#»
8[selection-block map

5 ::= ¹I •M •Eº GSA function

2 ::= ¹>c• #»Aº cond. op.>c on #»A
? ::= Falsej True j Undef predicates

| 2 j 2 j ?1 _ ?2 j ?1 ^ ?2

Figure 5. Syntax of GSA.

4.1 Syntax of GSA

The definition of a function is shown in Fig. 5. It includes
three maps, a mapI for the CFG over regular instructions
(as in SSA), a mapM for merge instructions, i.e.W- and ` -
instructions, and a mapE for [-instructions. This separation
makes it a natural extension of SSA, because only the map
E has to be newly constructed in GSA. The mapM has the
same structure asΦ in SSA:q-instructions have either been
converted to either̀ - or W-instructions. Each of theM and
E maps, which contain the new GSA instructions, are maps
from program counters to blocks of GSA instructions.

We distinguish two categories of GSA instructions. First,
merge instructionsinclude` - andW-instructions, and replace
the SSAq-instructions.` -instructions, writtenAd ` ¹A0•A𝑖º,
are the simplest ones; they are placed at loop headers, andAd
is the loop-carried register. When the loop is initially reached,
this instruction assigns the value ofA0 to Ad. When the loop is
subsequently re-entered from its back-edge, the instruction
assigns the value ofA𝑖 to Ad. This instruction does not have
predicates guarding its arguments, and therefore behaves
just like itsq-instruction counterpart, based on the executed
control-flow. W-instructions, written asAd W¹

»

¹?𝑖•A𝑖ºº, are
the other replacement forq-instructions. Here, instead of
having to rely on control-flow to select a register to assign to
Ad, it includes, for each registerA𝑖 , a predicate?𝑖 indicating
when that register should be selected. Consider for instance
the instructionG5 = q¹G2• G3• G4º at node12 in Fig. 2b, and
its correspondingW-instruction at node12 in Fig. 2c. Each
predicate describes a path from dominator node4 of node
12 to node12. This is enough to discriminate paths with,
respectively,G2, G3, or G4 as a reaching definition forG5.

186

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

rs j=p True+ 1 rs j=p False+ 0 rs j=p Undef+ 1
2

rs j=c 2+1

rs j=p 2+1

rs j=p ?1 +11 rs j=p ?2 +12

rs j=p ?1 _ ?2 +11 max12

rs j=c 2+1

rs j=p 2+ 1 � 1

rs j=p ?1 +11 rs j=p ?2 +12

rs j=p ?1 ^ ?2 +11 min 12

Figure 6. Evaluation of GSA predicates.

Second,selection instructionsare extra instructions intro-
duced when generating GSA and have no counter-part in
SSA. All[-instructions, writtenAd [¹?•Asº, are placed at
loop exit nodes. These instructions indicate a termination
condition ? of the loop, which asserts that the registerAs
is ready to use, and can be assigned toAd. Intuitively, they
behave like predicated moves. We assume that the loops are
in loop-closed SSA form,1 so that the registerAs is assigned
by a corresponding̀ -instruction at the loop header.

Predicates play an essential role in the semantics of[-
andW-instructions. In GSA, predicates are represented in
the IR. They are defined according to the grammar given
at the end of Fig. 5. We recall that in GSA, predicates are
used to materialise path conditions under which aWor [
argument should be selected. Predicates are thus built out of
atomic conditions2 found in the initial SSA code, as well as
their negation2. Atomic conditions are pairs of a conditional
operator>c and operands#»A. To reflect path condition com-
position, we need to include the conjunction̂of predicates,
for nested conditionals, and the disjunction_ of predicates,
for sequencing conditionals. Predicates also include the two
expected constantsTrueandFalse, and the special constant
Undef, representing a non-evaluable condition.

We do not need to add a negation operator on predicates,
as instructions in SSA do not contain them either: branch-
ing is only possible through simple, basic conditions, rather
than arbitrarily complex Boolean expressions (see Fig. 3).
This syntax for predicates is also sufficient to treat switch
branches, modulo an encoding of branching conditions.

4.2 Semantics of GSA

The semantics of GSA is essentially the same as the one of
SSA, since both representations use the same set of regular
instructions, and handle function calls similarly. The novelty
is how to execute GSA specific instructions. At a high-level,
whenever aW-, ` - or [-block is reached, all its instructions
are executed in parallel and their results are assigned to
their respective destination registers. This is similar to how
q-blocks are executed.

1Loop-closed SSA form states that all variables defined within the loop are
not used outside of the loop.

To define the semantics ofW- and[-instructions, we first
need to define the semantics for GSA predicates. The evalua-
tion of predicatesj=p is defined by induction on the structure
of the predicate (see Fig. 6, wherej=c refers to the evaluation
of conditions borrowed from SSA). We emphasise, however,
that predicates are part of the syntax, and composed of (po-
tentially negated) conditions that refer to program variables.
Hence, we need a local environmentrs to evaluate a pred-
icate. Importantly, we also note that a predicate can either
(i) evaluate to the Boolean values0 and 1 or (ii) be non-
evaluable(represented by an evaluation to12 in Fig. 6) since
it can refer to program variables that may have never been
in scope. This subtlety is in contrast with a simple Boolean
semantics where predicates evaluate to either true or false.

The semantics of merge instructions is handled when ex-
ecuting Inop¹l0º instructions, as for theq-instructions in
SSA (see bottom of Fig. 7). It is also the case for selection
instructions, which are inserted at loop exit landing pads
implemented withInop instructions. Note that a loop exit
landing pad could very well be the predecessor of a junction
point: in that case, we must handle both kinds of instructions.

The most important semantic rules for GSA are given in
Fig. 7, where GSA semantic states are writtenT ¹ 5 •l•rs•mº.
We again define two cases, whetherl0 is a junction point
or not, as merge-blocks are only placed at junction points.
If l0 is not a junction point (ruleNJoin), the register state
is only updated by[-instructions. Otherwise (ruleJoin), l0
is a junction point, and the merge-block must be executed.
The [-block is first executed, updatingrs to rs0; then the
merge-block is executed, updatingrs0 to rs00.

Let us now explain in deeper detail how to execute[-
instructions and merge instructions. RuleEta (top of Fig. 7)
defines how to execute a non-empty list of[-instructions.
Executing an[-instruction Ad [¹@•Aº requires predicate
@to evaluate to1: it must hold in rs. All [-instructions are
evaluated in parallel: the value of the predicates and register
operands are determined in the current register staters, and
destination registers are updated.

The execution of a merge-block is similar to the execution
of a q-block: it assigns in parallel to destination registers
the value (inrs0) of one operand of each merge-instruction.
The novelty here ishow this operand is chosen for each
instruction. For` -instructions (ruleMerge`), the selection
is done only via: , designating the index of the control-flow
predecessor that leads tol0, as was done forq-instruction. In
the case of à -instruction, we however ensure that it only
has two predecessors: the loop header, and the loop latch.
Hence,: 2 f 0•1gand eitherA0 or A1 is assigned toAd.

In the case ofW-instructions (ruleMerge𝛾), the selection
is guided by a predicate that evaluates to1, and: does not
play any role. Indeed, in ruleMerge𝛾 , the=-th operandA𝑛
is selected, forsome=. In particular,@𝑛 is not necessarily@𝑘 .
We ensure that our semantics stays deterministic by choos-
ing the first such =, whenever two predicates@𝑛1 and@𝑛2

187

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

Eta;

; ` rs
E
⇝ rs

Eta𝜖

bnc ` rs
E
⇝ rs

Eta

8= Ad [¹@•Aº rs j=p @+ 1 b1[c ` rs
E
⇝ rs0

b8:: 1[c ` rs
E
⇝ rs0»Ad 7! rs¹Aº¼

Merge𝛾

8= Ad W¹
»

¹@•Aºº rs j=p @𝑛 + 1 b1M c• : ` rs
M
⇝ rs0

b8:: 1M c• : ` rs
M
⇝ rs0»Ad 7! rs¹A𝑛º¼

Merge`

8= Ad ` ¹A0•A1º : 2 f 0•1g b1M c• : ` rs
M
⇝ rs0

b8:: 1M c• : ` rs
M
⇝ rs0»Ad 7! rs¹A𝑘º¼

NJoin

5 ”I ¹ lº = bInop¹l0ºc 5 •⋎ l0 5 ”E¹lº ` rs
E
⇝ rs0

` T ¹ 5 •l•rs•mº
𝜖

! T ¹ 5 •l0•rs0•mº

Join

5 ”I ¹ lº = bInop¹l0ºc 5 ⋎ l0 5 ”E¹lº ` rs
E
⇝ rs0

preds¹l0º𝑘 = l 5 ”M¹ l0º• : ` rs0 M
⇝ rs00

` T ¹ 5 •l•rs•mº
𝜖

! T ¹ 5 •l0•rs00•mº

Figure 7. Semantics of GSA (excerpt)

would be simultaneously true. However, as we explain in
Section 5.2, predicates guardingW-arguments are provably
mutually exclusive in GSA.

5 Conversion from SSA to GSA
To convert SSA into GSA, theq-instructions need to be re-
placed byW- or ` -instructions, depending on whether the
q-instruction was at a simple junction point or at a loop
header. In addition to that, extra[-instructions need to be
added to loop exits. The difficulty of the transformation is
the calculation of the predicates forW- and [-instructions,
as well as proving the necessary properties about the gen-
erated predicates. This is the main focus of this paper, and
we explain it below, together with the salient properties of
the conversion. The new[-instructions additionally require
fresh register names, and to update register uses accordingly.
We abstract over the related administrative duties, which
mainly comprise technicalities. Full details are present in the
companion Coq development [17].

SSA
Merge

instr. 𝛾 , `

Selection
instr. [

Register
renaming

Regular
instr.

Compute
Predicates

Loop
Headers

P

GSA

R

Encoding
predicates, coherence,

well-exclusivity

SMTCoq CheckerExternal Solvers

Structural
Checks

Validity
Checker

Figure 8. Overview of the translation from SSA to GSA.

Section 5.1 describes the main algorithm used to perform
the translation from SSA to GSA, as well as its formal speci-
fication. In Section 5.2, we give more details about the gen-
eration of predicates, explain predicates invariants that hold
in the specification. In Section 5.3, we explain how we spec-
ify the translation from SSA to GSA at the instruction level.
Section 5.4 then goes over how the renaming of variables is
performed after the new[-instructions have been inserted,
and describes invariants about this renaming. Section 5.5
then covers the main correctness theorem and gives an intu-
itive description of how it is proven using the specification.
Finally, Section 5.6 describes the main semantic invariant
used to prove the correctness theorem of the translation.

5.1 Speci�cation of GSA Construction

This section describes the translation going from SSA to GSA.
A diagram with an overview of the translation is given in
Fig. 8, where the main steps are in the center of the figure:
(i) generateW- and ` -instruction fromq-instructions, (ii) in-
sert an[-instruction for each` -instruction, and (iii) register
renaming for the inserted[-instruction assignments. In addi-
tion, there are also a predicate computation step and a loop
headers computation step which generate information used
when generating merge- and[-instructions.

From an implementation point of view, the translation is
done sequentially, meaning there will be an intermediate
state of the code after the merge-instruction translation and
after the[-instruction generation, where the GSA code does
not account for the proper renaming yet. When writing a
specification for this translation, one would want to relate
the SSAq-block directly to the final merge-block, but with-
out having to consider how[-instructions are inserted, and

188

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

thus how the renaming is performed. We therefore gener-
ate a predicate matrixP containing all the predicates that
were generated during the translation and a renaming map
R which contains all the variables that are renamed and
their new name, together with their original definition point.
We described in further detail the predicate matrix and the
renaming map in described in Section 5.4 and Section 5.2
respectively. Finally, the properties we need aboutP,R and
the CFG structure are validated after the translation, with
dedicated validators. This includes making use of an un-
trusted external SMT solver, whose result is itself validated
by SMTCoq [19]. We explain our encoding in Section 6.1.

Translation Speci�cation. We now give in Definition 5.1
a formal specification for our translation from SSA to GSA.
It relates an SSA function5 to the translated GSA function
tf , relative toP andR. It is written P•R ` 5 � tf .

De�nition 5.1 (SSA to GSA Translation Specification).

5 = ¹I •Φº tf = ¹I tr•M tr•Etrº
P coh P ⋉ 5 •tf j= R ✓

8l•I ' l
] I 𝑡 8l•P ` Φ ' l

M M 𝑡 8l•P ` I ' l
[E𝑡

rename¹R•I 𝑡•M 𝑡•E𝑡 º = ¹I tr•M tr•Etrº

P•R ` 5 � tf

We explain here the main components of the specifica-
tion, and how it is structured, leaving a detailed and formal
description for the next subsections.

The two functions are of the form5 = ¹I •Φº and tf =
¹I tr•M tr•Etrº. In the second line of the specification, we
require the predicate matrixP and the renaming mapR to
satisfy properties that tell us enough about their correctness
so that we can prove that the right argument will be picked in
W-instructions, and that the predicates in[-instructions will
always evaluate to true when they are reached. We explain
these requirements in Section 5.2 and Section 5.4.

The third line specifies how the code of the SSA and
GSA functions match. We introduce one code-matching re-
lation per type of instructions (regular instructions, merge-
instruction, and selection-instructions). We explain these
code correspondences in Section 5.3.

Finally, the renaming is performed after the threes kind
of maps are generated, so that variables introduced by an
[-instruction are used after their definition.

5.2 Speci�cation of GSA Predicates

In GSA, predicates guard the register selection inW- and[-
instructions. Hence, they should reflect the dynamic control-
flow of the program. Essentially, one must generate a predi-
cate for each path to theW-instruction, so that the predicate
is true if and only if the path was picked.

One solution to this is to leverage the solution to the single-
source path problem expressed by Tarjan[26]. The suggested
algorithm is use to build a regular expression on CFG edges,
that matches all possible paths between a single source CFG

node and all other CFG nodes. We then translate these regular
expressions to predicates by collecting and composing all
relevant conditions encountered on the paths of interest.
Such predicates will, intuitively, only be true whenever a path
in the language of that regular expression is taken. Kleene
stars in regular expression express infinitely many possible
paths with loops. Simply removing star-expressions during
the translation of path expressions to predicates provably
does not change the evaluation of the resulting predicate
itself: the predicate characterising paths already accounts
for cases where loops are not entered, hence entailing all
paths described by the star-expression-free predicate.

To reason about the meaning of predicates in the proof of
the semantic preservation, the solution to the single source
path expression problem needs to be formalised. Presenting
the details of Tarjan’s algorithm is far beyond the scope of
this paper. In fact, in this work, instead of verifying Tarjan’s
algorithm, we use a translation validation approach: we iden-
tify two properties, namelycoherenceandwell-exclusivityon
predicates, which are sufficient to prove the translation itself,
allowing us to abstract away from the implementation tech-
nicalities of Tarjan’s algorithm. We explain later in Section 6
how we validate these properties.

We first calculate predicates on the initial SSA function;
then, we insert them in the GSA function, and the subsequent
renaming of variables will account for the insertion of[-
instructions. We note that predicates characterise sets of CFG
paths: they hence constitute an information that isglobalon
the CFG of the initial SSA function. We therefore express
their essential properties relative to apredicate matrixP,
associating predicates, inP, to pairs of nodes in the CFG of
the initial SSA function5. Morally, the predicate associated
to ¹8• 9º, written P𝑖, 𝑗 , should represent a set of paths from
node8to node9in the CFG of5. For instance, for the CFG
in Fig. 2c,%4,8 is G1 > 50^ G1 < 9.

Coherence.The first property we formulate,coherence,
relates to the semantic correctness of predicates. Intuitively,
predicates should indeed be coherent with the CFG paths
they are supposed to represent. In particular, for a given node
9with < predecessors, the possible paths from a node8to
each of the predecessors of9should enable a path from8to 9,
when extended with the (atomic) condition on the edge from
that predecessor to9. This is visualised in Fig. 9, taken from
Fig. 2b, but with elidedInop nodes. In this figure, we take
node8to be node4, and we write each predicateP4,𝑘 at node
: . An edge from node: to 9is taken when the atomic con-
dition 2𝑘,𝑗 holds. The coherence property intuitively states
that, P𝑖, 𝑗 ought to hold, as soon as one of the paths from8
to 9, corresponding to a predicateP𝑖,𝑘 ^ 2𝑘,𝑗 , where: is a
predecessor of9, has been taken.

We formalise this intuition with the three-place relation
P coh ¹8• 9º; it states, for a function5, a predicate matrix

189

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

G1 < 94

P4,4 = True

G2 := G1 ¸ 25

P4,5 = G1 < 9
G1 > 507

P4,7 = G1 < 9

G3 := G1 ¸ 18

P4,8 = G1 > 50^ G1 < 9

G4 := 2 � G110

P4,10 = G1 > 50^ G1 < 9

82 := 81 ¸ 112

P4,12 = True

𝑥5 := 𝜙 ¹𝑥2, 𝑥3, 𝑥4º

24,5 = G1 < 9 24,7 = G1 < 9

27,8 = G1 > 50 27,10 = G1 > 50

25,12 = True

28,12 = True 210,12 = True

(a) SSA example program taken from Fig. 2, with elidedInop nodes (excerpt).

©«
¹P4,5 ^ 25,12º

_¹P4,8 ^ 28,12º

_¹P4,10 ^ 210,12º

ª®®¬ ⇃12 =) P4,12

=
©«

¹G1 < 9^ Trueº

_¹G1 > 50^ G1 < 9^ Trueº

_¹G1 > 50^ G1 < 9^ Trueº

ª®®¬ =) True

(b) Example of local coherenceP coh ¹4•12º. The
projection has no effect as only82 andG5 are de-
fined at node 12, but they do not appear in the
predicates.

¹P4,7 ^ 27,8º⇃8 =) P4,8

= G1 < 9^ G1 > 50 =) G1 > 50^ G1 < 9

(c) Example of local coherenceP coh ¹4•8º.

Figure 9. Illustration of the coherence propertyP coh ¹8• 9º for a node8such that8� 9.

P, and two nodes8and 9, that the predicateP𝑖, 𝑗 is, locally,
coherent for nodes8and 9.

De�nition 5.2 (Local Coherence). Let 5 be an SSA function,
P a predicate matrix, and8and 9be two nodes in the CFG of
5. The relationP coh ¹8• 9º is defined as follows2:

CohNDom
8•� 9

P coh ¹8• 9º

CohEq
8B)AD4¹P𝑖,𝑖º

P coh ¹8•8º
CohSDom

8� 9 ©«
∨

𝑘2preds¹ 𝑗 º

P𝑖,𝑘 ^ 2𝑘,𝑗
ª®¬ ⇃𝑗 =) P𝑖, 𝑗

P coh ¹8• 9º

In addition to the informal explanations we gave previ-
ously, coherence requires two other ingredients, appearing
in Definition 5.2, to be meaningful and provable.

The first ingredient is dominance. For nodes8and 9, we
need to distinguish cases where8dominates9or not. Indeed,
recall that a predicate used at a node9characterises paths
from a dominator of9to 9. Hence, we never need to consider
paths from non-dominators of9to 9. This explains the first
rule CohNDom, which does not impose any constraint on
those predicates. Now, when8dominates9, there are again
two cases to consider: either8 = 9or 8strictly dominates
9. In the first case (ruleCohEq), we ask that predicateP𝑖,𝑖
always evaluates to true, so that it models an empty path
from 8to 8. The second case (ruleCohSDom) corresponds

2The definition of semantic implication on predicates is standard:𝑃 =) 𝑄

means that, for any register staters, if 𝑃 evaluates to1, then so does𝑄.

to the informal explanation given previously. We give two
examples of this rule, illustrated in Fig. 9c (where8= 4 and
9= 12) and Fig. 9b (where8= 4 and 9= 8).

The second ingredient we need is related to the inter-
action between semantic implication of predicates and the
evaluability of the predicates. Indeed, we need to make sure
that semantic implication does not hold vacuously because of
some yet-to-be-defined or outdated program variable appear-
ing in the atomic conditions of the predicates inP. Predicates
sometimes reflect CFG paths that join in a non-structured
way: some sub-paths might therefore involve conditions on
locally defined program variables, and the definition points
of variables appearing in predicates do not necessarily domi-
nate the use point of a predicate.

To deal with this, we introduce a projection operator on
predicates, written?⇃𝑗 , which replaces any atomic condition
2 or 2 in a predicate? with True, as soon as condition2
uses a program variable defined at node9 in function 5.
In particular, when9is a junction point, variables defined
by aq-instruction are abstracted away. Note that we only
project atomic conditions, and not the entire predicate. We
only abstract the variables that actuallyneedto be abstracted.
Intuitively, the projection operator in Definition 5.2 allows us
to specify which variables should be considered as relevant to
the truthfulness of predicateP𝑖, 𝑗 ; indeed, to prove coherence
one would have to show that the projection does not change
the truthfulness of the predicate, either by showing that the
problematic variables are not present in the predicate, or by
showing that they do not affect its evaluation.

Next, the following definition uses the coherence relation
to express a global criteria on the entire predicate matrix.

190

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

De�nition 5.3 (Coherent Predicate Matrix). Let 5 be an
SSA function. A predicate matrixP is said to be coherent,
written P coh, whenP coh ¹8• 9º for all 8and 9in P.

We emphasise here that the matrix does not need to in-
clude all pairs of nodes. In practice, it is sufficient to keep
track of only the predicates required in the future GSA func-
tion, i.e., at futureW- and[-instruction nodes (e.g. the pred-
icates of Fig. 9a). Hence, it is enough to build a matrix of
dimension¹� ¸ � º � # , where# is the size of the CFG,
� is the number of (non-loop headers) nodes holding aq-
instruction and� the number of loop exit nodes. Informally,
for each of the� ¸ � nodes, one predicate is required to
describe paths from their immediate dominator to each of
the # nodes in the CFG of the function.

Mutual exclusivity. The second property we must es-
tablish about the generated predicates is that they are suf-
ficiently informative: they indeed allow for a proper selec-
tion of the arguments inW-instructions. We formalise this
property using a notion of mutual exclusivity of predicates,
stating that they cannot be satisfied simultaneously.

De�nition 5.4 (Mutually Exclusive Predicates). Let?1 and
?2 be two predicates inP. They are said to be mutually ex-
clusive, written?1 ⋉ ?2, whenever for all register statesrs
they cannot both evaluate to true, i.e. ifrs j=p ?1 + 1, then
rs j=p ?2 •+ 1.

Naturally, we cannot ask for all predicates in a predicate
matrix to be pairwise mutually exclusive. What we require
is that predicates to be used for the selection of any futureW-
instruction’s pair of arguments be mutually exclusive. Hence,
we only consider non-loop-headers junction points – loop-
headerq-instructions are futurè -instructions, that do not
resort on predicates.

De�nition 5.5 (Well-Exclusive Predicate Matrix). Let 5 be
an SSA function. A predicate matrixP is well-exclusivefor
5, written P ⋉, when for all node=𝜙 in 5 that is not a loop
header, and that holds aq-block, and any possible strict-
dominator3 of =𝜙 , i.e.3 � =𝜙 , the following holds: for any
two distinct nodes=1•=2 2 preds¹=𝜙 º, we haveP𝑑,𝑛1 ⋉ P𝑑,𝑛2.

We now summarise the calculation and validation of GSA
predicates. For anyq-instruction at node= in the initial SSA
function 5, we calculate a predicate characterising all paths
from its immediate dominator node3 to =. For each loop
exit node= in 5, we calculate a path predicate characterising
all paths from the corresponding loop-header of= to =. We
collect all these predicates in the predicate matrixP, on
which we globally apply the projection operator”⇃. on all
predicates columns, i.e.P𝑖, 𝑗 is replaced by the projection
P𝑖, 𝑗⇃𝑗 . We finally check that the resulting predicate matrix
is indeed coherent and well-exclusive. The details of the
validator itself are given in Section 6.

5.3 Speci�cation for GSA Instructions

We turn now to the specification of how SSA instructions
are converted to GSA instructions. We do this by stating how
the respective instruction maps of the initial SSA function
5 and the GSA function are relating, on a per-node basis.
Indeed, such a one-to-one correspondence is possible, since
the conversion to GSA does not modify the structure of the
CFG. In fact, we insert loop exit landing pads prior to the
GSA conversion; the insertion of[-instructions hence also
preserves the CFG structure.

We thus introduce three code-correspondences: relation
” ' .

] ” handles the regular instruction maps, relation”` ” ' .
M ”

handles the merge-block map, and relation” ` ” ' .
[” handles

the selection-block map.

De�nition 5.6 (Code-Correspondence Relations at Nodel).

I ¹ lº = I 𝑡 ¹lº

I ' l
] I 𝑡

3 � l 88”P ` Φ¹lº𝑖 � l,𝑑
𝜙

M¹ lº𝑖

P ` Φ ' l
M M

P ` Ad q ¹A0•A𝑖º � l,𝑛
𝜙

Ad ` ¹A0•A𝑖º

8:” A0
𝑘

= ¹P𝑛,preds¹lº𝑘 •A𝑘º

P ` Ad q ¹ #»Aº � l,𝑛
𝜙

Ad W¹
#»

A0º

I ¹ lº = bInop¹l0ºc � � l
8 Ad ?s As” Ad [¹?s•Asº 2 E¹lº) ?s = Pℎ,l

P ` I ' l
[E

Relation'] is straightforward: both functions should have
identical instructions at a nodel. Relation' M states that, at
nodel, allq-instructions and merge-instructions are pairwise
related through� 𝜙 . Recall thatq-instructions are converted
either to ` - or W-instructions, depending on whether they
were placed at loop headers in5. In our specification, we do
not need to distinguish between the two cases, and we allow
for aq-instruction being related either to aW-instruction or
to a` -instruction (if it has only two arguments: a first one for
the loop initialisation and a second one for the loop iteration).
We make this (correct) specification permissive enough so
that it makes it possible to abstract over the correctness of the
calculation of loop-headers. The interesting case is when aq-
instruction is converted to aW-instruction at nodel: to each
register argumentA𝑘 in theq-instruction, we associate in the
W-instruction the predicateP𝑛,preds¹lº𝑘 : this expresses thatA𝑘
should be selected on paths from= to the : -th predecessor
of l, with = a strict dominator ofl.

Third, for the selection-block map, the relation' [states
that [-instructions are inserted only at nodesl holding an
Inop instruction in 5, and that the predicate used to select
the registerAs in the [-instruction is expressing paths from
a (loop-header) node� to l, with � strictly dominating l.

Note that in Definition 5.6, source and destination register
names are under-constrained. Technically speaking, at this

191

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

point of the specification, the GSA function isnotSSA. We
re-establish the SSA property and register-use consistency
using our global renaming post-phase that we describe next.

5.4 Speci�cation of Register Renaming

Because GSA adds[-instructions, and register definitions
need to remain unique, we need to (i) generate fresh register
names, and (ii) to readjust register uses to keep them con-
sistent: past a loop exit node, the fresh generated register
name should be used instead of the initial one. To this end,
we rely on a register renaming map, that we compute during
the insertion of[-instructions.

Each of the loop-exit nodes will hold an[-instruction
Ad [¹?•Asº, whereAd must be fresh,? is the loop-exit
predicate, andAs is the variable defined by the corresponding
` -instruction. So, in the renaming phase, we need to keep
track of how each variable defined using à-instruction will
be copied to the fresh registerAd at node;exit . We store all of
this information in the following data-structure.

De�nition 5.7 (Register Renaming Map Validity). Let 5 be
an SSA function. A register renaming mapR is valid with
respect to5 and tf , written 5 •tf j= R ✓, if and only if the
following two conditions hold.

1. For all À such thatR¹À º = b
»

¹A[•l[ºc, (i) all A[𝑖 are
fresh in 5 and registerÀ is not fresh in5, (ii) there
existsl` with À ` ¹A0•A𝑖º 2 tf ”M¹ l`º, and (iii) there
existsA[[¹?• Àº 2 tf ”E¹l[º.

2. For all l andAd q ¹ #»Aº 2 5 ”Φ¹lº, if R¹Adº = b
»

¹A[•l[ºc
then l � l[𝑖 for all 8.

The implementation of the renaming pass is as follows.
For any registerAused at node=, if ¹A[•l[º 2 R¹Aº, then
A is renamed toA[if l[� =. RegisterA is left unchanged
otherwise. Indeed, ifl[� =, because the renaming map is
valid (Definition 5.7), we prove that an[-instruction A[
[¹?• Àº necessarily dominates node=, and therefore the new
registerA[should be used instead ofA. The actual renaming
pass isbijective, assuming that the renamingR is valid with
respect to the initial SSA function. We apply this renaming
process usingR on each of the mapsM •E and I , through
the function rename¹R•I •M •Eº = ¹I 0•M 0•E0º, yielding
three renamed code maps.

5.5 Top-Level Correctness Theorem

The overall correctness theorem states the overall semantics
preservation between the initial C code and the GSA code
that is produced by the compiler.

Theorem 5.8. Let%𝑐 be a safe C program (i.e. that does not go
wrong). Suppose the compilation of%𝑐 succeeds, and produces
a GSA program%𝑔. Then, running%𝑔 from its initial state) init
emits a traceConly if running%𝑐 from its initial state(init

emits the traceC.

8%𝑐 %𝑔” Safe¹%𝑐º ^ Comp¹%𝑐º = OK¹%𝑔º

=) ¹8 C” ` (init
𝑡

! � =) `) init
𝑡

! � º”

As in CompCert’s formal development, this backward sim-
ulation theorem is proven by showing a forward simulation
between C and GSA, and then proving that the semantics
of GSA is deterministic. The forward simulation itself can
be decomposed into individual forward simulations, one for
each of the compilation pass.

At the heart of the proof of the forward simulation for the
conversion from SSA to GSA, we need to exhibit a binary
(simulation) relation on execution SSA and GSA states,� ' � ,
which carry enough information to prove that both programs
behave the same, i.e. emit the same observable trace.

Lemma 5.9 states the forward lock-step simulation dia-
gram between GSA and SSA. It relates the states of an SSA
function with the states of a GSA function, and shows that,
for every execution step in SSA, there exists an execution
step in GSA which ensures both states stay related.

Lemma 5.9. Let5 be an SSA function, such thatwfSSA¹5º.
Lettf be the corresponding generated GSA function, with the
companion predicate matrixP and renaming mapR, with
P•R ` 5 � tf .

8(1 C (2) 1” ` (1
𝑡

! (2 ^ (1 ') 1 =)

9) 2” `) 1
𝑡

!) 2 ^ (2 ') 2”

This lemma can be visualised as follows, where solid lines
are hypotheses, and dashed lines are conclusions.

(2

(1

) 2

) 1
'

'
C C

5.6 Simulation Relation

We now describe the simulation relation� ' � , which relates
an SSA semantic stateS to a GSA semantic stateT . As is
often the case in simulation proofs, the main difficulty lies in
defining that very simulation relation. We define the relation
as follows3, and we prove it satisfies Lemma 5.9.

De�nition 5.10 (Simulation Relation).
5↬ l R j=l rs � rs0(

83•3� l =) rs j=p P𝑑,l + 1
)

S¹5 •l•rs•<º ' T ¹ tf •l•rs0•<º

8A• A8 fresh¹5º =) rs0¹Aº = rs¹Aº
8A A0=•R¹A0º = b

»

¹A•=ºc and= � l =) rs0¹Aº = rs¹A0º

R j=l rs � rs0

3We only present the simulation relation on standard semantic states. The
details about other states can be found in our Coq development.

192

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

Given an SSA function5, a GSA functiontf that is a
possible translation of5, their semantic states match at the
current program pointl, when their register states agree,
and a further property related to predicates holds.4

The agreement between register staters in SSA andrs0

in GSA, written' j=l rs � rs0, is defined in Definition 5.10.
The basic case states that if registerAis not fresh, it should
always be equal to its counter part in SSA. The second case,
whenAis fresh, is when it exists in the renaming mapR. The
relation holds when the definition of the renamed register
strictly dominates the current point, which guarantees it will
have the same value as the register before the renaming.

The last property we need is the fact that the predicates at
the current nodel always evaluate to true if3 � l, namely we
havers j=pP𝑑,l +1 for all strict dominators3 of l. For junction
points, we use the coherence property to prove that the next
predicate will evaluate to true, as at least one predecessor
evaluates to true. For instructions such asW-instructions,` -
instructions andIop instructions that modify a register, we
rely on the fact that the modified register cannot appear in
the predicate due to the projection of the predicate at the
current node, to show that it will still evaluate to true.

Once we know that predicates evaluate to true at the cur-
rent point l, we prove the behaviour of merge-instructions.
` -instructions are simple, as they behave likeq-instructions.
However, the difficulty here is that a registerAd defined by
a ` -instruction will likely be in R¹Adº = b

»

¹A[•l[ºc. We need
to show that this renaming does not interfere, and we can
therefore use88”l � l[𝑖 , which comes from Definition 5.7 (2),
to show that we are not updating a register that was also
renamed somewhere atl.

Proving the correctness ofW-instructions relies on mutual
exclusivity: we prove that the same register is picked in
SSA and GSA, as we know that the predecessor’s predicate
evaluated to true, and that no other predecessor predicate
can be true. The three-valued logic allows us to ignore paths
that were never executed and whose conditions might not be
evaluable. Then, we use the coherence property to prove that
the predicate at the junction point will still to hold: at least
one predecessor evaluates to true, and any register modified
by theq-instruction has been projected away already.

Finally, for[-instructions, the correctness comes directly
from the simulation relation' . The main problem in this
proof is showing that the final register maps agree, as it is
modifying fresh variables. This requires proving that the
fresh variables exist inR, and that the register that maps to
it in R is the one being assigned by the[-instruction.

4We further need to maintain the invariant𝑓 ↬ l, stating thatl is syntacti-
cally reachable in the CFG of𝑓 , to reason about the dominance relation.

Table 1. Number of lines of code (SLOC), generated using
coqwc in our development relative to CompCertSSA and to
CompCert. Validated OCaml code is also included.

Spec Proof OCaml Total

CompCert 59439 69487 28703 157629
CompCertSSA 15693 27868 3161 46722
Dom. completeness 1413 2735 0 4148
GSA 6320 9035 1433 16788
Syntax & semantics 122 685 0 807
Generation 4359 4947 314 9620
SMTCoq integration 1839 3403 1119 6361

6 Implementation of the GSA Construction
within CompCertSSA

We implement our specification as a translation pass from
SSA to GSA. The main difficulty is proving the coherence
and the well-exclusivity of the predicate matrix, which is
then used in the main SSA-to-GSA translation pass to assign
the predicates to theW- and [-instructions. In Section 6.1,
we describe how we populate the predicate matrix, and the
proofs of coherence and well-exclusivity. We give further
details about our implementation in Section 6.2, including
a the additional compiler passes that we added. Section 6.3
then covers the integration of the external SMT solver and
its validation. Finally, Section 6.4 covers the main limitations
of the current implementation. To get a sense of the scale of
the implementation, we give in Table 1 the total number of
lines, relative to CompCert and CompCertSSA.

6.1 Generation and Validation of the Predicates

While translatingq-instructions and inserting[-instructions,
we build up the predicate matrixP. Each time a new predicate
is needed, and if it is not already present, the entryP𝑖,. is
populated using Tarjan’s algorithm. Even though8could be
any dominator of the current node, we pick the immediate
dominator to minimise the number of computed paths.

The correctness of the generated predicates is validated
after-the-fact. To check coherence and well-exclusivity, we
use unsatisfiability queries to an SMT solver, which outputs
a certificate proving the unsatisfiability. This certificate can
then be checked using the proof checker from SMTCoq [19]
which we directly integrate as a validator in our translation.
More information about the integration of the embedding
of three-valued logic into SMTCoq formulas is given in Sec-
tion 6.3. The correctness of the SMT solver states that, if
it finds that a negated5 predicate is unsatisfiable, then this
predicate unconditionally evaluates to true. This correctness
result is then used in the Coq proofs without having to trust
the SMT solver itself. Despite the induced cost of checking
SMT certificates, relying on a solver was key, in the course of
5This negation is defined as setting1 to 0, and both0 and 1

2 to 1.

193

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

our formalisation, to cope with partial (or wrong) intuitions
we could have had about the sufficient properties that GSA
ought to satisfy to be correct.

We also extend the predicate language with an implication
rule (?a ! Ł ?b), taken to be the implication as defined by
Łukasiewicz three-valued logicŁ 3 [6], to be able to formulate
all the needed properties. Interestingly, if one were to use the
same definition of implication as in binary logic, the three-
valued logic would have no tautologies, making it impossible
to express SMT queries properly, as all values being unde-
fined would always be an acceptable assignment. Instead,Ł 3
defines an implication where1

2 ! Ł
1
2 � 1, making it possible

to formulate tautologies.
Validating 88 9”P coh ¹8• 9º is straightforward: it corre-

sponds directly to checking the coherence relation on the
predicates, where the logical implication is translated into
! Ł . We then prove that this implies the coherence of the
predicate matrix. Validating the mutual exclusivity of predi-
cates is more involved. We encode the implication used in
Definition 5.4, i.e. if?a is 1, then?b is either 1

2 or 0, into the
three-valued logic as?a ! Ł ?b ! Ł : ?b. For a node9, and
for <•= 2 preds¹9º, the query

(
P𝑖,𝑚 ! Ł P𝑖,𝑛 ! Ł : P𝑖,𝑛

)
^(

P𝑖,𝑛 ! Ł P𝑖,𝑚 ! Ł : P𝑖,𝑚
)

proves the mutual exclusivity of
predicatesP𝑖,𝑚 andP𝑖,𝑛 if it always evaluates to true, i.e. the
negation of the predicate is unsatisfiable.

6.2 Conversion to GSA and Other Compiler Passes

Convertingq-instructions to` - or W-instructions depends
on whether theq-instruction is at a loop header or not. We
use an efficient loop-header checker [5, 7] that we can safely
trust: its correctness does not affect the soundness of the
translation. Similarly, we do not need to formally establish
that [-instructions are inserted at loop-exit nodes only, and it
is sufficient to prove the correctness of the prior placement of
loop-exit landing pads (Inop instructions) during an RTL to
RTL pass. We avoid the need to reason about loop-header and
exit nodes thanks to (i) the way we formulate our semantics
for GSA instructions and (ii) the preservation of the code
structure ensured by the generation algorithm of GSA from
SSA.

Inserting loop-exit landing pads prior to the GSA trans-
lation has many other benefits. It saves us from having to
insert new nodes in the function during the actual SSA to
GSA translation, and the structure of the CFG is therefore
preserved. All the properties of SSA, such as the dominance
test, and the reachability of nodes can be reused directly from
SSA and on the original graph, which reduces the amount
of proofs that need to be performed.

Additionally, we normalise loops to ensure they have a
single entry point and a single latch, so that we can generate
` -instructions with a well-defined, non-blocking semantics.

Finally, we implement an unverified and trusted compiler
pass to translate GSA back to SSA, in order to generate ma-
chine code, and to be able to test programs by running them.
Proving the correctness of this pass is left as future work.
This translation is not easy to prove correct: one cannot as-
sume that the order of the arguments of theW-instruction
corresponds to the order of the predecessors anymore.

Another technical point is that we need a completeness
result for the dominance test to implement and prove our
translation to GSA. Here, we needed to integrate a verified,
but unpublished, formal development, proving the complete-
ness of the dominance test of CompCertSSA (shown as part
of CompCertSSA in Table 1).

6.3 Integration with SMTCoq

The proof of correctness for the validation of the coherence
and well-exclusivity of the predicate matrix heavily relies on
unsatisfiability checks guaranteeing that the property indeed
always holds. Hence, the SMT solver should itself formally
give this guarantee, either via a direct proof of correctness, or
by generating proof certificates that would then be checked
with a verified certificate checker.

In our GSA construction, we opted to use SMTCoq [19],
which includes a certificate checker for theveriT [8] SMT
solver for its internal SMT formulas. The main use-case of
SMTCoq is to provide Coq tactics that call the SMT solver and
solve goals while proving theorems in Coq, but we wanted
to integrate the certificate checker itself into our validator,
and eventually extract it to OCaml.

The certificate checker can already be extracted. However,
to prove properties about GSA predicates, we need to embed
their three-valued logic in terms of SMTCoq formulas. In
turn, we need to prove this translation sound. SMTCoq sup-
ports linear arithmetic as a theory, so three-valued logic can
be implemented using min and max functions (see Fig. 6).

The translation and its soundness proof are rather tedious:
we perform a Tseytin transformation to flatten the predicate,
before we can encode it efficiently as an SMTCoq formula
using arrays and sharing of redundant formulas and atoms.

6.4 Limitations

Unsupported Features.Currently, our extracted formal
development is able to compile all the expected CompCert
test programs successfully, and only fails on programs with
conditions that are dependent on memory, such as pointer
equality checks. These are currently unsupported, as it would
need a proof that stack allocations made when functions are
called do not make invalid pointers valid again, which could
change the result of executing the equality check. We could
leverage the hypothesis of well-defined C program semantics
to ensure this does not invalidate the construction of GSA.

Performance. The current validation increases compila-
tion time significantly which will have to be addressed in

194

CPP '23, January 16�17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

the future. Running CompCertGSA without any validation
on the standard C tests included in CompCert takes around
4.5s. Then, running CompCertGSA with validation using
Z3 as a trusted SMT solver (without the SMTCoq checker)
takes around 156s. Finally, running CompCertGSA with full
validation including SMTCoq takes around 1872s. This large
difference in execution time is mainly due to SMTCoq having
to use an older version of veriT as the SMT solver back end,
which seems to have large differences in execution time for
some inputs. However, there are many other ways in which
the execution time could be improved. Firstly, the size of
the predicates could be simplified, which could be done in
an unverified and untrusted manner. Secondly, the handling
of case statements could be improved, as a new predicate
is introduced for each branch which complicates the predi-
cates substantially. Finally, our interface to SMTCoq could
be more efficient, as it currently performs many reads and
writes to files to communicate with veriT, whereas queries
can be built in memory when using Z3.

7 Related Work
There are various, different informal definitions of GSA in
the literature. GSA was first introduced by Ottenstein et al.
[23] in 1990 as part of the program dependence web (PDW),
which was inspired by the extended SSA form developed by
Alpern et al. [1]. It was later refined by Campbell et al. [9], de-
scribing different semantics that the PDW could have, such
as standard control-flow semantics, data-flow semantics, or
even demand-driven semantics. The purpose of the PDW
was mainly to produce a referentially transparent program
dependence graph [13], which could target more exotic archi-
tectures that relied purely on data-flow. There are therefore
a large number of different gates that are defined to support
various types of semantics.

However, GSA itself is well suited for symbolic analysis
over control-flow boundaries, thereby allowing for more
powerful optimisations than could be applied to SSA. There-
fore, Havlak[16] introduced the Thinned Gated Single As-
signment (TGSA) form, which retained the important parts
of Ottenstein et al.’s GSA formulation related to symbolic
analysis. Tu and Padua[28, 29]described a similar version of
GSA and developed an efficient way of building GSA, lever-
aging Tarjan’s algorithm to solve the single-source path ex-
pression problem [26]. But these are formulations of various
different versions of GSA, that all behave slightly differently.
In addition to that, they all operate over idealised languages
and none of them have a formal semantics; the definitions
of the SSA language that is extended is not always clear,
as well as what the predicates exactly consist of, or how
these are evaluated. On the contrary, our formal semantics
of GSA operates over the RTL language of CompCert; it is
formalised in Coq and validated by our proof of correctness
of the construction pass.

There have been various recent uses of GSA to either
perform equivalence checks or optimisations or high-level
synthesis [3,11,12,22,27]. None of these transformations are
formally verified. Among them, Tristan et al. [27] developed
an algorithm to detect the equivalence of the LLVM CFG be-
fore and after optimisation passes, and used a monadic GSA
language tracking the memory usage of each instruction.

Currently, our correctness proof relies on a SMT solver
verifier, based on SMTCoq [19]. SMTCoq sends SMT queries
to an external, untrusted SMT solver, and then validates
the result by checking a proof certificate generated by the
SMT solver. In our work, we rely on a extractable checker
provided by SMTCoq, and we integrate this checker within
our work by formally proving the correctness of our encod-
ing of predicates, their evaluation, and the corresponding
queries into the SMTCoq framework. IsaSAT is one of the
few verified SAT solvers implemented in Isabelle [14, 15].

8 Conclusions and Future Work
We make a number of contributions towards the integration
of GSA-based techniques into verified compilers. This in-
cludes providing the first formal semantics for GSA, proving
the semantics preservation of a specification for the SSA to
GSA conversion, and integrating the translation pass into
CompCertSSA, demonstrating its feasibility.

Proving the correctness of the translation to GSA does not
require formalising the notions of loop headers and loop exit
nodes, however, expressing optimisations or analysis passes
on GSA would require to do so. We could extend this work
with a set of well-formedness properties similar to the SSA
well-formedness from CompCertSSA.

Our semantics expresses the meaning ofW- and[-instruc-
tions with predicates, thus making them control-flow in-
dependent. While we focus on this aspect in the paper, in
the future, we would like to formalise a data-flow or event-
driven semantics for GSA, where all control-dependencies
have been translated to data-dependencies. Such a language
could be used as a target for translation validation of com-
plex optimisations that are independent of control-flow. In
addition to that, such a language could also be used to target
back ends such as hardware directly.

Artefact Availability
The formal development, including its proofs is available as
an artefact [17].

Acknowledgments
We would like to thank John Wickerson and the anonymous
reviewers for their helpful feedback. This work was partially
funded by the CNRS via the INS2I (Appel Unique 2022) and
by the EPSRC via the Research Institute for Verified Trust-
worthy Software Systems (VeTSS).

195

Mechanised Semantics for Gated SSA CPP '23, January 16�17, 2023, Boston, MA, USA

References
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. 1988. Detecting Equality

of Variables in Programs. InProceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages(San
Diego, California, USA)(POPL ’88). Association for Computing Machin-
ery, New York, NY, USA, 1–11.h�ps://doi.org/10.1145/73560.73561

[2] C. Scott Ananian and Martin Rinard. 1999.Static Single Information
Form. Technical Report. Master’s Thesis, Massachussets Institute of
Technology.

[3] Manuel Arenaz, Pedro Amoedo, and Juan Touriño. 2008. Efficiently
Building the Gated Single Assignment Form in Codes with Pointers in
Modern Optimizing Compilers. InEuro-Par 2008 – Parallel Processing,
Emilio Luque, Tomàs Margalef, and Domingo Benítez (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 360–369.

[4] Gilles Barthe, Delphine Demange, and David Pichardie. 2014. Formal
Verification of an SSA-Based Middle-End for CompCert.ACM Trans.
Program. Lang. Syst.36, 1, Article 4 (March 2014), 35 pages.h�ps:
//doi.org/10.1145/2579080

[5] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. 2013. Formal
Verification of a C Value Analysis Based on Abstract Interpretation. In
SAS (LNCS, Vol. 7935). Springer, 324–344.

[6] L. Borowski. 1970.Selected Works of J. Łukasiewicz. Nort Holland.
[7] François Bourdoncle. 1993. Efficient chaotic iteration strategies with

widenings. InFormal Methods in Programming and Their Applications,
International Conference, Akademgorodok, Novosibirsk, Russia, June 28
- July 2, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 735),
Dines Bjørner, Manfred Broy, and Igor V. Pottosin (Eds.). Springer,
128–141. h�ps://doi.org/10.1007/BFb0039704

[8] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. 2009. veriT: An Open, Trustable and Efficient SMT-
Solver. InAutomated Deduction – CADE-22(Berlin, Heidelberg), Re-
nate A. Schmidt (Ed.). Springer Berlin Heidelberg, 151–156.h�ps:
//doi.org/10.1007/978-3-642-02959-2_12

[9] Philip L Campbell, Ksheerabdhi Krishna, and Robert A Ballance. 1993.
Refining and defining the program dependence web.Cs93-6, University
of New Mexico, Albuquerque(1993).

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph.ACM Trans. Program.
Lang. Syst.13, 4 (oct 1991), 451–490.h�ps://doi.org/10.1145/115372.
115320

[11] Steven Derrien, Thibaut Marty, Simon Rokicki, and Tomofumi Yuki.
2020. Toward Speculative Loop Pipelining for High-Level Synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems39, 11 (Nov. 2020), 4229–4239.h�ps://doi.org/10.1109/tcad.
2020.3012866

[12] Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assign-
ment Compiler, Single Assignment Architecture: Future Gated Sin-
gle Assignment Form*; Static Single Assignment with Congruence
Classes. InProceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization(Orlando, FL, USA)(CGO ’14).
Association for Computing Machinery, New York, NY, USA, 196–207.
h�ps://doi.org/10.1145/2544137.2544158

[13] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization.ACM Trans.
Program. Lang. Syst.9, 3 (July 1987), 319–349.h�ps://doi.org/10.1145/
24039.24041

[14] Mathias Fleury. 2020.Formalization of logical calculi in Isabelle/HOL.
Ph. D. Dissertation. Saarland University, Saarbrücken, Germany.h�ps:
//tel.archives-ouvertes.fr/tel-02963301

[15] Mathias Fleury and Christoph Weidenbach. 2020. A Verified SAT
Solver Framework including Optimization and Partial Valuations. In
LPAR 2020: 23rd International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020
(EPiC Series in Computing, Vol. 73), Elvira Albert and Laura Kovács
(Eds.). EasyChair, 212–229.h�ps://doi.org/10.29007/96wb

[16] Paul Havlak. 1994. Construction of thinned gated single-assignment
form. In Languages and Compilers for Parallel Computing, Utpal Baner-
jee, David Gelernter, Alex Nicolau, and David Padua (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 477–499.

[17] Yann Herklotz, Delphine Demange, and Sandrine Blazy. 2022.Comp-
CertGSA. h�ps://doi.org/10.5281/zenodo.6009632

[18] Inria 2021. The Coq proof assistant reference manual. Inria. h�p:
//coq.inria.fr Version 8.13.2.

[19] Chantal Keller. 2019.SMTCoq: Mixing Automatic and Interactive Proof
Technologies. Springer International Publishing, Cham, 73–90.h�ps:
//doi.org/10.1007/978-3-030-28483-1_4

[20] Xavier Leroy. 2009. Formal verification of a realistic compiler.Commun.
ACM (2009).

[21] Xavier Leroy. 2009. A formally verified compiler back-end.Journal of
Automated Reasoning43, 4 (2009), 363–446.

[22] Cosmin E. Oancea and Lawrence Rauchwerger. 2015. Scalable condi-
tional induction variables (CIV) analysis. In2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 213–224.
h�ps://doi.org/10.1109/CGO.2015.7054201

[23] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.
The Program Dependence Web: A Representation Supporting Control-,
Data-, and Demand-Driven Interpretation of Imperative Languages.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation(White Plains, New York, USA)
(PLDI ’90). Association for Computing Machinery, New York, NY, USA,
257–271. h�ps://doi.org/10.1145/93542.93578

[24] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value
Numbers and Redundant Computations. InProceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA)(POPL ’88). ACM, New York, NY, USA,
12–27. h�ps://doi.org/10.1145/73560.73562

[25] Diogo Sampaio, Rafael Martins, Caroline Collange, and Fernando
Magno Quintão Pereira. 2012. Divergence Analysis with Affine
Constraints. In2012 IEEE 24th International Symposium on Com-
puter Architecture and High Performance Computing. 67–74. h�ps:
//doi.org/10.1109/SBAC-PAD.2012.22

[26] Robert Endre Tarjan. 1981. Fast Algorithms for Solving Path Problems.
J. ACM28, 3 (July 1981), 594–614.h�ps://doi.org/10.1145/322261.
322273

[27] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Eval-
uating Value-Graph Translation Validation for LLVM. InProceedings
of the 32nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation(San Jose, California, USA)(PLDI ’11). As-
sociation for Computing Machinery, New York, NY, USA, 295–305.
h�ps://doi.org/10.1145/1993498.1993533

[28] Peng Tu and David Padua. 1995. Efficient Building and Placing of
Gating Functions. InProceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation(La Jolla, Cali-
fornia, USA)(PLDI ’95). Association for Computing Machinery, New
York, NY, USA, 47–55.h�ps://doi.org/10.1145/207110.207115

[29] Peng Tu and David Padua. 1995. Gated SSA-Based Demand-Driven
Symbolic Analysis for Parallelizing Compilers. InProceedings of the
9th International Conference on Supercomputing(Barcelona, Spain)
(ICS ’95). Association for Computing Machinery, New York, NY, USA,
414–423. h�ps://doi.org/10.1145/224538.224648

[30] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation
with Conditional Branches.ACM Trans. Program. Lang. Syst.13, 2
(April 1991), 181–210.h�ps://doi.org/10.1145/103135.103136

Received 2022-09-21; accepted 2022-11-21

196

https://doi.org/10.1145/73560.73561
https://doi.org/10.1145/2579080
https://doi.org/10.1145/2579080
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1109/tcad.2020.3012866
https://doi.org/10.1109/tcad.2020.3012866
https://doi.org/10.1145/2544137.2544158
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://tel.archives-ouvertes.fr/tel-02963301
https://tel.archives-ouvertes.fr/tel-02963301
https://doi.org/10.29007/96wb
https://doi.org/10.5281/zenodo.6009632
http://coq.inria.fr
http://coq.inria.fr
https://doi.org/10.1007/978-3-030-28483-1_4
https://doi.org/10.1007/978-3-030-28483-1_4
https://doi.org/10.1109/CGO.2015.7054201
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/73560.73562
https://doi.org/10.1109/SBAC-PAD.2012.22
https://doi.org/10.1109/SBAC-PAD.2012.22
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/207110.207115
https://doi.org/10.1145/224538.224648
https://doi.org/10.1145/103135.103136

