
Mechanised Semantics for
Gated Static Single Assignment

Yann Herklotz

Imperial College London

London, UK

yann.herklotz15@imperial.ac.uk

Delphine Demange

Univ Rennes, Inria, CNRS, IRISA

Rennes, France

delphine.demange@irisa.fr

Sandrine Blazy

Univ Rennes, Inria, CNRS, IRISA

Rennes, France

sandrine.blazy@irisa.fr

Abstract
The Gated Static Single Assignment (GSA) form was pro-

posed by Ottenstein et al. in 1990, as an intermediate rep-

resentation for implementing advanced static analyses and

optimisation passes in compilers. Compared to SSA, GSA

records additional data dependencies and provides more con-

text, making optimisations more effective and allowing one

to reason about programs as data-flow graphs.

Many practical implementations have been proposed that

follow, more or less faithfully, Ottenstein et al.’s seminal

paper. But many discrepancies remain between these, de-

pending on the kind of dependencies they are supposed to

track and to leverage in analyses and code optimisations.

In this paper, we present a formal semantics for GSA,

mechanised in Coq. In particular, we clarify the nature and

the purpose of gates in GSA, and define control-flow insensi-

tive semantics for them. We provide a specification that can

be used as a reference description for GSA. We also specify a

translation from SSA to GSA and prove that this specification

is semantics-preserving. We demonstrate that the approach

is practical by implementing the specification as a validated

translation within the CompCertSSA verified compiler.

CCS Concepts: • Theory of computation→ Operational
semantics; Program verification; • Software and its en-
gineering→ Semantics.

Keywords: Verified Compilation, SSA, Gated SSA

ACM Reference Format:
Yann Herklotz, Delphine Demange, and Sandrine Blazy. 2023. Mech-

anised Semantics for Gated Static Single Assignment. In Proceedings
of the 12th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP ’23), January 16–17, 2023, Boston, MA, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3573105.
3575681

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0026-2/23/01. . . $15.00

https://doi.org/10.1145/3573105.3575681

1 Introduction
Important program optimisations in compilers require global

reasoning on the values that are computed by the program.

More precisely, one has to be able to statically infer facts

about program instructions that span several basic blocks in

the program’s control-flow graph. Furthermore, this global

reasoning has to account for side-effects, such as variable

modifications, memory writes, or observable outputs. More

generally, dependencies between instructions have to be

carefully analysed. Implementations of these optimisations

are therefore subtle and particularly error-prone.

To overcome these difficulties, many techniques have been

proposed by the compiler community. These range from

adequate program intermediate representations (IRs) to so-

phisticated auxiliary data structures that complement the

program representation. Most notably, Rosen et al. [24] pro-

posed the static single assignment (SSA) form in the late 80’s,

which enables an extensive global redundancy elimination

of computations. In SSA, each variable has a single definition

point: each time a variable is modified in the initial program,

a new version of that variable is introduced. To ensure this

property on programs with branches and junction points,

SSA provides a dedicated instruction, the 𝜙-instruction. At

a control-flow junction point with, say, three predecessors,

a 𝜙-instruction 𝑥4 = 𝜙 (𝑥1, 𝑥2, 𝑥3) selects among the three

versions 𝑥1, 𝑥2 and 𝑥3 of 𝑥 , the one which should be assigned

to 𝑥4, depending on the control-flow execution path that led

to the junction point. The SSA form also has a built-in repre-

sentation for use-definition (use-def) chains, which provide

basic dependency information about the instructions of the

program: an instruction using an SSA variable depends on

the unique instruction defining that variable. This led to a

wide range of sparse program optimisations, see e.g. Weg-

man and Zadeck [30], demonstrating the great success of

SSA, which is now available in many production compilers.

Since its introduction, several extensions of SSA have

been proposed to enrich the tracking of dependency infor-

mation between program instructions, as well as the tracking

of how properties propagate in SSA programs, see e.g. the

Static Single Information form [2] and its use in static anal-

ysis. The extension we study in this paper is Gated SSA,

which partially transforms control-flow dependencies into

data dependencies. Gated SSA (GSA) was introduced by Ot-

tenstein et al. [23] to extend program dependency graphs with

182

https://orcid.org/0000-0002-2329-1029
https://orcid.org/0000-0002-7029-3297
https://orcid.org/0000-0002-0189-0223
https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1145/3573105.3575681

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

the SSA property, leading to an IR devoted to compilation

targeting data-flow architectures and simulators. In GSA, 𝜙-

instructions are augmented with control-flow information,

so that they become “referentially transparent” in the fol-

lowing sense: while in the traditional SSA form, one needs

to keep track of the execution control-flow to select the

correct argument of a 𝜙-instruction, the GSA form extends

𝜙-instructions with gates, i.e. Boolean conditions character-

ising the control-flow paths leading to that 𝜙-instruction

and hence determining which 𝜙-argument has to be selected.

For example, suppose an SSA 𝜙-instruction 𝑥3 = 𝜙 (𝑥1, 𝑥2)
is placed at a junction point whose corresponding branch-

ing point is a test on condition 𝑐 . In GSA, the 𝜙-instruction

would be gated as follows 𝑥3 = 𝜙 ((𝑐, 𝑥1), (𝑐, 𝑥2)), meaning

if condition 𝑐 evaluates to true, then it will select 𝑥1, other-

wise it will select 𝑥2. The selection of the 𝜙-arguments is

no longer guided by the dynamic control-flow predecessor

that led there, but is uniquely determined by the gate that

evaluates to true. Note that the gate’s conditions will refer to

program variables and are be evaluated with respect to the

current execution state. Most of the successful applications

of GSA can be found in the domain of parallelising compil-

ers [3, 16, 29] where dependency analysis plays a crucial

role. More recently, GSA has also been applied to the field of

high-level synthesis [11], and thread divergence and thread

aggregation for efficient compilation to GPUs [25].

Despite the impressive advances in the field of compiler

verification, where optimisation techniques are becoming

more realistic and closer to the ones used in production non-

verified compilers, GSA-based techniques remain largely

unexplored. This can be explained (i) by the lack of a ref-

erence GSA form, as the notion of dependence is carefully

tuned to each precise use case, and (ii) by the absence of a

clear and precise semantic description of GSA in the com-

piler literature, especially regarding the evaluation of gates.

The GSA form is central and crucial for these compilation

techniques, as it provides a useful base on top of which more

sophisticated analyses and optimisations can be built.

In this paper, we aim to bridge the semantic gap existing

between GSA and the well-understood SSA form. Providing

a fully fledged and fully verified GSA code optimiser is far

beyond the scope of the paper. Instead, we focus here on

essential components of GSA, i.e. the specification, construc-

tion and semantics of gates. We conducted our formalisation

in the Coq proof assistant. Our contributions are as follows:

1. We define a semantics for GSA in Section 4, featuring

a control-flow insensitive semantics for gates;

2. We provide a formal specification of a GSA construc-

tion algorithm in Section 5, and we prove it implies

the semantic preservation of SSA;

3. We apply our work to a realistic SSA-based middle-end,

demonstrating empirically the validity and relative

completeness of our specification in Section 6.

RTL
Normalise Loops

single loop entry / latch

exit landing pads

RTL
Normalise Join Points

add no-ops at predecessors

[4]

RTL
Renumber CFG

[21]
RTL

SSA Generation
[4]

SSA
GSA Generation

a posteriori validated
GSA

GSA Destruction
unverified, tested

SSA

Figure 1. Key phases to integrate GSA into CompCertSSA.

This work comprises the phases in the shaded boxes in addi-

tion to the definition of the GSA language. The other phases

which are not shaded are provided by either CompCert or

CompCertSSA.

This paper is organised as follows. First, Section 2 illus-

trates GSA form through an example. In Section 3, we recall

the required background on CompCertSSA, the formally ver-

ified SSA middle-end where we integrate our formalisation.

Section 4 defines our GSA representation. Section 5 details

our conversion from SSA to GSA and its proof of correct-

ness. Section 6 describes the key phases we implement to

integrate GSA into CompCertSSA: this comprises a normal-

isation of loops, the translation from SSA to GSA, as well

as an non-verified destruction phase of GSA back to SSA

(see Fig. 1). Related work is discussed in Section 7, followed

by concluding remarks.

2 Motivating Example
We illustrate and explain informally the GSA form on a

simple example program. Let us consider the following C

code snippet, where function f takes as input an integer n

and computes a result x using a for-loop.

int f(int n) {

int x = 1;

for (int i = 1; i < n; i++)

if (x < 9) x = x + 2;

else if (x > 50) x = x + 1;

else x = 2 * x;

return x;

}

In a compiler chain, programs are usually represented as

a control-flow graph (CFG) of instructions, which simplifies

their processing through analyses and optimisations. Fig. 2a

illustrates this CFG representation, called RTL in CompCert.

In SSA (Fig. 2b), each variable is defined exactly once: this

makes the link between the program point where a variable

is defined and the program point where it is used explicit in

the syntax. SSA extends RTL with 𝜙-instructions that handle

control-flow joins. At node 12, the 𝜙-instruction expresses

183

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

𝑥 := 10

𝑖 := 11

𝑖 < 𝑛3

𝑥 < 94

𝑥 := 𝑥 + 25 𝑥 > 507

𝑥 := 𝑥 + 18 𝑥 := 2 ∗ 𝑥10

𝑖 := 𝑖 + 112

return 𝑥15

(a) RTL form

𝑥0 := 10

𝑖0 := 11

Inop2

𝑖1 < 𝑛3

𝑥1 < 94

𝑥2 := 𝑥1 + 25 𝑥1 > 507

𝑥3 := 𝑥1 + 18 𝑥4 := 2 ∗ 𝑥110

Inop6 Inop9 Inop11

𝑖2 := 𝑖1 + 112

Inop13

Inop14

return 𝑥115

𝑖1 := 𝜙 (𝑖0, 𝑖2)
𝑥1 := 𝜙 (𝑥0, 𝑥5)

𝑥5 := 𝜙 (𝑥2, 𝑥3, 𝑥4)

(b) SSA form

𝑥0 := 10

𝑖0 := 11

Inop2

𝑖1 < 𝑛3

𝑥1 < 94

𝑥2 := 𝑥1 + 25 𝑥1 > 507

𝑥3 := 𝑥1 + 18 𝑥4 := 2 ∗ 𝑥110

Inop6 Inop9 Inop11

𝑖2 := 𝑖1 + 112

Inop13

Inop14

return 𝑥615

𝑖1 := 𝜇 (𝑖0, 𝑖2)
𝑥1 := 𝜇 (𝑥0, 𝑥5)

𝑥5 := 𝛾 ((𝑥1 < 9, 𝑥2),
(𝑥1 ≥ 9 ∧ 𝑥1 > 50, 𝑥3),
(𝑥1 ≥ 9 ∧ 𝑥1 ≤ 50, 𝑥4))

𝑥6 := 𝜂 (𝑖1 ≥ 𝑛, 𝑥1)

(c) GSA form

Figure 2. Example program illustrating Gated SSA compared to RTL and SSA.

that 𝑥5 gets the value of either 𝑥2, 𝑥3 or 𝑥4, depending on

whether the control-flow of execution dynamically origi-

nates from node 6, 9, or 11 respectively. A 𝜙-block (grey

nodes in Fig. 2b) groups all the 𝜙-instructions at a given

junction node (e.g. node 3). In addition to that, the CFG is

normalised in the following sense: (i) only Inop instructions,

i.e. no-op instructions, can lead to a junction point, and (ii)

all nodes are syntactically reachable from the entry node.

GSA (Fig. 2c) in turn extends SSA. In GSA, 𝜙-instructions

are replaced by 𝜇- and 𝛾-instructions, and new instructions

called 𝜂-instructions are introduced. These instructions are

meant to better reflect control-dependencies. Indeed, they

include strictly more information than 𝜙-instructions, and

therefore allow for the formulation of different types of se-

mantics, such as demand-driven or data-flow driven execu-

tions. An SSA 𝜙-instruction becomes either a 𝛾-instruction

when it is located at a simple junction point (e.g. node 12), or a

𝜇-instruction when it is located at a loop-header (e.g. node 3).

The 𝛾-instructions are augmented with gates, namely pred-

icates characterising the control-flow path corresponding

to the reaching definition of each of the 𝜙-arguments. For

𝛾-instructions, the selection of the argument is based on the

predicate evaluating to true. For instance, at node 12, predi-

cates guarding the 𝛾-arguments represent paths from node 4

to node 12; they are mutually exclusive, and each time node

12 is reached through the program execution, only one of

them is satisfied.

Regarding loops, GSA uses two kinds of instructions. At

loop headers, GSA uses 𝜇-instructions, to reflect the loop

construct; they update variables modified in the loop body,

thereby handling loop-carried dependencies properly. When

loops have a single entry point and a single latch, 𝜇-instruc-

tions are of the form 𝑥 = 𝜇 (𝑥0, 𝑥𝑖), where 𝑥0 is the initial

value before entering the loop, and 𝑥𝑖 is the version of 𝑥

modified inside the loop body. Intuitively, arguments of a

𝜇-instruction are not guarded like in 𝛾-instructions, since

no useful predicate helps to distinguish when 𝑥0 or 𝑥𝑖 is the

right version to use. Indeed, the execution is always flowing

from the loop-latch back to the header, and yet, guarding

the selection of 𝑥𝑖 with the True predicate wouldn’t always

be correct. At loop exits, GSA introduces 𝜂-instructions (e.g.

node 14). An 𝜂-instruction 𝑥 = 𝜂 (𝑐, 𝑥𝜇) selects a loop-defined
variable 𝑥𝜇 when the loop-exit condition 𝑐 is satisfied. Intu-

itively, 𝜂-instructions introduce new variables to decouple

loop-carried dependencies from variable uses occurring after

the loop has ended.

Another folklore intuition about GSA is that the 𝛾-, 𝜇-

and 𝜂-instructions make it referentially transparent: each of

them denotes an equality between the left-hand side variable

and their arguments, that only holds when the path condition
expressed by the Boolean predicate is true.

We argue that the main challenge in understanding GSA

lies in the definition, specification, and construction of gates.

First, depending on the application use cases, these gates

reflect different subsets of dependencies. It is currently an

open problem to determine which dependencies must be

kept track of to correctly reflect the semantics of the initial

SSA program. Second, it is currently unclear in the recent

literature which algorithms are precisely used to generate

these gates. Seminal papers are cited, but without giving

many details about the concrete implementations, let alone

a concise specification thereof. We argue that gates are the

most critical component of GSA, and that they must be bet-

ter understood and mastered by the community. Another

challenge is that gates must be interpreted as path predicates,

reified in the very code of GSA programs. Hence, for gates to

make proper sense, we need to define what it means to eval-

uate a gate. In fact, the situation is much more subtle than

184

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

one might first think: gates involve program variables that

may be defined or not, depending on the path that is actually

taken during the execution. This raises several challenges

related to the underlying logic behind the apparently simple

syntax of gates. These are the challenging and interesting

problems that we tackle in this work.

To do this, we employ a compiler-correctness approach.

Our goal is to devise a reference GSA form, and provide it

with a formal semantics reflecting the control-flow insensi-

tivity of the semantics of gates. In this context, GSA is correct

when it reflects all the dependencies required to, provably,

mimic the semantics of the initial SSA program.

3 Background on SSA in CompCertSSA
We integrate our formalisation work into the CompCert-

SSA compiler [4], which is an extension of the CompCert

C compiler [20]. CompCert is programmed and verified us-

ing Coq [18]. The compiler itself is written as a sequence

of 20 compiler passes, from the CompCert C source lan-

guage down to assembly, going through 8 intermediate lan-

guages. Among them is RTL (Register Transfer Language), a

CFG-based representation of programs, and on which most

CompCert’s optimisations are performed. Compiler passes

are either programmed and verified in Coq using simulation

techniques, or programmed in OCaml and verified in Coq,

using translation validation. The correctness theorem states

that the compilation is semantics-preserving. It decomposes

into theorems for each of the 20 compilation passes.

CompCertSSA extends CompCert with an SSA-based op-

timising middle-end. The middle-end is plugged in at the

level of RTL, and includes a validated SSA construction, SSA-

based optimisations, as well as an SSA destruction phase,

going back to RTL, on which register allocation takes place.

The SSA form in CompCertSSA was designed to be as close

as possible to the RTL form. In particular, it reuses all regular

instructions, arithmetic and conditional operators.

This section introduces the syntax and semantics of SSA of

CompCertSSA, and recalls some related background notions.

Notations. For option types, we write ⌊𝑥⌋ (read: “some

x”) for the presence of value 𝑥 , and ∅ (read: “none”) for the
absence of value. We write ℎ :: 𝑡 for a list with head ℎ and

tail 𝑡 , and 𝜖 for the empty list. Vectors are written
#»𝑣 , and 𝑣𝑘

denotes the 𝑘-th element of
#»𝑣 .

3.1 SSA Representation
An SSA function 𝑓 (see Fig. 3) is modelled as a record made of

a CFG I of instructions over pseudo-registers, and a map Φ
for 𝜙-instructions. I is modelled as a partial map from nodes

to single instructions. The instruction set includes arithmetic

operations, memory loads and stores, conditional and un-

conditional jumps, function calls, and a return statement.

Each instruction explicitly carries the labels of successor in-

structions. In the following, l ranges over node labels, and 𝑟

𝑖 ::= Inop(𝑙) no-op instr.

| 𝑟d ← Iop (𝑜a, #»𝑟 , 𝑙) arith. operator 𝑜a on
#»𝑟

| Icond(𝑜c, #»𝑟 , 𝑙1, 𝑙2) conditional 𝑜c on
#»𝑟

| . . . other RTL instructions

I ::= 𝑙 ↦→ 𝑖 instruction map

𝑖𝜙 ::= 𝑟d ← 𝜙 (#»𝑟) 𝜙-instruction

Φ ::= 𝑙 ↦→ #»
𝑖𝜙 𝜙-block map

𝑓 ::= (I,Φ) SSA function

Figure 3. Syntax of SSA.

𝑓 .I(l) = ⌊Inop(l′)⌋ 𝑓 /⋎ l′

⊢ S(𝑓 , l, rs,m) 𝜖→ S(𝑓 , l′, rs,m)

𝑓 .I(l) = ⌊Inop(l′)⌋ 𝑓 ⋎ l′ 𝑓 .Φ(l′) = ⌊𝑏𝜙 ⌋
preds(l′)𝑘 = l 𝑏𝜙 , 𝑘 ⊢ rs

𝜙
⇝ rs′

⊢ S(𝑓 , l, rs,m) 𝜖→ S(𝑓 , l′, rs′,m)

Figure 4. Semantics of SSA (excerpt).

ranges over pseudo-registers. The Inop instruction is a no-op

instruction, it just branches to its explicit successor 𝑙 . The Iop

instruction applies an operator 𝑜a to a list of pseudo-registers
#»𝑟 , stores its result in a register 𝑟d and branches to its succes-

sor node 𝑙 . The Icond instruction conditionally branches to

l1 or l2 depending on the value of the condition operator 𝑜c
applied to

#»𝑟 . The Φ map stores blocks of 𝜙-instructions. We

write 𝑓 .Φ(𝑙) for the 𝜙-block at node 𝑙 . A 𝜙-instruction writ-

ten 𝑟d ← 𝜙 (#»𝑟𝑖) assigns to 𝑟d the value of one of its operands
in

#»𝑟𝑖 .

In SSA, there is a clear distinction between RTL-like in-

structions and 𝜙-instructions: both are stored in distinct

maps; this simplifies the conversion to SSA, and allows for a

smooth integration in CompCert. All 𝜙-blocks, are located at

junction points, and the CFG is normalised so that only Inop

instructions can lead to a junction point. Last, SSA functions

are equipped with a well-formedness predicate, wfSSA(.),
capturing essential properties of SSA functions: structural

constraints, unique definitions and strictness properties [4].

The placement of 𝜙-instructions in SSA relies on the no-

tion of dominance between nodes [10]. A node 𝑖 dominates

a node 𝑗 (written 𝑖 ⪰ 𝑗) if every path from the entry node to

𝑗 goes through 𝑖 . Node 𝑖 strictly dominates 𝑗 (written 𝑖 ≻ 𝑗)

when 𝑖 ⪰ 𝑗 but 𝑖 ≠ 𝑗 . We write 𝑖 /⪰ 𝑗 to mean that 𝑖 does not

dominate 𝑗 . The (unique) immediate dominator of a node 𝑗

is the strict dominator of 𝑗 that does not strictly dominate

any other strict dominator of 𝑗 . In Fig. 2b, we have 1 ≻ 3,

5 /⪰ 12 and node 4 is the immediate dominator of node 12.

185

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

3.2 Semantics of SSA
The small-step semantics of SSA is defined as a relation

𝐺 ⊢ 𝑆 𝑡→ 𝑆 ′ between a global environment 𝐺 and states 𝑆

and 𝑆 ′, associating to a program loaded in𝐺 the set of all its

observable behaviours, comprising a trace 𝑡 of external ac-

tions, emitted by certain specific instructions such as external

function calls. Observable behaviours include terminating,

diverging and going wrong [21]. In this paper, to simplify the

presentation, and we omit 𝐺 . For the sake of completeness,

we keep the trace in small-step execution steps, although the

instructions we present in this paper do not emit observable

events, and thus step with the empty trace 𝜖 .

Semantic states are written S(𝑓 , l, rs,m). They carry the

current function 𝑓 , a program counter l, a map rs from

pseudo-registers to values, and a memory state m. Other

semantic states include call states and return states. For the

sake of presentation, in this paper, we focus on regular states,

as we only expose the intra-procedural part of SSA.

Figure 4 gives the most relevant semantic rules for SSA.

The rules for instructions other than Inop closely match their

RTL counter-part from CompCert, we thus omit them for

space reasons. Indeed, the most important rules are the one

for the Inop instruction, because 𝜙-blocks can only be placed

at junction points in the CFG, and only Inop can lead to

a junction point. The first rule of Fig. 4 gives the rule for

executing an Inop instruction at program point l, when its

successor l′ is not a junction point (i.e. 𝑓 /⋎ l′). Here, the
standard RTL rule applies, as there is no 𝜙-block to execute,

and execution steps to l′ without modifying the registers

state rs. The second rule corresponds to the case where l′

is a junction point (i.e. 𝑓 ⋎ l′). In that case, a (potentially

empty) 𝜙-block 𝑏𝜙 exists, and is executed before reaching the

regular instruction at l′. All its 𝜙-instructions are executed
in parallel and their result is assigned to their respective

destination registers (𝑏𝜙 , 𝑘 ⊢ rs
𝜙
⇝ rs′). A given𝜙-instruction

uses only one of its operands, the 𝑘-th, where 𝑘 is determined

by a conventional numbering of the predecessors of each

of the CFG nodes (preds(l′)𝑘 = l). The execution updates

the registers state to rs′, so that the value of each register

assigned in 𝑏𝜙 becomes the value of the 𝑘-th operand of the

corresponding 𝜙-instruction in rs.

4 Gated SSA Representation
To define our Gated SSA form, we take inspiration from

previous existing work on GSA [3, 9, 12, 13, 16, 23, 28, 29].

Precisely, we define GSA as an extension of the SSA form pre-

sented in the previous section. The syntax for GSA therefore

follows the syntax for SSA closely, and many SSA concepts

translate to GSA.

𝑖 ::= Inop(𝑙) no-op instr.

| 𝑟d ← Iop (𝑜a, #»𝑟 , 𝑙) arith. op. 𝑜a on
#»𝑟

| Icond(𝑜c, #»𝑟 , 𝑙1, 𝑙2) conditional 𝑜c on
#»𝑟

| . . .

I ::= 𝑙 ↦→ 𝑖 regular instr. map

𝑖M ::= 𝑟d ← 𝜇 (𝑟0, 𝑟𝑖) merge instr.

| 𝑟d ← 𝛾 (# »(𝑝𝑖 , 𝑟𝑖))
M ::= 𝑙 ↦→ # »

𝑖M merge-block map

𝑖𝜂 ::= 𝑟d ← 𝜂 (𝑝, 𝑟s) selection instr.

E ::= 𝑙 ↦→ #»
𝑖𝜂 selection-block map

𝑓 ::= (I,M, E) GSA function

𝑐 ::= (𝑜c, #»𝑟) cond. op. 𝑜c on
#»𝑟

𝑝 ::= False | True | Undef predicates

| 𝑐 | 𝑐 | 𝑝1 ∨ 𝑝2 | 𝑝1 ∧ 𝑝2

Figure 5. Syntax of GSA.

4.1 Syntax of GSA
The definition of a function is shown in Fig. 5. It includes

three maps, a map I for the CFG over regular instructions

(as in SSA), a mapM for merge instructions, i.e. 𝛾- and 𝜇-

instructions, and a map E for 𝜂-instructions. This separation

makes it a natural extension of SSA, because only the map

E has to be newly constructed in GSA. The mapM has the

same structure as Φ in SSA: 𝜙-instructions have either been

converted to either 𝜇- or 𝛾-instructions. Each of theM and

E maps, which contain the new GSA instructions, are maps

from program counters to blocks of GSA instructions.

We distinguish two categories of GSA instructions. First,

merge instructions include 𝜇- and 𝛾-instructions, and replace

the SSA𝜙-instructions. 𝜇-instructions, written 𝑟d ← 𝜇 (𝑟0, 𝑟𝑖),
are the simplest ones; they are placed at loop headers, and 𝑟d
is the loop-carried register.When the loop is initially reached,

this instruction assigns the value of 𝑟0 to 𝑟d. When the loop is

subsequently re-entered from its back-edge, the instruction

assigns the value of 𝑟𝑖 to 𝑟d. This instruction does not have

predicates guarding its arguments, and therefore behaves

just like its 𝜙-instruction counterpart, based on the executed

control-flow. 𝛾-instructions, written as 𝑟d ← 𝛾 (# »(𝑝𝑖 , 𝑟𝑖)), are
the other replacement for 𝜙-instructions. Here, instead of

having to rely on control-flow to select a register to assign to

𝑟d, it includes, for each register 𝑟𝑖 , a predicate 𝑝𝑖 indicating

when that register should be selected. Consider for instance

the instruction 𝑥5 = 𝜙 (𝑥2, 𝑥3, 𝑥4) at node 12 in Fig. 2b, and

its corresponding 𝛾-instruction at node 12 in Fig. 2c. Each

predicate describes a path from dominator node 4 of node

12 to node 12. This is enough to discriminate paths with,

respectively, 𝑥2, 𝑥3, or 𝑥4 as a reaching definition for 𝑥5.

186

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

rs |=p True ⇓ 1 rs |=p False ⇓ 0 rs |=p Undef ⇓ 1

2

rs |=c 𝑐 ⇓ 𝑏
rs |=p 𝑐 ⇓ 𝑏

rs |=p 𝑝1 ⇓ 𝑏1 rs |=p 𝑝2 ⇓ 𝑏2
rs |=p 𝑝1 ∨ 𝑝2 ⇓ 𝑏1 max 𝑏2

rs |=c 𝑐 ⇓ 𝑏
rs |=p 𝑐 ⇓ 1 − 𝑏

rs |=p 𝑝1 ⇓ 𝑏1 rs |=p 𝑝2 ⇓ 𝑏2
rs |=p 𝑝1 ∧ 𝑝2 ⇓ 𝑏1 min 𝑏2

Figure 6. Evaluation of GSA predicates.

Second, selection instructions are extra instructions intro-
duced when generating GSA and have no counter-part in

SSA. All 𝜂-instructions, written 𝑟d ← 𝜂 (𝑝, 𝑟s), are placed at

loop exit nodes. These instructions indicate a termination

condition 𝑝 of the loop, which asserts that the register 𝑟s
is ready to use, and can be assigned to 𝑟d. Intuitively, they

behave like predicated moves. We assume that the loops are

in loop-closed SSA form,
1
so that the register 𝑟s is assigned

by a corresponding 𝜇-instruction at the loop header.

Predicates play an essential role in the semantics of 𝜂-

and 𝛾-instructions. In GSA, predicates are represented in

the IR. They are defined according to the grammar given

at the end of Fig. 5. We recall that in GSA, predicates are

used to materialise path conditions under which a 𝛾 or 𝜂

argument should be selected. Predicates are thus built out of

atomic conditions 𝑐 found in the initial SSA code, as well as

their negation 𝑐 . Atomic conditions are pairs of a conditional

operator 𝑜c and operands
#»𝑟 . To reflect path condition com-

position, we need to include the conjunction ∧ of predicates,

for nested conditionals, and the disjunction ∨ of predicates,

for sequencing conditionals. Predicates also include the two

expected constants True and False, and the special constant

Undef, representing a non-evaluable condition.
We do not need to add a negation operator on predicates,

as instructions in SSA do not contain them either: branch-

ing is only possible through simple, basic conditions, rather

than arbitrarily complex Boolean expressions (see Fig. 3).

This syntax for predicates is also sufficient to treat switch

branches, modulo an encoding of branching conditions.

4.2 Semantics of GSA
The semantics of GSA is essentially the same as the one of

SSA, since both representations use the same set of regular

instructions, and handle function calls similarly. The novelty

is how to execute GSA specific instructions. At a high-level,

whenever a 𝛾-, 𝜇- or 𝜂-block is reached, all its instructions

are executed in parallel and their results are assigned to

their respective destination registers. This is similar to how

𝜙-blocks are executed.

1
Loop-closed SSA form states that all variables defined within the loop are

not used outside of the loop.

To define the semantics of 𝛾- and 𝜂-instructions, we first

need to define the semantics for GSA predicates. The evalua-

tion of predicates |=p is defined by induction on the structure

of the predicate (see Fig. 6, where |=c refers to the evaluation

of conditions borrowed from SSA). We emphasise, however,

that predicates are part of the syntax, and composed of (po-

tentially negated) conditions that refer to program variables.

Hence, we need a local environment rs to evaluate a pred-

icate. Importantly, we also note that a predicate can either

(i) evaluate to the Boolean values 0 and 1 or (ii) be non-
evaluable (represented by an evaluation to

1

2
in Fig. 6) since

it can refer to program variables that may have never been

in scope. This subtlety is in contrast with a simple Boolean

semantics where predicates evaluate to either true or false.

The semantics of merge instructions is handled when ex-

ecuting Inop(l′) instructions, as for the 𝜙-instructions in

SSA (see bottom of Fig. 7). It is also the case for selection

instructions, which are inserted at loop exit landing pads

implemented with Inop instructions. Note that a loop exit

landing pad could very well be the predecessor of a junction

point: in that case, we must handle both kinds of instructions.

The most important semantic rules for GSA are given in

Fig. 7, where GSA semantic states are written T (𝑓 , l, rs,m).
We again define two cases, whether l′ is a junction point

or not, as merge-blocks are only placed at junction points.

If l′ is not a junction point (rule NJoin), the register state

is only updated by 𝜂-instructions. Otherwise (rule Join), l′

is a junction point, and the merge-block must be executed.

The 𝜂-block is first executed, updating rs to rs′; then the

merge-block is executed, updating rs′ to rs′′.
Let us now explain in deeper detail how to execute 𝜂-

instructions and merge instructions. Rule Eta (top of Fig. 7)

defines how to execute a non-empty list of 𝜂-instructions.

Executing an 𝜂-instruction 𝑟d ← 𝜂 (𝑞, 𝑟) requires predicate
𝑞 to evaluate to 1: it must hold in rs. All 𝜂-instructions are
evaluated in parallel: the value of the predicates and register

operands are determined in the current register state rs, and
destination registers are updated.

The execution of a merge-block is similar to the execution

of a 𝜙-block: it assigns in parallel to destination registers

the value (in rs′) of one operand of each merge-instruction.

The novelty here is how this operand is chosen for each

instruction. For 𝜇-instructions (rule Merge𝜇), the selection

is done only via 𝑘 , designating the index of the control-flow

predecessor that leads to l′, as was done for 𝜙-instruction. In
the case of a 𝜇-instruction, we however ensure that it only

has two predecessors: the loop header, and the loop latch.

Hence, 𝑘 ∈ {0, 1} and either 𝑟0 or 𝑟1 is assigned to 𝑟d.

In the case of 𝛾-instructions (rule Merge𝛾), the selection

is guided by a predicate that evaluates to 1, and 𝑘 does not

play any role. Indeed, in rule Merge𝛾 , the 𝑛-th operand 𝑟𝑛
is selected, for some 𝑛. In particular, 𝑞𝑛 is not necessarily 𝑞𝑘 .

We ensure that our semantics stays deterministic by choos-

ing the first such 𝑛, whenever two predicates 𝑞𝑛1
and 𝑞𝑛2

187

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

Eta∅

∅ ⊢ rs E⇝ rs

Eta𝜖

⌊𝜖⌋ ⊢ rs E⇝ rs
Eta

𝑖 = 𝑟d ← 𝜂 (𝑞, 𝑟) rs |=p 𝑞 ⇓ 1 ⌊𝑏𝜂⌋ ⊢ rs
E
⇝ rs′

⌊𝑖 :: 𝑏𝜂⌋ ⊢ rs
E
⇝ rs′ [𝑟d ↦→ rs(𝑟)]

Merge𝛾

𝑖 = 𝑟d ← 𝛾 (# »(𝑞, 𝑟)) rs |=p 𝑞𝑛 ⇓ 1 ⌊𝑏M⌋, 𝑘 ⊢ rs
M
⇝ rs′

⌊𝑖 :: 𝑏M⌋, 𝑘 ⊢ rs
M
⇝ rs′ [𝑟d ↦→ rs(𝑟𝑛)]

Merge𝜇

𝑖 = 𝑟d ← 𝜇 (𝑟0, 𝑟1) 𝑘 ∈ {0, 1} ⌊𝑏M⌋, 𝑘 ⊢ rs
M
⇝ rs′

⌊𝑖 :: 𝑏M⌋, 𝑘 ⊢ rs
M
⇝ rs′ [𝑟d ↦→ rs(𝑟𝑘)]

NJoin

𝑓 .I(l) = ⌊Inop(l′)⌋ 𝑓 /⋎ l′ 𝑓 .E(l) ⊢ rs E⇝ rs′

⊢ T (𝑓 , l, rs,m) 𝜖→ T (𝑓 , l′, rs′,m)

Join

𝑓 .I(l) = ⌊Inop(l′)⌋ 𝑓 ⋎ l′ 𝑓 .E(l) ⊢ rs E⇝ rs′

preds(l′)𝑘 = l 𝑓 .M(l′), 𝑘 ⊢ rs′ M⇝ rs′′

⊢ T (𝑓 , l, rs,m) 𝜖→ T (𝑓 , l′, rs′′,m)

Figure 7. Semantics of GSA (excerpt)

would be simultaneously true. However, as we explain in

Section 5.2, predicates guarding 𝛾-arguments are provably

mutually exclusive in GSA.

5 Conversion from SSA to GSA
To convert SSA into GSA, the 𝜙-instructions need to be re-

placed by 𝛾- or 𝜇-instructions, depending on whether the

𝜙-instruction was at a simple junction point or at a loop

header. In addition to that, extra 𝜂-instructions need to be

added to loop exits. The difficulty of the transformation is

the calculation of the predicates for 𝛾- and 𝜂-instructions,

as well as proving the necessary properties about the gen-

erated predicates. This is the main focus of this paper, and

we explain it below, together with the salient properties of

the conversion. The new 𝜂-instructions additionally require

fresh register names, and to update register uses accordingly.

We abstract over the related administrative duties, which

mainly comprise technicalities. Full details are present in the

companion Coq development [17].

SSA
Merge

instr. 𝛾 , 𝜇

Selection

instr. 𝜂

Register

renaming

Regular

instr.

Compute

Predicates

Loop

Headers

P

GSA

R

Encoding

predicates, coherence,

well-exclusivity

SMTCoq CheckerExternal Solvers

Structural

Checks

Validity

Checker

Figure 8. Overview of the translation from SSA to GSA.

Section 5.1 describes the main algorithm used to perform

the translation from SSA to GSA, as well as its formal speci-

fication. In Section 5.2, we give more details about the gen-

eration of predicates, explain predicates invariants that hold

in the specification. In Section 5.3, we explain how we spec-

ify the translation from SSA to GSA at the instruction level.

Section 5.4 then goes over how the renaming of variables is

performed after the new 𝜂-instructions have been inserted,

and describes invariants about this renaming. Section 5.5

then covers the main correctness theorem and gives an intu-

itive description of how it is proven using the specification.

Finally, Section 5.6 describes the main semantic invariant

used to prove the correctness theorem of the translation.

5.1 Specification of GSA Construction
This section describes the translation going from SSA to GSA.

A diagram with an overview of the translation is given in

Fig. 8, where the main steps are in the center of the figure:

(i) generate 𝛾- and 𝜇-instruction from 𝜙-instructions, (ii) in-

sert an 𝜂-instruction for each 𝜇-instruction, and (iii) register

renaming for the inserted 𝜂-instruction assignments. In addi-

tion, there are also a predicate computation step and a loop

headers computation step which generate information used

when generating merge- and 𝜂-instructions.

From an implementation point of view, the translation is

done sequentially, meaning there will be an intermediate

state of the code after the merge-instruction translation and

after the 𝜂-instruction generation, where the GSA code does

not account for the proper renaming yet. When writing a

specification for this translation, one would want to relate

the SSA 𝜙-block directly to the final merge-block, but with-

out having to consider how 𝜂-instructions are inserted, and

188

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

thus how the renaming is performed. We therefore gener-

ate a predicate matrix P containing all the predicates that

were generated during the translation and a renaming map

R which contains all the variables that are renamed and

their new name, together with their original definition point.

We described in further detail the predicate matrix and the

renaming map in described in Section 5.4 and Section 5.2

respectively. Finally, the properties we need about P, R and

the CFG structure are validated after the translation, with

dedicated validators. This includes making use of an un-

trusted external SMT solver, whose result is itself validated

by SMTCoq [19]. We explain our encoding in Section 6.1.

Translation Specification. Wenow give in Definition 5.1

a formal specification for our translation from SSA to GSA.

It relates an SSA function 𝑓 to the translated GSA function

tf , relative to P and R. It is written P,R ⊢ 𝑓 ≡ tf .
Definition 5.1 (SSA to GSA Translation Specification).

𝑓 = (I,Φ) tf = (Itr ,Mtr , Etr)
P coh P ⋉ 𝑓 , tf |= R ✓

∀l,I ≃l𝜄 I𝑡 ∀l, P ⊢ Φ ≃lMM𝑡 ∀l, P ⊢ I ≃l𝜂 E𝑡
rename(R,I𝑡 ,M𝑡 , E𝑡) = (Itr ,Mtr , Etr)

P,R ⊢ 𝑓 ≡ tf
We explain here the main components of the specifica-

tion, and how it is structured, leaving a detailed and formal

description for the next subsections.

The two functions are of the form 𝑓 = (I,Φ) and tf =

(Itr ,Mtr , Etr). In the second line of the specification, we

require the predicate matrix P and the renaming map R to

satisfy properties that tell us enough about their correctness

so that we can prove that the right argument will be picked in

𝛾-instructions, and that the predicates in 𝜂-instructions will

always evaluate to true when they are reached. We explain

these requirements in Section 5.2 and Section 5.4.

The third line specifies how the code of the SSA and

GSA functions match. We introduce one code-matching re-

lation per type of instructions (regular instructions, merge-

instruction, and selection-instructions). We explain these

code correspondences in Section 5.3.

Finally, the renaming is performed after the threes kind

of maps are generated, so that variables introduced by an

𝜂-instruction are used after their definition.

5.2 Specification of GSA Predicates
In GSA, predicates guard the register selection in 𝛾- and 𝜂-

instructions. Hence, they should reflect the dynamic control-

flow of the program. Essentially, one must generate a predi-

cate for each path to the 𝛾-instruction, so that the predicate

is true if and only if the path was picked.

One solution to this is to leverage the solution to the single-

source path problem expressed by Tarjan [26]. The suggested

algorithm is use to build a regular expression on CFG edges,

that matches all possible paths between a single source CFG

node and all other CFGnodes.We then translate these regular

expressions to predicates by collecting and composing all

relevant conditions encountered on the paths of interest.

Such predicateswill, intuitively, only be truewhenever a path

in the language of that regular expression is taken. Kleene

stars in regular expression express infinitely many possible

paths with loops. Simply removing star-expressions during

the translation of path expressions to predicates provably

does not change the evaluation of the resulting predicate

itself: the predicate characterising paths already accounts

for cases where loops are not entered, hence entailing all

paths described by the star-expression-free predicate.

To reason about the meaning of predicates in the proof of

the semantic preservation, the solution to the single source

path expression problem needs to be formalised. Presenting

the details of Tarjan’s algorithm is far beyond the scope of

this paper. In fact, in this work, instead of verifying Tarjan’s

algorithm, we use a translation validation approach: we iden-

tify two properties, namely coherence and well-exclusivity on
predicates, which are sufficient to prove the translation itself,

allowing us to abstract away from the implementation tech-

nicalities of Tarjan’s algorithm. We explain later in Section 6

how we validate these properties.

We first calculate predicates on the initial SSA function;

then, we insert them in the GSA function, and the subsequent

renaming of variables will account for the insertion of 𝜂-

instructions.We note that predicates characterise sets of CFG

paths: they hence constitute an information that is global on
the CFG of the initial SSA function. We therefore express

their essential properties relative to a predicate matrix P,
associating predicates, in P, to pairs of nodes in the CFG of

the initial SSA function 𝑓 . Morally, the predicate associated

to (𝑖, 𝑗), written P𝑖, 𝑗 , should represent a set of paths from

node 𝑖 to node 𝑗 in the CFG of 𝑓 . For instance, for the CFG

in Fig. 2c, 𝑃4,8 is 𝑥1 > 50 ∧ 𝑥1 < 9.

Coherence. The first property we formulate, coherence,
relates to the semantic correctness of predicates. Intuitively,

predicates should indeed be coherent with the CFG paths

they are supposed to represent. In particular, for a given node

𝑗 with𝑚 predecessors, the possible paths from a node 𝑖 to

each of the predecessors of 𝑗 should enable a path from 𝑖 to 𝑗 ,

when extended with the (atomic) condition on the edge from

that predecessor to 𝑗 . This is visualised in Fig. 9, taken from

Fig. 2b, but with elided Inop nodes. In this figure, we take

node 𝑖 to be node 4, and we write each predicate P4,𝑘 at node

𝑘 . An edge from node 𝑘 to 𝑗 is taken when the atomic con-

dition 𝑐𝑘,𝑗 holds. The coherence property intuitively states

that, P𝑖, 𝑗 ought to hold, as soon as one of the paths from 𝑖

to 𝑗 , corresponding to a predicate P𝑖,𝑘 ∧ 𝑐𝑘,𝑗 , where 𝑘 is a

predecessor of 𝑗 , has been taken.

We formalise this intuition with the three-place relation

P coh (𝑖, 𝑗); it states, for a function 𝑓 , a predicate matrix

189

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

𝑥1 < 94

P4,4 = True

𝑥2 := 𝑥1 + 25

P4,5 = 𝑥1 < 9

𝑥1 > 507

P4,7 = 𝑥1 < 9

𝑥3 := 𝑥1 + 18

P4,8 = 𝑥1 > 50 ∧ 𝑥1 < 9

𝑥4 := 2 ∗ 𝑥110

P4,10 = 𝑥1 > 50 ∧ 𝑥1 < 9

𝑖2 := 𝑖1 + 112

P4,12 = True

𝑥5 := 𝜙 (𝑥2, 𝑥3, 𝑥4)

𝑐4,5 = 𝑥1 < 9 𝑐4,7 = 𝑥1 < 9

𝑐7,8 = 𝑥1 > 50 𝑐7,10 = 𝑥1 > 50

𝑐5,12 = True

𝑐8,12 = True 𝑐10,12 = True

(a) SSA example program taken from Fig. 2, with elided Inop nodes (excerpt).

©­­«
(P4,5 ∧ 𝑐5,12)
∨(P4,8 ∧ 𝑐8,12)
∨(P4,10 ∧ 𝑐10,12)

ª®®¬ ⇃12 =⇒ P4,12

=
©­­«
(𝑥1 < 9 ∧ True)
∨(𝑥1 > 50 ∧ 𝑥1 < 9 ∧ True)
∨(𝑥1 > 50 ∧ 𝑥1 < 9 ∧ True)

ª®®¬ =⇒ True

(b) Example of local coherence P coh (4, 12). The
projection has no effect as only 𝑖2 and 𝑥5 are de-

fined at node 12, but they do not appear in the

predicates.

(P4,7 ∧ 𝑐7,8)⇃8 =⇒ P4,8

= 𝑥1 < 9 ∧ 𝑥1 > 50 =⇒ 𝑥1 > 50 ∧ 𝑥1 < 9

(c) Example of local coherence P coh (4, 8).

Figure 9. Illustration of the coherence property P coh (𝑖, 𝑗) for a node 𝑖 such that 𝑖 ≻ 𝑗 .

P, and two nodes 𝑖 and 𝑗 , that the predicate P𝑖, 𝑗 is, locally,
coherent for nodes 𝑖 and 𝑗 .

Definition 5.2 (Local Coherence). Let 𝑓 be an SSA function,

P a predicate matrix, and 𝑖 and 𝑗 be two nodes in the CFG of

𝑓 . The relation P coh (𝑖, 𝑗) is defined as follows
2
:

CohNDom

𝑖 /⪰ 𝑗

P coh (𝑖, 𝑗)

CohEq

𝑖𝑠𝑇𝑟𝑢𝑒 (P𝑖,𝑖)
P coh (𝑖, 𝑖)

CohSDom

𝑖 ≻ 𝑗
©­«

∨
𝑘∈preds(𝑗)

P𝑖,𝑘 ∧ 𝑐𝑘,𝑗
ª®¬ ⇃𝑗 =⇒ P𝑖, 𝑗

P coh (𝑖, 𝑗)

In addition to the informal explanations we gave previ-

ously, coherence requires two other ingredients, appearing

in Definition 5.2, to be meaningful and provable.

The first ingredient is dominance. For nodes 𝑖 and 𝑗 , we

need to distinguish cases where 𝑖 dominates 𝑗 or not. Indeed,

recall that a predicate used at a node 𝑗 characterises paths

from a dominator of 𝑗 to 𝑗 . Hence, we never need to consider

paths from non-dominators of 𝑗 to 𝑗 . This explains the first

rule CohNDom, which does not impose any constraint on

those predicates. Now, when 𝑖 dominates 𝑗 , there are again

two cases to consider: either 𝑖 = 𝑗 or 𝑖 strictly dominates

𝑗 . In the first case (rule CohEq), we ask that predicate P𝑖,𝑖
always evaluates to true, so that it models an empty path

from 𝑖 to 𝑖 . The second case (rule CohSDom) corresponds

2
The definition of semantic implication on predicates is standard: 𝑃 =⇒ 𝑄

means that, for any register state rs, if 𝑃 evaluates to 1, then so does𝑄 .

to the informal explanation given previously. We give two

examples of this rule, illustrated in Fig. 9c (where 𝑖 = 4 and

𝑗 = 12) and Fig. 9b (where 𝑖 = 4 and 𝑗 = 8).

The second ingredient we need is related to the inter-

action between semantic implication of predicates and the

evaluability of the predicates. Indeed, we need to make sure

that semantic implication does not hold vacuously because of

some yet-to-be-defined or outdated program variable appear-

ing in the atomic conditions of the predicates in P. Predicates
sometimes reflect CFG paths that join in a non-structured

way: some sub-paths might therefore involve conditions on

locally defined program variables, and the definition points

of variables appearing in predicates do not necessarily domi-

nate the use point of a predicate.

To deal with this, we introduce a projection operator on

predicates, written 𝑝⇃𝑗 , which replaces any atomic condition

𝑐 or 𝑐 in a predicate 𝑝 with True, as soon as condition 𝑐

uses a program variable defined at node 𝑗 in function 𝑓 .

In particular, when 𝑗 is a junction point, variables defined

by a 𝜙-instruction are abstracted away. Note that we only

project atomic conditions, and not the entire predicate. We

only abstract the variables that actually need to be abstracted.

Intuitively, the projection operator in Definition 5.2 allows us

to specify which variables should be considered as relevant to

the truthfulness of predicate P𝑖, 𝑗 ; indeed, to prove coherence
one would have to show that the projection does not change

the truthfulness of the predicate, either by showing that the

problematic variables are not present in the predicate, or by

showing that they do not affect its evaluation.

Next, the following definition uses the coherence relation

to express a global criteria on the entire predicate matrix.

190

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

Definition 5.3 (Coherent Predicate Matrix). Let 𝑓 be an

SSA function. A predicate matrix P is said to be coherent,

written P coh, when P coh (𝑖, 𝑗) for all 𝑖 and 𝑗 in P.

We emphasise here that the matrix does not need to in-

clude all pairs of nodes. In practice, it is sufficient to keep

track of only the predicates required in the future GSA func-

tion, i.e., at future 𝛾- and 𝜂-instruction nodes (e.g. the pred-

icates of Fig. 9a). Hence, it is enough to build a matrix of

dimension (𝐷 + 𝐻) × 𝑁 , where 𝑁 is the size of the CFG,

𝐷 is the number of (non-loop headers) nodes holding a 𝜙-

instruction and 𝐻 the number of loop exit nodes. Informally,

for each of the 𝐷 + 𝐻 nodes, one predicate is required to

describe paths from their immediate dominator to each of

the 𝑁 nodes in the CFG of the function.

Mutual exclusivity. The second property we must es-

tablish about the generated predicates is that they are suf-

ficiently informative: they indeed allow for a proper selec-

tion of the arguments in 𝛾-instructions. We formalise this

property using a notion of mutual exclusivity of predicates,

stating that they cannot be satisfied simultaneously.

Definition 5.4 (Mutually Exclusive Predicates). Let 𝑝1 and
𝑝2 be two predicates in P. They are said to be mutually ex-

clusive, written 𝑝1 ⋉ 𝑝2, whenever for all register states rs
they cannot both evaluate to true, i.e. if rs |=p 𝑝1 ⇓ 1, then
rs |=p 𝑝2 /⇓ 1.

Naturally, we cannot ask for all predicates in a predicate

matrix to be pairwise mutually exclusive. What we require

is that predicates to be used for the selection of any future 𝛾-

instruction’s pair of arguments be mutually exclusive. Hence,

we only consider non-loop-headers junction points – loop-

header 𝜙-instructions are future 𝜇-instructions, that do not

resort on predicates.

Definition 5.5 (Well-Exclusive Predicate Matrix). Let 𝑓 be

an SSA function. A predicate matrix P is well-exclusive for
𝑓 , written P ⋉, when for all node 𝑛𝜙 in 𝑓 that is not a loop

header, and that holds a 𝜙-block, and any possible strict-

dominator 𝑑 of 𝑛𝜙 , i.e. 𝑑 ≻ 𝑛𝜙 , the following holds: for any

two distinct nodes 𝑛1, 𝑛2 ∈ preds(𝑛𝜙), we have P𝑑,𝑛1
⋉ P𝑑,𝑛2

.

We now summarise the calculation and validation of GSA

predicates. For any 𝜙-instruction at node 𝑛 in the initial SSA

function 𝑓 , we calculate a predicate characterising all paths

from its immediate dominator node 𝑑 to 𝑛. For each loop

exit node 𝑛 in 𝑓 , we calculate a path predicate characterising

all paths from the corresponding loop-header of 𝑛 to 𝑛. We

collect all these predicates in the predicate matrix P, on
which we globally apply the projection operator .⇃. on all

predicates columns, i.e. P𝑖, 𝑗 is replaced by the projection

P𝑖, 𝑗⇃𝑗 . We finally check that the resulting predicate matrix

is indeed coherent and well-exclusive. The details of the

validator itself are given in Section 6.

5.3 Specification for GSA Instructions
We turn now to the specification of how SSA instructions

are converted to GSA instructions. We do this by stating how

the respective instruction maps of the initial SSA function

𝑓 and the GSA function are relating, on a per-node basis.

Indeed, such a one-to-one correspondence is possible, since

the conversion to GSA does not modify the structure of the

CFG. In fact, we insert loop exit landing pads prior to the

GSA conversion; the insertion of 𝜂-instructions hence also

preserves the CFG structure.

We thus introduce three code-correspondences: relation

. ≃.𝜄 . handles the regular instruction maps, relation . ⊢ . ≃.M .

handles the merge-block map, and relation . ⊢ . ≃.𝜂 . handles

the selection-block map.

Definition 5.6 (Code-Correspondence Relations at Node l).

I(l) = I𝑡 (l)
I ≃l𝜄 I𝑡

𝑑 ≻ l ∀𝑖 . P ⊢ Φ(l)𝑖 ≈l,𝑑𝜙 M(l)𝑖
P ⊢ Φ ≃lMM

P ⊢ 𝑟d ← 𝜙 (𝑟0, 𝑟𝑖) ≈l,𝑛𝜙 𝑟d ← 𝜇 (𝑟0, 𝑟𝑖)
∀𝑘. 𝑟 ′

𝑘
= (P𝑛,preds(l)𝑘 , 𝑟𝑘)

P ⊢ 𝑟d ← 𝜙 (#»𝑟) ≈l,𝑛
𝜙

𝑟d ← 𝛾 (
#»

𝑟 ′)
I(l) = ⌊Inop(l′)⌋ ℎ ≻ l

∀ 𝑟d 𝑝s 𝑟s . 𝑟d ← 𝜂 (𝑝s, 𝑟s) ∈ E(l) ⇒ 𝑝s = Pℎ,l
P ⊢ I ≃l𝜂 E

Relation ≃𝜄 is straightforward: both functions should have

identical instructions at a node l. Relation ≃M states that, at

node l, all𝜙-instructions andmerge-instructions are pairwise

related through ≈𝜙 . Recall that 𝜙-instructions are converted
either to 𝜇- or 𝛾-instructions, depending on whether they

were placed at loop headers in 𝑓 . In our specification, we do

not need to distinguish between the two cases, and we allow

for a 𝜙-instruction being related either to a 𝛾-instruction or

to a 𝜇-instruction (if it has only two arguments: a first one for

the loop initialisation and a second one for the loop iteration).

We make this (correct) specification permissive enough so

that it makes it possible to abstract over the correctness of the

calculation of loop-headers. The interesting case is when a 𝜙-

instruction is converted to a 𝛾-instruction at node l: to each

register argument 𝑟𝑘 in the 𝜙-instruction, we associate in the

𝛾-instruction the predicate P𝑛,preds(l)𝑘 : this expresses that 𝑟𝑘
should be selected on paths from 𝑛 to the 𝑘-th predecessor

of l, with 𝑛 a strict dominator of l.
Third, for the selection-block map, the relation ≃𝜂 states

that 𝜂-instructions are inserted only at nodes l holding an

Inop instruction in 𝑓 , and that the predicate used to select

the register 𝑟s in the 𝜂-instruction is expressing paths from

a (loop-header) node ℎ to l, with ℎ strictly dominating l.
Note that in Definition 5.6, source and destination register

names are under-constrained. Technically speaking, at this

191

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

point of the specification, the GSA function is not SSA. We

re-establish the SSA property and register-use consistency

using our global renaming post-phase that we describe next.

5.4 Specification of Register Renaming
Because GSA adds 𝜂-instructions, and register definitions

need to remain unique, we need to (i) generate fresh register

names, and (ii) to readjust register uses to keep them con-

sistent: past a loop exit node, the fresh generated register

name should be used instead of the initial one. To this end,

we rely on a register renaming map, that we compute during

the insertion of 𝜂-instructions.

Each of the loop-exit nodes will hold an 𝜂-instruction

𝑟d ← 𝜂 (𝑝, 𝑟s), where 𝑟d must be fresh, 𝑝 is the loop-exit

predicate, and 𝑟s is the variable defined by the corresponding

𝜇-instruction. So, in the renaming phase, we need to keep

track of how each variable defined using a 𝜇-instruction will

be copied to the fresh register 𝑟d at node 𝑙exit . We store all of

this information in the following data-structure.

Definition 5.7 (Register Renaming Map Validity). Let 𝑓 be

an SSA function. A register renaming map R is valid with

respect to 𝑓 and tf , written 𝑓 , tf |= R ✓, if and only if the

following two conditions hold.

1. For all 𝑟𝜇 such that R(𝑟𝜇) = ⌊
»(𝑟𝜂, l𝜂)⌋, (i) all 𝑟𝜂𝑖 are

fresh in 𝑓 and register 𝑟𝜇 is not fresh in 𝑓 , (ii) there

exists l𝜇 with 𝑟𝜇 ← 𝜇 (𝑟0, 𝑟𝑖) ∈ tf .M(l𝜇), and (iii) there
exists 𝑟𝜂 ← 𝜂 (𝑝, 𝑟𝜇) ∈ tf .E(l𝜂).

2. For all l and 𝑟d ← 𝜙 (#»𝑟) ∈ 𝑓 .Φ(l), if R(𝑟d) = ⌊
»(𝑟𝜂, l𝜂)⌋

then l ≻ l𝜂𝑖 for all 𝑖 .

The implementation of the renaming pass is as follows.

For any register 𝑟 used at node 𝑛, if (𝑟𝜂, l𝜂) ∈ R(𝑟), then
𝑟 is renamed to 𝑟𝜂 if l𝜂 ≻ 𝑛. Register 𝑟 is left unchanged

otherwise. Indeed, if l𝜂 ≻ 𝑛, because the renaming map is

valid (Definition 5.7), we prove that an 𝜂-instruction 𝑟𝜂 ←
𝜂 (𝑝, 𝑟𝜇) necessarily dominates node 𝑛, and therefore the new

register 𝑟𝜂 should be used instead of 𝑟 . The actual renaming

pass is bijective, assuming that the renaming R is valid with

respect to the initial SSA function. We apply this renaming

process using R on each of the mapsM, E and I, through
the function rename(R,I,M, E) = (I′,M′, E′), yielding
three renamed code maps.

5.5 Top-Level Correctness Theorem
The overall correctness theorem states the overall semantics

preservation between the initial C code and the GSA code

that is produced by the compiler.

Theorem 5.8. Let 𝑃𝑐 be a safe C program (i.e. that does not go
wrong). Suppose the compilation of 𝑃𝑐 succeeds, and produces
a GSA program 𝑃𝑔 . Then, running 𝑃𝑔 from its initial state 𝑇init
emits a trace 𝑡 only if running 𝑃𝑐 from its initial state 𝑆init

emits the trace 𝑡 .

∀𝑃𝑐 𝑃𝑔 . Safe(𝑃𝑐) ∧ Comp(𝑃𝑐) = OK(𝑃𝑔)

=⇒ (∀𝑡 . ⊢ 𝑆init
𝑡→∗ =⇒ ⊢ 𝑇init

𝑡→∗).

As in CompCert’s formal development, this backward sim-

ulation theorem is proven by showing a forward simulation

between C and GSA, and then proving that the semantics

of GSA is deterministic. The forward simulation itself can

be decomposed into individual forward simulations, one for

each of the compilation pass.

At the heart of the proof of the forward simulation for the

conversion from SSA to GSA, we need to exhibit a binary

(simulation) relation on execution SSA and GSA states, · ≃ ·,
which carry enough information to prove that both programs

behave the same, i.e. emit the same observable trace.

Lemma 5.9 states the forward lock-step simulation dia-

gram between GSA and SSA. It relates the states of an SSA

function with the states of a GSA function, and shows that,

for every execution step in SSA, there exists an execution

step in GSA which ensures both states stay related.

Lemma 5.9. Let 𝑓 be an SSA function, such that wfSSA(𝑓).
Let tf be the corresponding generated GSA function, with the
companion predicate matrix P and renaming map R, with
P,R ⊢ 𝑓 ≡ tf .

∀𝑆1 𝑡 𝑆2 𝑇1. ⊢ 𝑆1
𝑡→ 𝑆2 ∧ 𝑆1 ≃ 𝑇1 =⇒

∃𝑇2. ⊢ 𝑇1
𝑡→ 𝑇2 ∧ 𝑆2 ≃ 𝑇2.

This lemma can be visualised as follows, where solid lines

are hypotheses, and dashed lines are conclusions.

𝑆2

𝑆1

𝑇2

𝑇1
≃

≃
𝑡 𝑡

5.6 Simulation Relation
We now describe the simulation relation · ≃ ·, which relates

an SSA semantic state S to a GSA semantic state T . As is
often the case in simulation proofs, the main difficulty lies in

defining that very simulation relation. We define the relation

as follows
3
, and we prove it satisfies Lemma 5.9.

Definition 5.10 (Simulation Relation).
𝑓 ↬ l R |=l rs ≈ rs′(
∀𝑑, 𝑑 ≻ l =⇒ rs |=p P𝑑,l ⇓ 1

)
S(𝑓 , l, rs,𝑚) ≃ T (tf , l, rs′,𝑚)

∀𝑟, 𝑟 ∉ fresh(𝑓) =⇒ rs′ (𝑟) = rs(𝑟)
∀𝑟 𝑟 ′ 𝑛, R(𝑟 ′) = ⌊ # »(𝑟, 𝑛)⌋ and 𝑛 ≻ l =⇒ rs′ (𝑟) = rs(𝑟 ′)

R |=l rs ≈ rs′
3
We only present the simulation relation on standard semantic states. The

details about other states can be found in our Coq development.

192

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

Given an SSA function 𝑓 , a GSA function tf that is a

possible translation of 𝑓 , their semantic states match at the

current program point l, when their register states agree,

and a further property related to predicates holds.
4

The agreement between register state rs in SSA and rs′

in GSA, written 𝑅 |=l rs ≈ rs′, is defined in Definition 5.10.

The basic case states that if register 𝑟 is not fresh, it should

always be equal to its counter part in SSA. The second case,

when 𝑟 is fresh, is when it exists in the renaming map R. The
relation holds when the definition of the renamed register

strictly dominates the current point, which guarantees it will

have the same value as the register before the renaming.

The last property we need is the fact that the predicates at

the current node l always evaluate to true if 𝑑 ≻ l, namely we

have rs |=p P𝑑,l ⇓1 for all strict dominators 𝑑 of l. For junction
points, we use the coherence property to prove that the next

predicate will evaluate to true, as at least one predecessor

evaluates to true. For instructions such as 𝛾-instructions, 𝜇-

instructions and Iop instructions that modify a register, we

rely on the fact that the modified register cannot appear in

the predicate due to the projection of the predicate at the

current node, to show that it will still evaluate to true.

Once we know that predicates evaluate to true at the cur-

rent point l, we prove the behaviour of merge-instructions.

𝜇-instructions are simple, as they behave like 𝜙-instructions.

However, the difficulty here is that a register 𝑟d defined by

a 𝜇-instruction will likely be in R(𝑟d) = ⌊
»(𝑟𝜂, l𝜂)⌋. We need

to show that this renaming does not interfere, and we can

therefore use ∀𝑖 .l ≻ l𝜂𝑖 , which comes from Definition 5.7 (2),

to show that we are not updating a register that was also

renamed somewhere at l.
Proving the correctness of 𝛾-instructions relies on mutual

exclusivity: we prove that the same register is picked in

SSA and GSA, as we know that the predecessor’s predicate

evaluated to true, and that no other predecessor predicate

can be true. The three-valued logic allows us to ignore paths

that were never executed and whose conditions might not be

evaluable. Then, we use the coherence property to prove that

the predicate at the junction point will still to hold: at least

one predecessor evaluates to true, and any register modified

by the 𝜙-instruction has been projected away already.

Finally, for 𝜂-instructions, the correctness comes directly

from the simulation relation ≃. The main problem in this

proof is showing that the final register maps agree, as it is

modifying fresh variables. This requires proving that the

fresh variables exist in R, and that the register that maps to

it in R is the one being assigned by the 𝜂-instruction.

4
We further need to maintain the invariant 𝑓 ↬ l, stating that l is syntacti-
cally reachable in the CFG of 𝑓 , to reason about the dominance relation.

Table 1. Number of lines of code (SLOC), generated using

coqwc in our development relative to CompCertSSA and to

CompCert. Validated OCaml code is also included.

Spec Proof OCaml Total

CompCert 59439 69487 28703 157629

CompCertSSA 15693 27868 3161 46722

Dom. completeness 1413 2735 0 4148

GSA 6320 9035 1433 16788

Syntax & semantics 122 685 0 807

Generation 4359 4947 314 9620

SMTCoq integration 1839 3403 1119 6361

6 Implementation of the GSA Construction
within CompCertSSA

We implement our specification as a translation pass from

SSA to GSA. The main difficulty is proving the coherence

and the well-exclusivity of the predicate matrix, which is

then used in the main SSA-to-GSA translation pass to assign

the predicates to the 𝛾- and 𝜂-instructions. In Section 6.1,

we describe how we populate the predicate matrix, and the

proofs of coherence and well-exclusivity. We give further

details about our implementation in Section 6.2, including

a the additional compiler passes that we added. Section 6.3

then covers the integration of the external SMT solver and

its validation. Finally, Section 6.4 covers the main limitations

of the current implementation. To get a sense of the scale of

the implementation, we give in Table 1 the total number of

lines, relative to CompCert and CompCertSSA.

6.1 Generation and Validation of the Predicates
While translating𝜙-instructions and inserting𝜂-instructions,

we build up the predicate matrix P. Each time a new predicate

is needed, and if it is not already present, the entry P𝑖,. is
populated using Tarjan’s algorithm. Even though 𝑖 could be

any dominator of the current node, we pick the immediate

dominator to minimise the number of computed paths.

The correctness of the generated predicates is validated

after-the-fact. To check coherence and well-exclusivity, we

use unsatisfiability queries to an SMT solver, which outputs

a certificate proving the unsatisfiability. This certificate can

then be checked using the proof checker from SMTCoq [19]

which we directly integrate as a validator in our translation.

More information about the integration of the embedding

of three-valued logic into SMTCoq formulas is given in Sec-

tion 6.3. The correctness of the SMT solver states that, if

it finds that a negated
5
predicate is unsatisfiable, then this

predicate unconditionally evaluates to true. This correctness

result is then used in the Coq proofs without having to trust

the SMT solver itself. Despite the induced cost of checking

SMT certificates, relying on a solver was key, in the course of

5
This negation is defined as setting 1 to 0, and both 0 and

1

2
to 1.

193

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

our formalisation, to cope with partial (or wrong) intuitions

we could have had about the sufficient properties that GSA

ought to satisfy to be correct.

We also extend the predicate language with an implication

rule (𝑝a →Ł 𝑝b), taken to be the implication as defined by

Łukasiewicz three-valued logic Ł3 [6], to be able to formulate

all the needed properties. Interestingly, if one were to use the

same definition of implication as in binary logic, the three-

valued logic would have no tautologies, making it impossible

to express SMT queries properly, as all values being unde-

fined would always be an acceptable assignment. Instead, Ł3

defines an implication where
1

2
→Ł

1

2
≡ 1, making it possible

to formulate tautologies.

Validating ∀𝑖 𝑗 . P coh (𝑖, 𝑗) is straightforward: it corre-

sponds directly to checking the coherence relation on the

predicates, where the logical implication is translated into

→Ł. We then prove that this implies the coherence of the

predicate matrix. Validating the mutual exclusivity of predi-

cates is more involved. We encode the implication used in

Definition 5.4, i.e. if 𝑝a is 1, then 𝑝b is either
1

2
or 0, into the

three-valued logic as 𝑝a →Ł 𝑝b →Ł ¬𝑝b. For a node 𝑗 , and

for 𝑚,𝑛 ∈ preds(𝑗), the query

(
P𝑖,𝑚 →Ł P𝑖,𝑛 →Ł ¬P𝑖,𝑛

)
∧(

P𝑖,𝑛 →Ł P𝑖,𝑚 →Ł ¬P𝑖,𝑚
)
proves the mutual exclusivity of

predicates P𝑖,𝑚 and P𝑖,𝑛 if it always evaluates to true, i.e. the

negation of the predicate is unsatisfiable.

6.2 Conversion to GSA and Other Compiler Passes
Converting 𝜙-instructions to 𝜇- or 𝛾-instructions depends

on whether the 𝜙-instruction is at a loop header or not. We

use an efficient loop-header checker [5, 7] that we can safely

trust: its correctness does not affect the soundness of the

translation. Similarly, we do not need to formally establish

that 𝜂-instructions are inserted at loop-exit nodes only, and it

is sufficient to prove the correctness of the prior placement of

loop-exit landing pads (Inop instructions) during an RTL to

RTL pass.We avoid the need to reason about loop-header and

exit nodes thanks to (i) the way we formulate our semantics

for GSA instructions and (ii) the preservation of the code

structure ensured by the generation algorithm of GSA from

SSA.

Inserting loop-exit landing pads prior to the GSA trans-

lation has many other benefits. It saves us from having to

insert new nodes in the function during the actual SSA to

GSA translation, and the structure of the CFG is therefore

preserved. All the properties of SSA, such as the dominance

test, and the reachability of nodes can be reused directly from

SSA and on the original graph, which reduces the amount

of proofs that need to be performed.

Additionally, we normalise loops to ensure they have a

single entry point and a single latch, so that we can generate

𝜇-instructions with a well-defined, non-blocking semantics.

Finally, we implement an unverified and trusted compiler

pass to translate GSA back to SSA, in order to generate ma-

chine code, and to be able to test programs by running them.

Proving the correctness of this pass is left as future work.

This translation is not easy to prove correct: one cannot as-

sume that the order of the arguments of the 𝛾-instruction

corresponds to the order of the predecessors anymore.

Another technical point is that we need a completeness

result for the dominance test to implement and prove our

translation to GSA. Here, we needed to integrate a verified,

but unpublished, formal development, proving the complete-

ness of the dominance test of CompCertSSA (shown as part

of CompCertSSA in Table 1).

6.3 Integration with SMTCoq
The proof of correctness for the validation of the coherence

and well-exclusivity of the predicate matrix heavily relies on

unsatisfiability checks guaranteeing that the property indeed

always holds. Hence, the SMT solver should itself formally

give this guarantee, either via a direct proof of correctness, or

by generating proof certificates that would then be checked

with a verified certificate checker.

In our GSA construction, we opted to use SMTCoq [19],

which includes a certificate checker for the veriT [8] SMT

solver for its internal SMT formulas. The main use-case of

SMTCoq is to provide Coq tactics that call the SMT solver and

solve goals while proving theorems in Coq, but we wanted

to integrate the certificate checker itself into our validator,

and eventually extract it to OCaml.

The certificate checker can already be extracted. However,

to prove properties about GSA predicates, we need to embed

their three-valued logic in terms of SMTCoq formulas. In

turn, we need to prove this translation sound. SMTCoq sup-

ports linear arithmetic as a theory, so three-valued logic can

be implemented using min and max functions (see Fig. 6).

The translation and its soundness proof are rather tedious:

we perform a Tseytin transformation to flatten the predicate,

before we can encode it efficiently as an SMTCoq formula

using arrays and sharing of redundant formulas and atoms.

6.4 Limitations
Unsupported Features. Currently, our extracted formal

development is able to compile all the expected CompCert

test programs successfully, and only fails on programs with

conditions that are dependent on memory, such as pointer

equality checks. These are currently unsupported, as it would

need a proof that stack allocations made when functions are

called do not make invalid pointers valid again, which could

change the result of executing the equality check. We could

leverage the hypothesis of well-defined C program semantics

to ensure this does not invalidate the construction of GSA.

Performance. The current validation increases compila-

tion time significantly which will have to be addressed in

194

CPP ’23, January 16–17, 2023, Boston, MA, USA Yann Herklotz, Delphine Demange, and Sandrine Blazy

the future. Running CompCertGSA without any validation

on the standard C tests included in CompCert takes around

4.5s. Then, running CompCertGSA with validation using

Z3 as a trusted SMT solver (without the SMTCoq checker)

takes around 156s. Finally, running CompCertGSA with full

validation including SMTCoq takes around 1872s. This large

difference in execution time is mainly due to SMTCoq having

to use an older version of veriT as the SMT solver back end,

which seems to have large differences in execution time for

some inputs. However, there are many other ways in which

the execution time could be improved. Firstly, the size of

the predicates could be simplified, which could be done in

an unverified and untrusted manner. Secondly, the handling

of case statements could be improved, as a new predicate

is introduced for each branch which complicates the predi-

cates substantially. Finally, our interface to SMTCoq could

be more efficient, as it currently performs many reads and

writes to files to communicate with veriT, whereas queries

can be built in memory when using Z3.

7 Related Work
There are various, different informal definitions of GSA in

the literature. GSA was first introduced by Ottenstein et al.

[23] in 1990 as part of the program dependence web (PDW),

which was inspired by the extended SSA form developed by

Alpern et al. [1]. It was later refined by Campbell et al. [9], de-

scribing different semantics that the PDW could have, such

as standard control-flow semantics, data-flow semantics, or

even demand-driven semantics. The purpose of the PDW

was mainly to produce a referentially transparent program

dependence graph [13], which could target more exotic archi-

tectures that relied purely on data-flow. There are therefore

a large number of different gates that are defined to support

various types of semantics.

However, GSA itself is well suited for symbolic analysis

over control-flow boundaries, thereby allowing for more

powerful optimisations than could be applied to SSA. There-

fore, Havlak [16] introduced the Thinned Gated Single As-

signment (TGSA) form, which retained the important parts

of Ottenstein et al.’s GSA formulation related to symbolic

analysis. Tu and Padua [28, 29] described a similar version of

GSA and developed an efficient way of building GSA, lever-

aging Tarjan’s algorithm to solve the single-source path ex-

pression problem [26]. But these are formulations of various

different versions of GSA, that all behave slightly differently.

In addition to that, they all operate over idealised languages

and none of them have a formal semantics; the definitions

of the SSA language that is extended is not always clear,

as well as what the predicates exactly consist of, or how

these are evaluated. On the contrary, our formal semantics

of GSA operates over the RTL language of CompCert; it is

formalised in Coq and validated by our proof of correctness

of the construction pass.

There have been various recent uses of GSA to either

perform equivalence checks or optimisations or high-level

synthesis [3, 11, 12, 22, 27]. None of these transformations are

formally verified. Among them, Tristan et al. [27] developed

an algorithm to detect the equivalence of the LLVM CFG be-

fore and after optimisation passes, and used a monadic GSA

language tracking the memory usage of each instruction.

Currently, our correctness proof relies on a SMT solver

verifier, based on SMTCoq [19]. SMTCoq sends SMT queries

to an external, untrusted SMT solver, and then validates

the result by checking a proof certificate generated by the

SMT solver. In our work, we rely on a extractable checker

provided by SMTCoq, and we integrate this checker within

our work by formally proving the correctness of our encod-

ing of predicates, their evaluation, and the corresponding

queries into the SMTCoq framework. IsaSAT is one of the

few verified SAT solvers implemented in Isabelle [14, 15].

8 Conclusions and Future Work
We make a number of contributions towards the integration

of GSA-based techniques into verified compilers. This in-

cludes providing the first formal semantics for GSA, proving

the semantics preservation of a specification for the SSA to

GSA conversion, and integrating the translation pass into

CompCertSSA, demonstrating its feasibility.

Proving the correctness of the translation to GSA does not

require formalising the notions of loop headers and loop exit

nodes, however, expressing optimisations or analysis passes

on GSA would require to do so. We could extend this work

with a set of well-formedness properties similar to the SSA

well-formedness from CompCertSSA.

Our semantics expresses the meaning of 𝛾- and 𝜂-instruc-

tions with predicates, thus making them control-flow in-

dependent. While we focus on this aspect in the paper, in

the future, we would like to formalise a data-flow or event-

driven semantics for GSA, where all control-dependencies

have been translated to data-dependencies. Such a language

could be used as a target for translation validation of com-

plex optimisations that are independent of control-flow. In

addition to that, such a language could also be used to target

back ends such as hardware directly.

Artefact Availability
The formal development, including its proofs is available as

an artefact [17].

Acknowledgments
We would like to thank John Wickerson and the anonymous

reviewers for their helpful feedback. This work was partially

funded by the CNRS via the INS2I (Appel Unique 2022) and

by the EPSRC via the Research Institute for Verified Trust-

worthy Software Systems (VeTSS).

195

Mechanised Semantics for Gated SSA CPP ’23, January 16–17, 2023, Boston, MA, USA

References
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. 1988. Detecting Equality

of Variables in Programs. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL ’88). Association for ComputingMachin-

ery, New York, NY, USA, 1–11. https://doi.org/10.1145/73560.73561
[2] C. Scott Ananian and Martin Rinard. 1999. Static Single Information

Form. Technical Report. Master’s Thesis, Massachussets Institute of

Technology.

[3] Manuel Arenaz, Pedro Amoedo, and Juan Touriño. 2008. Efficiently

Building the Gated Single Assignment Form in Codes with Pointers in

Modern Optimizing Compilers. In Euro-Par 2008 – Parallel Processing,
Emilio Luque, Tomàs Margalef, and Domingo Benítez (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 360–369.

[4] Gilles Barthe, Delphine Demange, and David Pichardie. 2014. Formal

Verification of an SSA-Based Middle-End for CompCert. ACM Trans.
Program. Lang. Syst. 36, 1, Article 4 (March 2014), 35 pages. https:
//doi.org/10.1145/2579080

[5] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. 2013. Formal

Verification of a C Value Analysis Based on Abstract Interpretation. In

SAS (LNCS, Vol. 7935). Springer, 324–344.
[6] L. Borowski. 1970. Selected Works of J. Łukasiewicz. Nort Holland.
[7] François Bourdoncle. 1993. Efficient chaotic iteration strategies with

widenings. In Formal Methods in Programming and Their Applications,
International Conference, Akademgorodok, Novosibirsk, Russia, June 28
- July 2, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 735),
Dines Bjørner, Manfred Broy, and Igor V. Pottosin (Eds.). Springer,

128–141. https://doi.org/10.1007/BFb0039704
[8] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and

Pascal Fontaine. 2009. veriT: An Open, Trustable and Efficient SMT-

Solver. In Automated Deduction – CADE-22 (Berlin, Heidelberg), Re-
nate A. Schmidt (Ed.). Springer Berlin Heidelberg, 151–156. https:
//doi.org/10.1007/978-3-642-02959-2_12

[9] Philip L Campbell, Ksheerabdhi Krishna, and Robert A Ballance. 1993.

Refining and defining the program dependence web. Cs93-6, University
of New Mexico, Albuquerque (1993).

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-

ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (oct 1991), 451–490. https://doi.org/10.1145/115372.
115320

[11] Steven Derrien, Thibaut Marty, Simon Rokicki, and Tomofumi Yuki.

2020. Toward Speculative Loop Pipelining for High-Level Synthesis.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39, 11 (Nov. 2020), 4229–4239. https://doi.org/10.1109/tcad.
2020.3012866

[12] Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assign-

ment Compiler, Single Assignment Architecture: Future Gated Sin-

gle Assignment Form*; Static Single Assignment with Congruence

Classes. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization (Orlando, FL, USA) (CGO ’14).
Association for Computing Machinery, New York, NY, USA, 196–207.

https://doi.org/10.1145/2544137.2544158
[13] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/
24039.24041

[14] Mathias Fleury. 2020. Formalization of logical calculi in Isabelle/HOL.
Ph. D. Dissertation. Saarland University, Saarbrücken, Germany. https:
//tel.archives-ouvertes.fr/tel-02963301

[15] Mathias Fleury and Christoph Weidenbach. 2020. A Verified SAT

Solver Framework including Optimization and Partial Valuations. In

LPAR 2020: 23rd International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020
(EPiC Series in Computing, Vol. 73), Elvira Albert and Laura Kovács

(Eds.). EasyChair, 212–229. https://doi.org/10.29007/96wb
[16] Paul Havlak. 1994. Construction of thinned gated single-assignment

form. In Languages and Compilers for Parallel Computing, Utpal Baner-
jee, David Gelernter, Alex Nicolau, and David Padua (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 477–499.

[17] Yann Herklotz, Delphine Demange, and Sandrine Blazy. 2022. Comp-
CertGSA. https://doi.org/10.5281/zenodo.6009632

[18] Inria 2021. The Coq proof assistant reference manual. Inria. http:
//coq.inria.fr Version 8.13.2.

[19] Chantal Keller. 2019. SMTCoq: Mixing Automatic and Interactive Proof
Technologies. Springer International Publishing, Cham, 73–90. https:
//doi.org/10.1007/978-3-030-28483-1_4

[20] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM (2009).

[21] Xavier Leroy. 2009. A formally verified compiler back-end. Journal of
Automated Reasoning 43, 4 (2009), 363–446.

[22] Cosmin E. Oancea and Lawrence Rauchwerger. 2015. Scalable condi-

tional induction variables (CIV) analysis. In 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 213–224.
https://doi.org/10.1109/CGO.2015.7054201

[23] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.

The Program DependenceWeb: A Representation Supporting Control-,

Data-, and Demand-Driven Interpretation of Imperative Languages.

In Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation (White Plains, New York, USA)

(PLDI ’90). Association for Computing Machinery, New York, NY, USA,

257–271. https://doi.org/10.1145/93542.93578
[24] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value

Numbers and Redundant Computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’88). ACM, New York, NY, USA,

12–27. https://doi.org/10.1145/73560.73562
[25] Diogo Sampaio, Rafael Martins, Caroline Collange, and Fernando

Magno Quintão Pereira. 2012. Divergence Analysis with Affine

Constraints. In 2012 IEEE 24th International Symposium on Com-
puter Architecture and High Performance Computing. 67–74. https:
//doi.org/10.1109/SBAC-PAD.2012.22

[26] Robert Endre Tarjan. 1981. Fast Algorithms for Solving Path Problems.

J. ACM 28, 3 (July 1981), 594–614. https://doi.org/10.1145/322261.
322273

[27] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Eval-

uating Value-Graph Translation Validation for LLVM. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (San Jose, California, USA) (PLDI ’11). As-
sociation for Computing Machinery, New York, NY, USA, 295–305.

https://doi.org/10.1145/1993498.1993533
[28] Peng Tu and David Padua. 1995. Efficient Building and Placing of

Gating Functions. In Proceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation (La Jolla, Cali-

fornia, USA) (PLDI ’95). Association for Computing Machinery, New

York, NY, USA, 47–55. https://doi.org/10.1145/207110.207115
[29] Peng Tu and David Padua. 1995. Gated SSA-Based Demand-Driven

Symbolic Analysis for Parallelizing Compilers. In Proceedings of the
9th International Conference on Supercomputing (Barcelona, Spain)

(ICS ’95). Association for Computing Machinery, New York, NY, USA,

414–423. https://doi.org/10.1145/224538.224648
[30] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation

with Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2
(April 1991), 181–210. https://doi.org/10.1145/103135.103136

Received 2022-09-21; accepted 2022-11-21

196

https://doi.org/10.1145/73560.73561
https://doi.org/10.1145/2579080
https://doi.org/10.1145/2579080
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1109/tcad.2020.3012866
https://doi.org/10.1109/tcad.2020.3012866
https://doi.org/10.1145/2544137.2544158
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://tel.archives-ouvertes.fr/tel-02963301
https://tel.archives-ouvertes.fr/tel-02963301
https://doi.org/10.29007/96wb
https://doi.org/10.5281/zenodo.6009632
http://coq.inria.fr
http://coq.inria.fr
https://doi.org/10.1007/978-3-030-28483-1_4
https://doi.org/10.1007/978-3-030-28483-1_4
https://doi.org/10.1109/CGO.2015.7054201
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/73560.73562
https://doi.org/10.1109/SBAC-PAD.2012.22
https://doi.org/10.1109/SBAC-PAD.2012.22
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/207110.207115
https://doi.org/10.1145/224538.224648
https://doi.org/10.1145/103135.103136

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background on SSA in CompCertSSA
	3.1 SSA Representation
	3.2 Semantics of SSA

	4 Gated SSA Representation
	4.1 Syntax of GSA
	4.2 Semantics of GSA

	5 Conversion from SSA to GSA
	5.1 Specification of GSA Construction
	5.2 Specification of GSA Predicates
	5.3 Specification for GSA Instructions
	5.4 Specification of Register Renaming
	5.5 Top-Level Correctness Theorem
	5.6 Simulation Relation

	6 Implementation of the GSA Construction within CompCertSSA
	6.1 Generation and Validation of the Predicates
	6.2 Conversion to GSA and Other Compiler Passes
	6.3 Integration with SMTCoq
	6.4 Limitations

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

