
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Formal Verification of High-Level Synthesis

YANN HERKLOTZ, Imperial College London, UK

JAMES D. POLLARD, Imperial College London, UK

NADESH RAMANATHAN, Imperial College London, UK

JOHN WICKERSON, Imperial College London, UK

High-level synthesis (HLS), which refers to the automatic compilation of software into hardware, is rapidly

gaining popularity. In a world increasingly reliant on application-specific hardware accelerators, HLS promises

hardware designs of comparable performance and energy efficiency to those coded by hand in a hardware

description language such as Verilog, while maintaining the convenience and the rich ecosystem of software

development. However, current HLS tools cannot always guarantee that the hardware designs they produce are

equivalent to the software they were given, thus undermining any reasoning conducted at the software level.

Furthermore, there is mounting evidence that existing HLS tools are quite unreliable, sometimes generating

wrong hardware or crashing when given valid inputs.

To address this problem, we present the first HLS tool that is mechanically verified to preserve the behaviour

of its input software. Our tool, called Vericert, extends the CompCert verified C compiler with a new hardware-

oriented intermediate language and a Verilog back end, and has been proven correct in Coq. Vericert supports

most C constructs, including all integer operations, function calls, local arrays, structs, unions, and general

control-flow statements. An evaluation on the PolyBench/C benchmark suite indicates that Vericert generates

hardware that is around an order of magnitude slower (only around 2× slower in the absence of division) and

about the same size as hardware generated by an existing, optimising (but unverified) HLS tool.

Additional Key Words and Phrases: CompCert, Coq, high-level synthesis, C, Verilog

1 INTRODUCTION
Can you trust your high-level synthesis tool? As latency, throughput, and energy efficiency become

increasingly important, custom hardware accelerators are being designed for numerous applications.

Alas, designing these accelerators can be a tedious and error-prone process using a hardware

description language (HDL) such as Verilog. An attractive alternative is high-level synthesis (HLS),
in which hardware designs are automatically compiled from software written in a high-level

language like C. Modern HLS tools such as LegUp [Canis et al. 2011], Vivado HLS [Xilinx 2020],

Intel i++ [Intel 2020a], and Bambu HLS [Pilato and Ferrandi 2013] promise designs with comparable

performance and energy-efficiency to those hand-written in an HDL [Gauthier and Wadood 2020;

Homsirikamol and Gaj 2014; Pelcat et al. 2016], while offering the convenient abstractions and rich

ecosystems of software development. But existing HLS tools cannot always guarantee that the

hardware designs they produce are equivalent to the software they were given, and this undermines

any reasoning conducted at the software level.

Indeed, there are reasons to doubt that HLS tools actually do always preserve equivalence. For
instance, Vivado HLS has been shown to apply pipelining optimisations incorrectly

1
or to silently

generate wrong code should the programmer stray outside the fragment of C that it supports.
2

Meanwhile, Lidbury et al. [2015] had to abandon their attempt to fuzz-test Altera’s (now Intel’s)

1
https://bit.ly/vivado-hls-pipeline-bug

2
https://bit.ly/vivado-hls-pointer-bug

Authors’ addresses: YannHerklotz, Imperial College London, UK, yann.herklotz15@imperial.ac.uk; James D. Pollard, Imperial

College London, UK, james.pollard16@imperial.ac.uk; Nadesh Ramanathan, Imperial College London, UK, n.ramanathan14@

imperial.ac.uk; John Wickerson, Imperial College London, UK, j.wickerson@imperial.ac.uk.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://bit.ly/vivado-hls-pipeline-bug
https://bit.ly/vivado-hls-pointer-bug
https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

OpenCL compiler since it “either crashed or emitted an internal compiler error” on so many of

their test inputs. More recently, Herklotz et al. [2021] fuzz-tested three commercial HLS tools

using Csmith [Yang et al. 2011], and despite restricting the generated programs to the C fragment

explicitly supported by all the tools, they still found that on average 2.5% of test cases were compiled

to designs that behaved incorrectly.

Existing workarounds. Aware of the reliability shortcomings of HLS tools, hardware designers

routinely check the generated hardware for functional correctness. This is commonly done by

simulating the generated design against a large test-bench. But unless the test-bench covers all

inputs exhaustively – which is often infeasible – there is a risk that bugs remain.

One alternative is to use translation validation [Pnueli et al. 1998] to prove equivalence between

the input program and the output design. Translation validation has been successfully applied

to several HLS optimisations [Banerjee et al. 2014; Chouksey and Karfa 2020; Chouksey et al.

2019; Karfa et al. 2006; Youngsik Kim et al. 2004]. Nevertheless, it is an expensive task, especially

for large designs, and it must be repeated every time the compiler is invoked. For example, the

translation validation for Catapult C [Mentor 2020] may require several rounds of expert ‘adjust-

ments’ [Chauhan 2020, p. 3] to the input C program before validation succeeds. And even when it

succeeds, translation validation does not provide watertight guarantees unless the validator itself

has been mechanically proven correct [e.g. Tristan and Leroy 2008], which has not been the case in

HLS tools to date.

Our position is that none of the above workarounds are necessary if the HLS tool can simply be

trusted to work correctly.

Our solution. We have designed a new HLS tool in the Coq theorem prover and proved that any

output design it produces always has the same behaviour as its input program. Our tool, called

Vericert, is automatically extracted to an OCaml program from Coq, which ensures that the object of

the proof is the same as the implementation of the tool. Vericert is built by extending the CompCert

verified C compiler [Leroy 2009] with a new hardware-specific intermediate language and a Verilog

back end. It supports most C constructs, including integer operations, function calls (which are all

inlined), local arrays, structs, unions, and general control-flow statements, but currently excludes

support for case statements, function pointers, recursive function calls, non-32-bit integers, floats,

and global variables.

Contributions and Outline. The contributions of this paper are as follows:

• We present Vericert, the first mechanically verified HLS tool that compiles C to Verilog. In

Section 2, we describe the design of Vericert, including a few optimisations related to memory

accesses and division.

• We state the correctness theorem of Vericert with respect to an existing semantics for Verilog

due to Lööw and Myreen [2019]. In Section 3, we describe how we extended this semantics to

make it suitable as an HLS target. We also describe how the Verilog semantics is integrated

into CompCert’s language execution model and its framework for performing simulation

proofs. A mapping of CompCert’s infinite memory model onto a finite Verilog array is also

described.

• In Section 4, we describe how we proved the correctness theorem. The proof follows standard

CompCert techniques – forward simulations, intermediate specifications, and determinism

results – but we encountered several challenges peculiar to our hardware-oriented setting.

These include handling discrepancies between the byte-addressed memory assumed by the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Formal Verification of HLS 1:3

input software and the word-addressed memory that we implement in the output hard-

ware, different handling of unsigned comparisons between C and Verilog, and carefully

implementing memory reads and writes so that these behave properly as a RAM in hardware.

• In Section 5, we evaluate Vericert on the PolyBench/C benchmark suite [Pouchet 2020],

and compare the performance of our generated hardware against an existing, unverified

HLS tool called LegUp [Canis et al. 2011]. We show that Vericert generates hardware that

is 27× slower (2× slower in the absence of division) and 1.1× larger than that generated by

LegUp. This performance gap can be largely attributed to Vericert’s current lack of support

for instruction-level parallelism and the absence of an efficient, pipelined division operator.

We intend to close this gap in the future by introducing (and verifying) HLS optimisations of

our own, such as scheduling and memory analysis.

Vericert is fully open source and available online.

https://github.com/ymherklotz/vericert

2 DESIGNING A VERIFIED HLS TOOL
This section describes the main architecture of the HLS tool, and the way in which the Verilog

back end was added to CompCert. This section also covers an example of converting a simple C

program into hardware, expressed in the Verilog language.

Choice of source language. C was chosen as the source language as it remains the most common

source language amongst production-quality HLS tools [Canis et al. 2011; Intel 2020a; Pilato and

Ferrandi 2013; Xilinx 2020]. This, in turn, may be because it is “[t]he starting point for the vast

majority of algorithms to be implemented in hardware” [Gajski et al. 2010], lending a degree of

practicality. The availability of CompCert [Leroy 2009] also provides a solid basis for formally

verified C compilation. We considered Bluespec [Nikhil 2004], but decided that although it “can

be classed as a high-level language” [Greaves 2019], it is too hardware-oriented to be suitable for

traditional HLS. We also considered using a language with built-in parallel constructs that map

well to parallel hardware, such as occam [Page and Luk 1991], Spatial [Koeplinger et al. 2018] or

Scala [Bachrach et al. 2012].

Choice of target language. Verilog [IEEE Std 1364 2006] is an HDL that can be synthesised into

logic cells which can either be placed onto a field-programmable gate array (FPGA) or turned into

an application-specific integrated circuit (ASIC). Verilog was chosen as the output language for

Vericert because it is one of the most popular HDLs and there already exist a few formal semantics

for it that could be used as a target [Lööw et al. 2019; Meredith et al. 2010]. Bluespec, previously

ruled out as a source language, is another possible target and there exists a formally verified

translation to circuits using Kôika [Bourgeat et al. 2020].

Choice of implementation language. We chose Coq as the implementation language because of its

mature support for code extraction; that is, its ability to generate OCaml programs directly from

the definitions used in the theorems. We note that other authors have had some success reasoning

about the HLS process using other theorem provers such as Isabelle [Ellis 2008]. CompCert [Leroy

2009] was chosen as the front end because it has a well established framework for simulation proofs

about intermediate languages, and it already provides a validated C parser [Jourdan et al. 2012]. The

Vellvm framework [Zhao et al. 2012] was also considered because several existing HLS tools are

already LLVM-based, but additional work would be required to support a high-level language like C

as input. The .NET framework has been used as a basis for other HLS tools, such as Kiwi [Greaves

and Singh 2008], and LLHD [Schuiki et al. 2020] has been recently proposed as an intermediate

language for hardware design, but neither are suitable for us because they lack formal semantics.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/ymherklotz/vericert

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

Clight · · · CminorSel 3AC LTL aarch64 (∼ 12 kloc)

x86 (∼ 14 kloc)

· · ·

· · ·

HTL Verilog

CompCert

Vericert

∼ 27 kloc ∼ 46 kloc

∼ 17 kloc

RAM

insertion

Fig. 1. Vericert as a Verilog back end to CompCert. For scale, the approximate lines of code (kloc) are shown
for Vericert, as well as for the front end and back end of CompCert, including any comments and whitespace.

Architecture of Vericert. The main work flow of Vericert is given in Figure 1, which shows those

parts of the translation that are performed in CompCert, and those that have been added. This

includes translations to two new intermediate languages added in Vericert, HTL and Verilog, as

well as an additional optimisation pass labelled as “RAM insertion”.

CompCert translates Clight
3
input into assembly output via a sequence of intermediate languages;

we must decide which of these ten languages is the most suitable starting point for the HLS-specific

translation stages.

We select CompCert’s three-address code (3AC)
4
as the starting point. Branching off before this

point (at CminorSel or earlier) denies CompCert the opportunity to perform optimisations such

as constant propagation and dead code elimination, which, despite being designed for software

compilers, have been found useful in HLS tools as well [Cong et al. 2011]. And if we branch off

after this point (at LTL or later) then CompCert has already performed register allocation to reduce

the number of registers and spill some variables to the stack; this transformation is not required in

HLS because there are many more registers available, and these should be used instead of RAM

whenever possible.

3AC is also attractive because it is the closest intermediate language to LLVM IR, which is used by

several existing HLS compilers. It has an unlimited number of pseudo-registers, and is represented

as a control flow graph (CFG) where each instruction is a node with links to the instructions that

can follow it. One difference between LLVM IR and 3AC is that 3AC includes operations that

are specific to the chosen target architecture; we chose to target the x86_32 backend because it

generally produces relatively dense 3AC thanks to the availability of complex addressing modes.

2.1 An introduction to Verilog
This section will introduce Verilog for readers who may not be familiar with the language, concen-

trating on the features that are used in the output of Vericert. Verilog is a hardware description

language (HDL) and is used to design hardware ranging from complete CPUs that are eventually

produced as an integrated circuit, to small application-specific accelerators that are placed on an

FPGA. Verilog is a popular language because it allows for fine-grained control over the hardware,

and also provides high-level constructs to simplify the development.

3
A deterministic subset of C with pure expressions.

4
This is known as register transfer language (RTL) in the CompCert literature. ‘3AC’ is used in this paper instead to avoid

confusion with register-transfer level (RTL), which is another name for the final hardware target of the HLS tool.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Formal Verification of HLS 1:5

1 module main(input rst, input y, input clk,
2 output reg z);
3 reg x, state;
4 always @(posedge clk)
5 case (state)
6 1'b0: x <= y;
7 1'b1: begin x <= 1'b0; z <= x; end
8 endcase
9 always @(posedge clk)
10 if (rst) state <= 1'b0;
11 else case (state)
12 1'b0: if (y) state <= 1'b1;
13 else state <= 1'b0;
14 1'b1: state <= 1'b0;
15 endcase
16 endmodule

S0

S1

S2

x0/1 1x/1

01/x

xx/1
01/1

Fig. 2. A simple state machine implemented in Verilog, with its diagrammatic representation on the right,
where the x’s stand for don’t cares and each transition is labelled with the values for the rst, y and output z.

Verilog behaves quite differently to standard software programming languages due to it having

to express the parallel nature of hardware. The basic construct to achieve this is the always-block,

which is a collection of assignments that are executed every time some event occurs. In the case of

Vericert, this event is either a positive (rising) or a negative (falling) clock edge. All always-blocks

triggering on the same event are executed in parallel. Always-blocks can also express control-flow

using if-statements and case-statements.

A simple state machine can be implemented as shown in Figure 2. At every positive edge of the

clock (clk), both of the always-blocks will trigger simultaneously. The first always-block controls

the values in the register x and the output z, while the second always-block controls the next

state the state machine should go to. When the state is 0, x will be assigned to the input y using
nonblocking assignment, denoted by <=. Nonblocking assignment assigns registers in parallel at

the end of the clock cycle, rather than sequentially throughout the always-block. In the second

always-block, the input ywill be checked, and if it’s high it will move on to the next state, otherwise

it will stay in the current state. When state is 1, the first always-block will reset the value of x
and then set z to the original value of x, since nonblocking assignment does not change its value

until the end of the clock cycle. Finally, the last always-block will set the state to be 0 again.

2.2 Translating C to Verilog, by example
Figure 3 illustrates the translation of a simple program that stores and retrieves values from an

array. In this section, we describe the stages of the Vericert translation, referring to this program as

an example.

2.2.1 Translating C to 3AC. The first stage of the translation uses unmodified CompCert to trans-

form the C input, shown in Figure 3a, into a 3AC intermediate representation, shown in Figure 3b.

As part of this translation, function inlining is performed on all functions, which allows us to

support function calls without having to support the Icall 3AC instruction. Although the duplica-

tion of the function bodies caused by inlining can increase the area of the hardware, it can have

a positive effect on latency and is therefore a common HLS optimisation [Noronha et al. 2017].

Inlining precludes support for recursive function calls, but this feature is not supported in most

other HLS tools either [Thomas 2016].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

1 int main() {
2 int x[2] = {3, 6};
3 int i = 1;
4 return x[i];
5 }

(a) Example C code passed to
Vericert.

1 main() {
2 x5 = 3
3 int32[stack(0)] = x5
4 x4 = 6
5 int32[stack(4)] = x4
6 x1 = 1
7 x3 = stack(0) (int)
8 x2 = int32[x3 + x1
9 * 4 + 0]
10 return x2
11 }

(b) 3AC produced by the Comp-
Cert front-end without any opti-
misations.

1 module main(reset, clk, finish, return_val);
2 input [0:0] reset, clk;
3 output reg [0:0] finish = 0;
4 output reg [31:0] return_val = 0;
5 reg [31:0] reg_3 = 0, addr = 0, d_in = 0, reg_5 = 0, wr_en = 0;
6 reg [0:0] en = 0, u_en = 0;
7 reg [31:0] state = 0, reg_2 = 0, reg_4 = 0, d_out = 0, reg_1 = 0;
8 reg [31:0] stack [1:0];
9 // RAM interface
10 always @(negedge clk)
11 if ({u_en != en}) begin
12 if (wr_en) stack[addr] <= d_in;
13 else d_out <= stack[addr];
14 en <= u_en;
15 end
16 // Data-path
17 always @(posedge clk)
18 case (state)
19 32'd11: reg_2 <= d_out;
20 32'd8: reg_5 <= 32'd3;
21 32'd7: begin u_en <= (~ u_en); wr_en <= 32'd1;
22 d_in <= reg_5; addr <= 32'd0; end
23 32'd6: reg_4 <= 32'd6;
24 32'd5: begin u_en <= (~ u_en); wr_en <= 32'd1;
25 d_in <= reg_4; addr <= 32'd1; end
26 32'd4: reg_1 <= 32'd1;
27 32'd3: reg_3 <= 32'd0;
28 32'd2: begin u_en <= (~ u_en); wr_en <= 32'd0;
29 addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}; end
30 32'd1: begin finish = 32'd1; return_val = reg_2; end
31 default: ;
32 endcase
33 // Control logic
34 always @(posedge clk)
35 if ({reset == 32'd1}) state <= 32'd8;
36 else case (state)
37 32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
38 32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
39 32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
40 32'd6: state <= 32'd5; 32'd1: ;
41 32'd5: state <= 32'd4; default: ;
42 endcase
43 endmodule

(c) Verilog produced by Vericert. It demonstrates the instantiation of
the RAM (lines 9–15), the data-path (lines 16–32) and the control logic
(lines 33–42).

Fig. 3. Translating a simple program from C to Verilog.

2.2.2 Translating 3AC to HTL. The next translation is from 3AC to a new hardware translation

language (HTL). This involves going from a CFG representation of the computation to a finite state

machine with data-path (FSMD) representation [Hwang et al. 1999]. The core idea of the FSMD

representation is that it separates the control flow from the operations on the memory and registers.

Hence, an HTL program consists of two maps from states to Verilog statements: the control logic
map, which expresses state transitions, and the data-path map, which expresses computations.

Figure 4 shows the resulting FSMD architecture. The right-hand block is the control logic that

computes the next state, while the left-hand block updates all the registers and RAM based on the

current program state.

The HTL language was mainly introduced to make it easier to prove the translation from 3AC to

Verilog, as these languages have very different semantics. It serves as an intermediate language

with similar semantics to 3AC at the top level, using maps to represents what to execute at every

state, and similar semantics to Verilog at the low level by already using Verilog statements instead

of more abstract instructions. Compared to plain Verilog, HTL is simpler to manipulate and analyse,

thereby making it easier to prove optimisations like proper RAM insertion.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Formal Verification of HLS 1:7

Data-path Control Logic

Next State FSM

8 7 6 5 4 3 2 1

11

Current State

cl
k

rs
t

Update

RAM

state

fi
ni
sh
ed

re
tu
rn
_v
al

cl
k

rs
t

u_en

wr_en

addr

d_in

d_out

u_en

wr_en

addr

d_in

d_out

0

1

Registers

reg_1

reg_2

reg_3

reg_4

reg_5

Fig. 4. The FSMD for the example shown in Figure 3, split into a data-path and control logic for the next
state calculation. The Update block takes the current state, current values of all registers and at most one
value stored in the RAM, and calculates a new value that can either be stored back in the or in a register.

Translating memory. Typically, HLS-generated hardware consists of a sea of registers and RAMs.

This memory view is very different from the C memory model, so we perform the following

translation from CompCert’s abstract memory model to a concrete RAM. Variables that do not have

their address taken are kept in registers, which correspond to the registers in 3AC. All address-taken

variables, arrays, and structs are kept in RAM. The stack of the main function becomes an unpacked

array of 32-bit integers representing the RAM block. Any loads and stores are temporarily translated

to direct accesses to this array, where each address has its offset removed and is divided by four. In

a separate HTL-to-HTL conversion, these direct accesses are then translated to proper loads and

stores that use a RAM interface to communicate with the RAM, shown on lines 21, 24 and 28 of

Figure 3c. This pass inserts a RAM block with the interface around the unpacked array. Without

this interface and without the RAM block, the synthesis tool processing the Verilog hardware

description would not identify the array as a RAM, and would instead implement it using many

registers. This interface is shown on lines 9–15 in the Verilog code in Figure 3c. A high-level

overview of the architecture and of the RAM interface can be seen in Figure 4.

Translating instructions. Most 3AC instructions correspond to hardware constructs. For example,

line 2 in Figure 3b shows a 32-bit register x5 being initialised to 3, after which the control flow

moves execution to line 3. This initialisation is also encoded in the Verilog generated from HTL at

state 8 in both the control logic and data-path always-blocks, shown at lines 33 and 16 respectively

in Figure 3c. Simple operator instructions are translated in a similar way. For example, the add

instruction is just translated to the built-in add operator, similarly for the multiply operator. All

32-bit instructions can be translated in this way, but some special instructions require extra care.

One such is the Oshrximm instruction, which is discussed further in Section 2.3.3. Another is the

Oshldimm instruction, which is a left rotate instruction that has no Verilog equivalent and therefore

has to be implemented in terms of other operations and proven to be equivalent. The only 32-bit

instructions that we do not translate are those related to function calls (Icall, Ibuiltin, and
Itailcall), because we enable inlining by default.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

2.2.3 Translating HTL to Verilog. Finally, we have to translate the HTL code into proper Verilog.

The challenge here is to translate our FSMD representation into a Verilog AST. However, as all

the instructions in HTL are already expressed as Verilog statements, only the top-level data-path

and control logic maps need to be translated to valid Verilog case-statements. We also require

declarations for all the variables in the program, as well as declarations of the inputs and outputs

to the module, so that the module can be used inside a larger hardware design. In addition to

translating the maps of Verilog statements, an always-block that will behave like the RAM also has

to be created, which is only modelled abstractly at the HTL level. Figure 3c shows the final Verilog

output that is generated for our example.

Although this translation seems quite straightforward, proving that this translation is correct is

complex. All the implicit assumptions that were made in HTL need to be translated explicitly to

Verilog statements and it needs to be shown that these explicit behaviours are equivalent to the

assumptions made in the HTL semantics. One main example of this is proving that specification

of the RAM in HTL does indeed behave the same as its Verilog implementation. We discuss these

proofs in upcoming sections.

2.3 Optimisations
Although we would not claim that Vericert is a proper ‘optimising’ HLS compiler yet, we have

nonetheless made several design choices that aim to improve the quality of the hardware designs it

produces.

2.3.1 Byte- and word-addressable memories. One big difference between C and Verilog is how

memory is represented. Although Verilog arrays use similar syntax to C arrays, they must be

treated quite differently. To make loads and stores as efficient as possible, the RAM needs to be

word-addressable, which means that an entire integer can be loaded or stored in one clock cycle.

However, the memory model that CompCert uses for its intermediate languages is byte-addre-

ssable [Blazy and Leroy 2005]. If a byte-addressable memory was used in the target hardware,

which is closer to CompCert’s memory model, then a load and store would instead take four clock

cycles, because a RAM can only perform one read and write per clock cycle. It therefore has to

be proven that the byte-addressable memory behaves in the same way as the word-addressable

memory in hardware. Any modifications of the bytes in the CompCert memory model also have to

be shown to modify the word-addressable memory in the same way. Since only integer loads and

stores are currently supported in Vericert, it follows that the addresses given to the loads and stores

will be multiples of four. If that is the case, then the translation from byte-addressed memory to

word-addressed memory can be done by dividing the address by four.

2.3.2 Implementation of RAM interface. The simplest way to implement loads and stores in Vericert

would be to access the Verilog array directly from within the data-path (i.e., inside the always-block

on lines 16–32 of Figure 3c). This would be correct, but when a Verilog array is accessed at several

program points, the synthesis tool is unlikely to detect that it can be implemented as a RAM block,

and will resort to using lots of registers instead, ruining the circuit’s area and performance. To avert

this, we arrange that the data-path does not access memory directly, but simply sets the address it

wishes to access and then toggles the u_en flag. This activates the RAM interface (lines 9–15 of

Figure 3c) on the next falling clock edge, which performs the requested load or store. By factoring

all the memory accesses out into a separate interface like this, we ensure that the underlying array

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Formal Verification of HLS 1:9

is only accessed from a single program point in the Verilog code, and thus ensure that the synthesis

tool will correctly infer a RAM block.
5

Therefore, an extra compiler pass is added from HTL to HTL to extract all the direct accesses to

the Verilog array and replace them by signals that access the RAM interface in a separate always-

block. The translation is performed by going through all the instructions and replacing each load

and store expression in turn. Stores can simply be replaced by the necessary wires directly. Loads

are a little more subtle: loads that use the RAM interface take two clock cycles where a direct load

from an array takes only one, so this pass inserts an extra state after each load.

There are two interesting parts to the inserted RAM interface. Firstly, the memory updates are

triggered on the negative (falling) edge of the clock, out of phase with the rest of the design which

is triggered on the positive (rising) edge of the clock. The advantage of this is that instead of loads

and stores taking three clock cycles and two clock cycles respectively, they only take two clock

cycles and one clock cycle instead, greatly improving their performance. Using the negative edge

of the clock is widely supported by synthesis tools, and does not affect the maximum frequency of

the final design.

Secondly, the logic in the enable signal of the RAM (en != u_en) is also atypical in hardware

designs. Enable signals are normally manually controlled and inserted into the appropriate states,

by using a check like the following in the RAM: en == 1. This means that the RAM only turns on

when the enable signal is set. However, to make the proof simpler and to not have to reason about

possible side effects introduced by the RAM being enabled but not used, a RAM which disables

itself after every use would be ideal. One method for implementing this would be to insert an extra

state after each load or store that disables the RAM, but this extra state would eliminate the speed

advantage of the negative-edge-triggered RAM. Another method would be to determine the next

state after each load or store and disable the RAM in that state, but this could quickly become

complicated, especially in the case where the next state also contains a memory operation, and

hence the disable signal should not be added. The method we ultimately chose was to have the

RAM become enabled not when the enable signal is high, but when it toggles its value. This can
be arranged by keeping track of the old value of the enable signal in en and comparing it to the

current value u_en set by the data-path. When the values are different, the RAM gets enabled, and

then en is set to the value of u_en. This ensures that the RAM will always be disabled straight after

it was used, without having to insert or modify any other states.

Figure 5 gives an example of how the RAM interface behaves when values are loaded and stored.

2.3.3 Implementing the Oshrximm instruction. Many of the CompCert instructions map well to

hardware, but Oshrximm (efficient signed division by a power of two using a logical shift) is

expensive if implemented naïvely. The problem is that in CompCert it is specified as a signed

division:

Oshrximm x y = round_towards_zero

(x
2
y

)
(where x,y ∈ Z, 0 ≤ y < 31, and −231 ≤ x < 2

31
) and instantiating divider circuits in hardware is

well known to cripple performance. Moreover, since Vericert requires the result of a divide operation

to be ready within a single clock cycle, the divide circuit needs to be entirely combinational. This

is inefficient in terms of area, but also in terms of latency, because it means that the maximum

frequency of the hardware must be reduced dramatically so that the divide circuit has enough time

to finish. It should therefore be implemented using a sequence of shifts.

5
Interestingly, the Verilog code shown for the RAM interface must not be modified, because the synthesis tool will only

generate a RAM when the code matches a small set of specific patterns.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

clk

u_en u_en u_en

addr 3

wr_en

en u_en u_en

d_out 0xDEADBEEF

r 0xDEADBEEF

1 2 3

(a) Timing diagram for loads. At time 1, the u_en
signal is toggled to enable the RAM. At time 2, d_out
is set to the value stored at the address in the RAM,
which is finally assigned to the register r at time 3.

clk

u_en u_en u_en

addr 3

wr_en

d_in 0xDEADBEEF

en u_en u_en

stack[addr] 0xDEADBEEF

1 2

(b) Timing diagram for stores. At time 1, the u_en
signal is toggled to enable the RAM, and the address
addr and the data to store d_in are set. On the neg-
ative edge at time 2, the data is stored into the RAM.

Fig. 5. Timing diagrams showing the execution of loads and stores over multiple clock cycles.

CompCert eventually performs a translation from this representation into assembly code which

uses shifts to implement the division, however, the specification of the instruction in 3AC itself still

uses division instead of shifts, meaning this proof of the translation cannot be reused. In Vericert,

the equivalence of the representation in terms of divisions and shifts is proven over the integers and

the specification, thereby making it simpler to prove the correctness of the Verilog implementation

in terms of shifts.

3 A FORMAL SEMANTICS FOR VERILOG
This section describes the Verilog semantics that was chosen for the target language, including the

changes that were made to the semantics to make it a suitable HLS target. The Verilog standard

is quite large [IEEE Std 1364 2006; IEEE Std 1364.1 2005], but the syntax and semantics can be

reduced to a small subset that Vericert needs to target. This section also describes how Vericert’s

representation of memory differs from CompCert’s memory model.

The Verilog semantics we use is ported to Coq from a semantics written in HOL4 by Lööw and

Myreen [2019] and used to prove the translation from HOL4 to Verilog [Lööw et al. 2019]. This

semantics is quite practical as it is restricted to a small subset of Verilog, which can nonetheless be

used to model the hardware constructs required for HLS. The main features that are excluded are

continuous assignment and combinational always-blocks; these are modelled in other semantics

such as that by Meredith et al. [2010].

The semantics of Verilog differs from regular programming languages, as it is used to describe

hardware directly, which is inherently parallel, rather than an algorithm, which is usually sequential.

The main construct in Verilog is the always-block. A module can contain multiple always-blocks,

all of which run in parallel. These always-blocks further contain statements such as if-statements

or assignments to variables. We support only synchronous logic, which means that the always-block

is triggered on (and only on) the positive or negative edge of a clock signal.

The semantics combines the big-step and small-step styles. The overall execution of the hardware

is described using a small-step semantics, with one small step per clock cycle; this is appropriate

because hardware is routinely designed to run for an unlimited number of clock cycles and the

big-step style is ill-suited to describing infinite executions. Then, within each clock cycle, a big-step

semantics is used to execute all the statements. An example of a rule for executing an always-block

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Formal Verification of HLS 1:11

that is triggered at the positive edge of the clock is shown below, where Σ is the state of the registers

in the module and s is the statement inside the always-block:

Always

(Σ, s) ↓stmnt Σ
′

(Σ, always @(posedge clk) s) ↓
always

+ Σ′

This rule says that assuming the statement s in the always-block runs with state Σ and produces

the new state Σ′
, the always-block will result in the same final state.

Two types of assignments are supported in always-blocks: nonblocking and blocking assignment.

Nonblocking assignments all take effect simultaneously at the end of the clock cycle, while blocking

assignments happen instantly so that later assignments in the clock cycle can pick them up. To

model both of these assignments, the state Σ has to be split into two maps: Γ, which contains the

current values of all variables and arrays, and ∆, which contains the values that will be assigned at

the end of the clock cycle. Σ can therefore be defined as follows: Σ = (Γ,∆). Nonblocking assignment

can therefore be expressed as follows:

Nonblocking Reg

name d = OK n (Γ, e) ↓expr v

((Γ,∆),d <= e) ↓stmnt (Γ,∆[n 7→ v])

where assuming that ↓expr evaluates an expression e to a value v , the nonblocking assignment

d <= e updates the future state of the variable d with value v .
Finally, the following rule dictates how the whole module runs in one clock cycle:

Module

(Γ, ϵ, ®m) ↓module (Γ
′,∆′)

(Γ, module main(...); ®m endmodule) ↓program (Γ′ // ∆′)

where Γ is the initial state of all the variables, and ®m is a list of variable declarations and always-

blocks that ↓module evaluates sequentially to obtain (Γ′,∆′). The final state is obtained by merging

these maps using the // operator, which gives priority to the right-hand operand in a conflict. This

rule ensures that the nonblocking assignments overwrite at the end of the clock cycle any blocking

assignments made during the cycle.

3.1 Changes to the Semantics
Five changes were made to the semantics proposed by Lööw and Myreen [2019] to make it suitable

as a HLS target.

Adding array support. The main change is the addition of support for arrays, which are needed

to model RAM in Verilog. RAM is needed to model the stack in C efficiently, without having to

declare a variable for each possible stack location. Consider the following Verilog code:

1 reg [31:0] x[1:0];
2 always @(posedge clk) begin x[0] = 1; x[1] <= 1; end

which modifies one array element using blocking assignment and then a second using nonblocking

assignment. If the existing semantics were used to update the array, then during the merge, the

entire array x from the nonblocking association map would replace the entire array from the

blocking association map. This would replace x[0] with its original value and therefore behave

incorrectly. Accordingly, we modified the maps so they record updates on a per-element basis. Our

state Γ is therefore split up into Γr for instantaneous updates to variables, and Γa for instantaneous

updates to arrays; ∆ is split similarly. The merge function then ensures that only the modified

indices get updated when Γa is merged with the nonblocking map equivalent ∆a .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

Step

Γr [rst] = 0 Γr [fin] = 0 (m, (Γr , Γa)) ↓program (Γ′r , Γ
′
a)

State sf m Γr [σ] Γr Γa −→ State sf m Γ′r [σ] Γ′r Γ′a
Finish

Γr [fin] = 1

State sf m σ Γr Γa −→ Returnstate sf Γr [ret]
Call

Callstate sf m ®r −→ State sf m n ((init_params ®r a)[σ 7→ n, fin 7→ 0, rst 7→ 0]) ϵ

Return

Returnstate (Stackframe r m pc Γr Γa :: sf) v −→ State sf m pc (Γr [σ 7→ pc, r 7→ v]) Γa

Fig. 6. Top-level small-step semantics for Verilog modules in CompCert’s computational framework.

Adding negative edge support. To reason about circuits that execute on the negative edge of the

clock (such as our RAM interface described in Section ??), support for negative-edge-triggered
always-blocks was added to the semantics. This is shown in the modifications of the Module rule

shown below:

Module

(Γ, ϵ, ®m) ↓
module

+ (Γ′,∆′) (Γ′ // ∆′, ϵ, ®m) ↓module
− (Γ′′,∆′′)

(Γ, module main(...); ®m endmodule) ↓program (Γ′′ // ∆′′)

The main execution of the module ↓module is split into ↓module
+ and ↓module

− , which are rules that

only execute always-blocks triggered at the positive and at the negative edge respectively. The

positive-edge-triggered always-blocks are processed in the same way as in the original Module

rule. The output maps Γ′ and ∆′
are then merged and passed as the blocking assignments map

into the negative edge execution, so that all the blocking and nonblocking assignments are present.

Finally, all the negative-edge-triggered always-blocks are processed and merged to give the final

state.

Adding declarations. Explicit support for declaring inputs, outputs and internal variables was

added to the semantics to make sure that the generated Verilog also contains the correct declarations.

This adds some guarantees to the generated Verilog and ensures that it synthesises and simulates

correctly.

Removing support for external inputs to modules. Support for receiving external inputs was

removed from the semantics for simplicity, as these are not needed for an HLS target. The main

module in Verilog models the main function in C, and since the inputs to a C function should not

change during its execution, there is no need for external inputs for Verilog modules.

Simplifying representation of bitvectors. Finally, we use 32-bit integers to represent bitvectors

rather than arrays of Booleans. This is because Vericert (currently) only supports types represented

by 32 bits.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Formal Verification of HLS 1:13

3.2 Integrating the Verilog Semantics into CompCert’s Model
The CompCert computation model defines a set of states through which execution passes. In this

subsection, we explain how we extend our Verilog semantics with four special-purpose registers in

order to integrate it into CompCert.

CompCert executions pass through three main states:

State sf m v Γr Γa The main state when executing a function, with stack frame sf, current
modulem, current state v and variable states Γr and Γa .

Callstate sf m ®r The state that is reached when a function is called, with the current stack

frame sf, current modulem and arguments ®r .
Returnstate sf v The state that is reached when a function returns back to the caller, with

stack frame sf and return value v .

To support this computational model, we extend the Verilog module we generate with the

following four registers and a RAM block:

program counter The program counter can be modelled using a register that keeps track of

the state, denoted as σ .
function entry point When a function is called, the entry point denotes the first instruction

that will be executed. This can be modelled using a reset signal that sets the state accordingly,

denoted as rst.
return value The return value can be modelled by setting a finished flag to 1 when the result

is ready, and putting the result into a 32-bit output register. These are denoted as fin and ret
respectively.

stack The function stack can be modelled as a RAM block, which is implemented using an

array in the module, and denoted as stk.
Figure 6 shows the inference rules for moving between the computational states. The first, Step,

is the normal rule of execution. It defines one step in the State state, assuming that the module is

not being reset, that the finish state has not been reached yet, that the current and next state are v
and v ′

, and that the module runs from state Γ to Γ′ using the Step rule. The Finish rule returns the

final value of running the module and is applied when the fin register is set; the return value is

then taken from the ret register.
Note that there is no step from State to Callstate; this is because function calls are not

supported, and it is therefore impossible in our semantics ever to reach a Callstate except for

the initial call to main. So the Call rule is only used at the very beginning of execution; likewise,

the Return rule is only matched for the final return value from the main function. Therefore, in

addition to the rules shown in Figure 6, an initial state and final state need to be defined:

Initial

is_internal (P .main)

initial_state (Callstate [] (P .main) [])

Final

final_state (Returnstate [] n) n

where the initial state is the Callstate with an empty stack frame and no arguments for the main
function of program P , where this main function needs to be in the current translation unit. The

final state results in the program output of value n when reaching a Returnstate with an empty

stack frame.

3.3 Memory Model
The Verilog semantics do not define a memory model for Verilog, as this is not needed for a

hardware description language. There is no preexisting architecture that Verilog will produce; it

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

CompCert’s Memory Model Verilog Memory Representation

0

1

·
·
·

0

1

2

3

4

5

6

DE
AD
BE
EF
12
34
56

· · ·

· · ·

⇒

x[0] = 0xDEADBEEF;

0: Some 00000000
1: Some 12345600
2: Some 00000000
3: Some 00000000
4: Some 00000000
5: Some 00000000
6: Some 00000000

· · ·
N: Some 00000000

0: Some DEADBEEF
1: None
2: None
3: None
4: None
5: None
6: None

· · ·
N: None

Γa ∆a

stack[0] <= 0xDEADBEEF;

Fig. 7. Change in the memory model during the translation of 3AC into HTL. The state of the memories in
each case is right after the execution of the store to memory.

can describe any memory layout that is needed. Instead of having specific semantics for memory,

the semantics only needs to support the language features that can produce these different memory

layouts, these being Verilog arrays. We therefore define semantics for updating Verilog arrays

using blocking and nonblocking assignment. We then have to prove that the C memory model that

CompCert uses matches with the interpretation of arrays used in Verilog. The CompCert memory

model is infinite, whereas our representation of arrays in Verilog is inherently finite. There have

already been efforts to define a general finite memory model for all compiler passes in CompCert,

such as CompCertS [Besson et al. 2018], or to translate to a more concrete finite memory model

such as in CompCertELF [Wang et al. 2020] and CompCertTSO [Ševčík et al. 2013], however, we

define the translation from CompCert’s standard infinite memory model to finite arrays that can

be represented in Verilog, leaving the compiler passes intact. There is therefore no more memory

model in Verilog, and all the interactions to memory are encoded in the hardware itself.

This translation is represented in Figure 7. CompCert defines a map from blocks to maps from

memory addresses to memory contents. Each block represents an area in memory; for example, a

block can represent a global variable or a stack for a function. As there are no global variables, the

main stack can be assumed to be block 0, and this is the only block we translate. Meanwhile, our

Verilog semantics defines two finite arrays of optional values, one for the blocking assignments

map Γa and one for the nonblocking assignments map ∆a. The optional values are present to ensure

correct merging of the two association maps at the end of the clock cycle. The invariant used in

the proofs is that block 0 should be equivalent to the merged representation of the Γa and ∆a maps.

4 PROOF
Now that the Verilog semantics have been adapted to the CompCert model, we are in a position to

formally prove the correctness of our C-to-Verilog compilation. This section describes the main

correctness theorem that was proven and the main ideas behind the proof. The full Coq proof is

available in auxiliary material.

4.1 Main challenges in the proof
The proof of correctness of the Verilog back end is quite different from the usual proofs performed

in CompCert, mainly because of the difference in Verilog semantics compared to the standard

CompCert intermediate languages and because of the translation of the memory model.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of HLS 1:15

• As already mentioned in Section 3.3, because the memory model in our Verilog semantics

is finite and concrete, but the CompCert memory model is more abstract and infinite with

additional bounds, the equivalence of both these models needs to be proven. Moreover, our

memory is word-addressed for efficiency reasons, whereas CompCert’s memory is byte-

addressed.

• Second, the Verilog semantics operates quite differently to the usual intermediate languages

in CompCert. All the CompCert intermediate languages use a map from control-flow nodes

to instructions. An instruction can therefore be selected using an abstract program pointer.

Meanwhile, in the Verilog semantics the whole design is executed at every clock cycle, because

hardware is inherently parallel. The program pointer is part of the design as well, not just

part of an abstract state. This makes the semantics of Verilog simpler, but comparing it to the

semantics of 3AC becomes more challenging, as one has to map the abstract notion of the

state to concrete values in registers.

Together, these differences mean that translating 3AC directly to Verilog is infeasible, as the

differences in the semantics are too large. Instead, HTL, which was introduced in Section 2, bridges

the gap in the semantics between the two languages. HTL still consists of maps, like many of the

other CompCert languages, however, each state corresponds to a Verilog statement.

4.2 Formulating the correctness theorem
The main correctness theorem is analogous to that stated in CompCert [Leroy 2009]: for all Clight

source programs C , if the translation to the target Verilog code succeeds, and C has safe observable

behaviour B when executed, then the target Verilog code will have the same behaviour B. Here, a
‘safe’ execution is one that either converges or diverges, but does not ‘go wrong’. If the program

does admit some wrong behaviour (such as undefined behaviour in C), the correctness theorem

does not apply. A behaviour, then, is either a final state (in the case of convergence) or divergence.

In CompCert, a behaviour is also associated with a trace of I/O events, but since external function

calls are not supported in Vericert, this trace will always be empty.

Theorem 1. For any safe behaviour B, whenever the translation from C succeeds and produces
Verilog V , then V has behaviour B only if C has behaviour B.

∀C,V ,B ∈ Safe, HLS(C) = OK(V) ∧V ⇓ B =⇒ C ⇓ B.

Why is this correctness theorem also the right one for HLS? It could be argued that hardware

inherently runs forever and therefore does not produce a definitive final result. This would mean

that the CompCert correctness theorem would likely not help with proving that the hardware is

actually working correctly, as the behaviour would always be divergent. However, in practice, HLS

does not normally produce the top-level of the design that needs to connect to other components

and would therefore need to run forever. Rather, HLS often produces smaller components that take

an input, execute, and then terminate with an answer. To start the execution of the hardware and

to signal to the HLS component that the inputs are ready, the rst signal is set and unset. Then,

once the result is ready, the fin signal is set and the result value is placed in ret. These signals are
also present in the semantics of execution shown in Figure 6. The correctness theorem therefore

also uses these signals, and the proof shows that once the fin flag is set, the value in ret is correct
according to the semantics of Verilog and Clight. Note that the compiler is allowed to fail and not

produce any output; the correctness theorem only applies when the translation succeeds.

How can we prove this theorem? First, note that the theorem is a ‘backwards simulation’ result

(every target behaviour must also be a source behaviour), following the terminology used in the

CompCert literature [Leroy 2009]. The reverse direction (every source behaviour must also be a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

target behaviour) is not demanded because compilers are permitted to resolve any non-determinism

present in their source programs. However, since Clight programs are all deterministic, as are the

Verilog programs in the fragment we consider, we can actually reformulate the correctness theorem

above as a forwards simulation result (following standard CompCert practice), which makes it

easier to prove.

To prove this forward simulation, it suffices to prove forward simulations between each pair of

consecutive intermediate languages, as these results can be composed to prove the correctness of

the whole HLS tool. The forward simulation from 3AC to HTL is stated in Lemma 1 (Section 4.3),

the forward simulation for the RAM insertion is shown in Lemma 4 (Section 4.4), then the forward

simulation between HTL and Verilog is shown in Lemma 5 (Section 4.5) and finally, the proof that

Verilog is deterministic is given in Lemma 6 (Section 4.6).

4.3 Forward simulation from 3AC to HTL
As HTL is quite far removed from 3AC, this first translation is the most involved and therefore

requires a larger proof, because the translation from 3AC instructions to Verilog statements needs

to be proven correct in this step. In addition to that, the semantics of HTL are also quite different

to the 3AC semantics, as instead of defining small-step semantics for each construct in Verilog, the

semantics are instead defined over one clock cycle and mirror the semantics defined for Verilog.

Lemma 1 shows the result that needs to be proven in this subsection.

Lemma 1 (Forward simulation from 3AC to HTL). We write tr_htl for the translation from
3AC to HTL.

∀c,h,B ∈ Safe, tr_htl(c) = OK(h) ∧ c ⇓ B =⇒ h ⇓ B.

We prove this lemma by first establishing a specification of the translation function tr_htl that

captures its important properties, and then splitting the proof into two parts: one to show that

the translation function does indeed meet its specification, and one to show that the specification

implies the desired simulation result. This strategy is in keeping with standard CompCert practice.

4.3.1 From Implementation to Specification. The specification for the translation of 3AC instruc-

tions into HTL data-path and control logic can be defined by the following predicate:

spec_instr fin ret σ stk i data control

Here, the control and data parameters are the statements that the current 3AC instruction i should
translate to. The other parameters are the special registers defined in Section 3.2. An example of a

rule describing the translation of an arithmetic/logical operation from 3AC is the following:

Iop

tr_op op ®a = OK e

spec_instr fin ret σ stk (Iop op ®a d n) (d <= e) (σ <= n)

Assuming that the translation of the operator op with operands ®a is successful and results in

expression e , the rule describes how the destination register d is updated to e via a non-blocking
assignment in the data path, and how the program counter σ is updated to point to the next CFG

node n via another non-blocking assignment in the control logic.

In the following lemma, spec_htl is the top-level specification predicate, which is built using

spec_instr at the level of instructions.

Lemma 2. If a 3AC program c is translated correctly to an HTL program h, then the specification of
the translation holds.

∀ c h, tr_htl(c) = OK(h) =⇒ spec_htl c h.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Formal Verification of HLS 1:17

4.3.2 From Specification to Simulation. To prove that the specification predicate implies the desired

forward simulation, we must first define a relation that matches each 3AC state to an equivalent

HTL state. This relation also captures the assumptions made about the 3AC code that we receive

from CompCert. These assumptions then have to be proven to always hold assuming the HTL code

was created by the translation algorithm. Some of the assumptions that need to be made about the

3AC and HTL code for a pair of states to match are:

• The 3AC register file R needs to be ‘less defined’ than the HTL register map Γr (written

R ≤ Γr). This means that all entries should be equal to each other, unless a value in R is

undefined, in which case any value can match it.

• The RAM values represented by each Verilog array in Γa need to match the 3AC function’s

stack contents, which are part of the memoryM ; that is:M ≤ Γa .
• The state is well formed, which means that the value of the state register matches the current

value of the program counter; that is: pc = Γr [σ].

We also define the following set I of invariants that must hold for the current state to be valid:

• that all pointers in the program use the stack as a base pointer,

• that any loads or stores to locations outside of the bounds of the stack result in undefined

behaviour (and hence we do not need to handle them),

• that rst and fin are not modified and therefore stay at a constant 0 throughout execution, and

• that the stack frames match.

We can now define the simulation diagram for the translation. The 3AC state can be represented

by the tuple (R,M, pc), which captures the register file, memory, and program counter. The HTL

state can be represented by the pair (Γr , Γa), which captures the states of all the registers and arrays

in the module. Finally, I stands for the other invariants that need to hold for the states to match.

Lemma 3. Given the 3AC state (R,M, pc) and the matching HTL state (Γr , Γa), assuming one step in
the 3AC semantics produces state (R′,M ′, pc′), there exist one or more steps in the HTL semantics that
result in matching states (Γ′r , Γ

′
a). This is all under the assumption that the specification tr_htl holds

for the translation.

R,M, pc Γr , Γa

R′,M ′, pc′ Γ′r , Γ
′
a

I ∧ (R ≤ Γr) ∧ (M ≤ Γa) ∧ (pc = Γr [σ])

+
I ∧ (R′ ≤ Γ′r) ∧ (M ′ ≤ Γ′a) ∧ (pc′ = Γ′r [σ])

Proof sketch. This simulation diagram is proven by induction over the operational semantics

of 3AC, which allows us to find one or more steps in the HTL semantics that will produce the same

final matching state. □

4.4 Forward simulation of RAM insertion
HTL can only represent a single state machine, it is therefore necessary to model the RAM abstractly

to reason about the correctness of replacing the direct read and writes to the array by loads and

stores to a RAM. The specification used to model the RAM is shown in Figure 8, which defines how

the RAM r will behave for all the possible combinations of the input signals.

4.4.1 From implementation to specification. The first step in proving the simulation correct is to

build a specification of the algorithm. The three possibilities of the transformation is that for each

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

Idle

Γr[r.en] = Γr[r.u_en]

((Γr, Γa),∆, r) ↓ram ∆

Load

Γr[r.en] , Γr[r.u_en] Γr[r.wr_en] = 0

((Γr, Γa), (∆r,∆a), r) ↓ram (∆r[r.en 7→ r.u_en, r.d_out 7→ (Γa[r.mem])[r.addr]],∆a)

Store

Γr[r.en] , Γr[r.u_en] Γr[r.wr_en] = 1

((Γr, Γa), (∆r,∆a), r) ↓ram (∆r[r.en 7→ r.u_en],∆a[r.mem 7→ (Γa[r.mem])[r.addr 7→ r.d_in]])

Fig. 8. Specification for the memory implementation in HTL, where r is the RAM, which is then implemented
by equivalent Verilog code.

Verilog statement in the map at location i , either the statement is a load or a store, in which case it

is translated to the equivalent signal representation, otherwise it is not changed. An example of the

specification for the store instruction is shown below, where σ is state register, r is the RAM, d and

c are the input data-path and control logic maps and i is the current state. n is the newly inserted

state which only applies to the translation of loads.

Store Spec

d[i] = (r .mem[e1] <= e2)
t = (r .u_en <= ¬r .u_en; r .wr_en <= 1; r .d_in <= e2; r .addr <= e1)

spec_ram σ r d c d[i 7→ t] c i n

A similar specification is created for the load. We then also prove that the implementation of the

translation proves that the specification holds.

4.4.2 From specification to simulation. Another simulation proof is performed to prove that the

insertion of the RAM is semantics preserving. As in the simulation proof shown in Lemma 3, some

invariants need to be defined, which always hold at the start of the simulation and at the end of the

simulation. The invariants needed for the simulation of the RAM insertion are quite different to

the previous invariants, so we can define these invariants Ir to be the following:

• The association map for arrays Γa always needs to have the same arrays present, and these

arrays should never change in size.

• The RAM should always be disabled at the start of the simulation, and at the end of the

simulation step. This is the reason for why the self-disabling RAM was needed.

The other invariants and assumptions for defining two matching states in HTL are quite similar

to the simulation performed in Lemma 3, such as ensuring that the states have the same value, and

that the values in the registers are less-defined. In particular, the less-defined relation matches up

all the registers, except for the new registers introduced by the RAM.

Lemma 4 (Forward simulation from HTL to HTL after inserting the RAM). Given an HTL
program, the forward simulation relation should hold after inserting the RAM and wiring the load,
store and control signals.

∀h,B ∈ Safe, tr_ram(h) = h′ ∧ h ⇓ B =⇒ h′ ⇓ B.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Formal Verification of HLS 1:19

Coq code OCaml
code

Spec Theorems &
Proofs

Total

Data structures and libraries 280 — — 500 780

Integers and values 98 — 15 968 1081

HTL semantics 50 — 181 65 296

HTL generation 590 — 66 3069 3725

RAM generation 253 — — 2793 3046

Verilog semantics 78 — 431 235 744

Verilog generation 104 — — 486 590

Top-level driver, pretty printers 318 775 — 189 1282

Total 1721 775 693 8355 11544

Table 1. Statistics about the numbers of lines of code in the proof and implementation of Vericert.

4.5 Forward simulation from HTL to Verilog
The HTL-to-Verilog simulation is conceptually simple, as the only transformation is from the map

representation of the code to the case-statement representation. The proof is more involved, as the

semantics of a map structure are quite different to the semantics of the case-statement they are

converted to.

Lemma 5 (Forward simulation fromHTL to Verilog). Wewrite tr_verilog for the translation
from HTL to Verilog. (Note that this translation cannot fail, so we do not need the OK constructor here.)

∀h,V ,B ∈ Safe, tr_verilog(h) = V ∧ h ⇓ B =⇒ V ⇓ B.

Proof sketch. The translation from maps to case-statements is done by turning each node of

the tree into a case-expression with the statements in each being the same. The main difficulty

for the proof is that a random-access structure is transformed into an inductive structure where a

certain number of constructors need to be called to get to the correct case. □

4.6 Deterministic Semantics
The final lemma we need is that the Verilog we generate is deterministic. This result allows us to

replace the forwards simulation we have proved with the backwards simulation we desire.

Lemma 6. If a Verilog program V admits both behaviours B1 and B2, then B1 and B2 must be the
same.

∀V ,B1,B2,V ⇓ B1 ∧V ⇓ B2 =⇒ B1 = B2.

Proof sketch. The Verilog semantics is deterministic because the order of operation of all the

constructs is defined, and there is therefore only one way to evaluate the module and hence only

one possible behaviour. This was proven for the small-step semantics shown in Figure 6. □

4.7 Coq Mechanisation
The lines of code for the implementation and proof of Vericert can be found in Table 1. Overall, it

took about 1.5 person-years to build Vericert – about three person-months on implementation and

15 person-months on proofs. The largest proof is the correctness proof for the HTL generation,

which required equivalence proofs between all integer operations supported by CompCert and

those supported in hardware. From the 3069 lines of proof code in the HTL generation, 1189 are for

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

the correctness proof of just the load and store instructions. These were tedious to prove correct

because of the substantial difference between the memory models used, and the need to prove

properties such as stores outside of the allocated memory being undefined, so that a finite array

could be used. In addition to that, since pointers in HTL and Verilog are represented as integers,

whereas there is a separate ‘pointer’ value in the CompCert semantics, it was painful to reason

about them and many new theorems had to be proven about integers and pointers in Vericert.

Moreover, the second-largest proof of the correct RAM generation includes many proofs about the

extensional equality of array operations, such as merging arrays with different assignments. As the

negative edge implies two merges take place every clock cycle, the proofs about the equality of the

arrays becomes more tedious as well.

Looking at the trusted computing base of Vericert, the Verilog semantics are 431 lines of code.

This, together with the Clight semantics from CompCert, are the only parts of the compiler that need

to be trusted. Compared to the 1721 lines of the implementation that are written in Coq, which are

the verified parts of the HLS tool, this is larger than the 431 lines of Verilog semantics specification,

even if the Clight semantics are added. In addition to that, reading semantics specifications is

simpler than trying to understand algorithms, meaning the trusted base has been successfully

reduced.

5 EVALUATION
Our evaluation is designed to answer the following four research questions.

RQ1 How fast is the hardware generated by Vericert?

RQ2 How area-efficient is the hardware generated by Vericert?

RQ3 How quickly does Vericert translate the C into Verilog?

RQ4 How effective is the correctness theorem in Vericert?

5.1 Experimental Setup
Choice of HLS tool for comparison. We compare Vericert against LegUp 4.0, because it is open-

source and hence easily accessible, but still produces hardware “of comparable quality to a commer-

cial high-level synthesis tool” [Canis et al. 2011]. We also compare against LegUp with different

optimisation levels in an effort to understand which optimisations have the biggest impact on the

performance discrepancies between LegUp and Vericert. The baseline LegUp version has all the

default automatic optimisations turned on. First, we only turn off the LLVM optimisations in LegUp,

to eliminate all the optimisations that are common to standard software compilers, referred to as

‘LegUp no-opt’. Secondly, we also compare against LegUp with LLVM optimisations and operation

chaining turned off, referred to as ‘LegUp no-opt no-chaining’. Operation chaining [Paulin and

Knight 1989; Venkataramani and Goldstein 2007] is an HLS-specific optimisation that combines

data-dependent operations into one clock cycle, and therefore dramatically reduces the number of

cycles, without necessarily decreasing the clock speed.

Choice and preparation of benchmarks. We evaluate Vericert using the PolyBench/C benchmark

suite (version 4.2.1) [Pouchet 2020], which is a collection of 30 numerical kernels. PolyBench/C is

popular in the HLS context [Choi and Cong 2018; Pouchet et al. 2013; Zhao et al. 2017; Zuo et al.

2013], since it has affine loop bounds, making it attractive for streaming computation on FPGA

architectures. We were able to use 27 of the 30 programs; three had to be discarded (correla-
tion, gramschmidt and deriche) because they involve square roots, requiring floats, which we do

not support. We configured PolyBench/C’s parameters so that only integer types are used. We use

PolyBench/C’s smallest datasets for each program to ensure that data can reside within on-chip

memories of the FPGA, avoiding any need for off-chip memory accesses. We have not modified the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Formal Verification of HLS 1:21

benchmarks to make them run through LegUp optimally, e.g. by adding pragmas that trigger more

advanced optimisations.

Vericert implements divisions and modulo operations in C using the corresponding built-in

Verilog operators. These built-in operators are designed to complete within a single clock cycle,

and this causes substantial penalties in clock frequency. Other HLS tools, including LegUp, supply

their own multi-cycle division/modulo implementations, and we plan to do the same in future

versions of Vericert. Implementing pipelined operators such as the divide and modulus operator

can be solved by scheduling the instructions so that these can execute in parallel, which is the main

optimisation that needs to be added to Vericert. In the meantime, we have prepared an alternative

version of the benchmarks in which each division/modulo operation is replaced with our own

implementation that uses repeated division and multiplications by 2. Figure 9 shows the results of

comparing Vericert with optimised LegUp 4.0 on the PolyBench/C benchmarks, where divisions

have been left intact. Figure 10 performs the comparison where the division/modulo operations

have been replaced by the iterative algorithm.

Synthesis setup. The Verilog that is generated by Vericert or LegUp is provided to Xilinx Vivado

v2017.1 [Xilinx 2019], which synthesises it to a netlist, before placing-and-routing this netlist onto

a Xilinx XC7Z020 FPGA device that contains approximately 85000 LUTs.

5.2 RQ1: How fast is Vericert-generated hardware?
Firstly, before comparing any performance metrics, it is worth highlighting that any Verilog

produced by Vericert is guaranteed to be correct, whilst no such guarantee can be provided by

LegUp. This guarantee in itself provides a significant leap in terms of HLS reliability, compared to

any other HLS tools available.

The top graphs of Figure 9 and Figure 10 compare the execution time of the 27 programs executed

by Vericert and the different optimisation levels of LegUp. Each graph uses optimised LegUp as the

baseline. When division/modulo operations are present LegUp designs execute around 27× faster

than Vericert designs. However, when division/modulo operations are replaced by the iterative

algorithm, LegUp designs are only 2× faster than Vericert designs. However, the benchmarks with

division/modulo replaced show that Vericert actually achieves the same execution speed as LegUp

without LLVM optimisations and without operation chaining, which is encouraging, and shows

that the hardware generation is following the right steps. The execution time is calculated by

multiplying the maximum frequency that the FPGA can run at with this design, by the number of

clock cycles that are needed to complete the execution. We can therefore analyse each separately.

First, looking at the difference in clock cycles, Vericert produces designs that have around

4.5× as many clock cycles as LegUp designs in both cases, when division/modulo operations are

enabled as well as when they are replaced. This performance gap can be explained in part by

LLVM optimisations, which seem to account for a 2× decrease in clock cycles, as well as operation

chaining, which decreases the clock cycles by another 2×. The rest of the speed-up is mostly due

to LegUp optimisations such as scheduling and memory analysis, which are designed to extract

parallelism from input programs. This gap does not represent the performance cost that comes with

formally proving a HLS tool. Instead, it is simply a gap between an unoptimised Vericert versus an

optimised LegUp. As we improve Vericert by incorporating further optimisations, this gap should

reduce whilst preserving the correctness guarantees.

Secondly, looking at the maximum clock frequency that each design can achieve, LegUp designs

achieve 8.2× the maximum clock frequency of Vericert when division/modulo operations are

present. This is in great contrast to the maximum clock frequency that Vericert can achieve when

no divide/modulo operations are present, where Vericert generates designs that are actually 2×

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

1

10

100

E
x
e
c
u
t
i
o
n
t
i
m
e
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

2
m
m

3
m
m

a
d
i

a
t
a
s

b
i
c
g

c
h
o
l
e
s
k
y

c
o
v
a
r
i
a
n
c
e

d
o
i
t
g
e
n

d
u
r
b
i
n

f
d
t
d
-
2
d

fl
o
y
d
-
w
a
r
s
h
a
l
l

g
e
m
m

g
e
m
v
e
r

g
e
s
u
m
m
v

h
e
a
t
-
3
d

j
a
c
o
b
i
-
1
d

j
a
c
o
b
i
-
2
d

l
u

l
u
d
c
m
p

m
v
t

n
u
s
s
i
n
o
v

s
e
i
d
e
l
-
2
d

s
y
m
m

s
y
r
2
k

s
y
r
k

t
r
i
s
o
l
v

t
r
m
m

m
ed

ia
n

1

10

A
r
e
a
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

Vericert LegUp no-opt no-chaining LegUp no-opt

Fig. 9. Performance of Vericert compared to LegUp, with division and modulo operations enabled. The top
graph compares the execution times and the bottom graph compares the area of the generated designs. In
both cases, the performance of Vericert, LegUp without LLVM optimisations and without operation chaining,
and LegUp without LLVM optimisations is compared against default LegUp.

better than the frequency achieved by LegUp designs. The dramatic discrepancy in performance for

the former case can be largely attributed to Vericert’s naïve implementations of division and modulo

operations, as explained in Section 5.1. Indeed, Vericert achieved an average clock frequency of just

13MHz, while LegUp managed about 111MHz. After replacing the division/modulo operations with

our own C-based implementations, Vericert’s average clock frequency becomes about 220MHz.

This improvement in frequency can be explained by the fact that LegUp uses a memory controller

to manage multiple RAMs using one interface, which is not needed in Vericert as a single RAM is

used for the memory.

Looking at a few benchmarks in particular in Figure 10 for some interesting cases. For the trmm
benchmark, Vericert produces hardware that executes with the same cycle count as LegUp, and

manages to create hardware that achieves twice the frequency compared to LegUp, thereby actually

producing a design that executes twice as fast as LegUp. Another interesting benchmark is doitgen,
where Vericert is comparable to LegUp without LLVM optimisations, however, LLVM optimisations

seem to have a large effect on the cycle count.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Formal Verification of HLS 1:23

0.5

1

2

4

8

E
x
e
c
u
t
i
o
n
t
i
m
e
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

2
m
m

3
m
m

a
d
i

a
t
a
s

b
i
c
g

c
h
o
l
e
s
k
y

c
o
v
a
r
i
a
n
c
e

d
o
i
t
g
e
n

d
u
r
b
i
n

f
d
t
d
-
2
d

fl
o
y
d
-
w
a
r
s
h
a
l
l

g
e
m
m

g
e
m
v
e
r

g
e
s
u
m
m
v

h
e
a
t
-
3
d

j
a
c
o
b
i
-
1
d

j
a
c
o
b
i
-
2
d

l
u

l
u
d
c
m
p

m
v
t

n
u
s
s
i
n
o
v

s
e
i
d
e
l
-
2
d

s
y
m
m

s
y
r
2
k

s
y
r
k

t
r
i
s
o
l
v

t
r
m
m

m
ed

ia
n

0.5

1

2

4

A
r
e
a
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

Vericert LegUp no-opt no-chaining LegUp no-opt

Fig. 10. Performance of Vericert compared to LegUp, with division and modulo operations replaced by
an iterative algorithm in software. The top graph compares the execution times and the bottom graph
compares the area of the generated designs. In both cases, the performance of Vericert, LegUp without LLVM
optimisations and without operation chaining, and LegUp without LLVM optimisations is compared against
default LegUp.

5.3 RQ2: How area-efficient is Vericert-generated hardware?
The bottom graphs in both Figure 9 and Figure 10 compare the resource utilisation of the Poly-

Bench/C programs generated by Vericert and LegUp at various optimisation levels. By looking at

the median, when division/modulo operations are enabled, we see that Vericert produces hardware

that is about the same size as optimised LegUp, whereas the unoptimised versions of LegUp actually

produce slightly smaller hardware. This is because optimisations can often increase the size of the

hardware to make it faster. Especially in Figure 9, there are a few benchmarks where the size of

the LegUp design is much smaller than that produced by Vericert. This can mostly be explained

because of resource sharing in LegUp. Division/modulo operations need large circuits, and it is

therefore usual to only have one circuit per design. As Vericert uses the naïve implementation

of division/modulo, there will be multiple circuits present in the design, which blows up the size.

Looking at Figure 10, one can see that without division, the size of Vericert designs are almost

always around the same size as LegUp designs, never being more than 2× larger, and sometimes

even being smaller. The similarity in area also shows that RAM is correctly being inferred by the

synthesis tool, and is therefore not implemented as registers.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

40379 passes (26.00%) 114849 compile-time errors (73.97%) 39 run-time errors (0.03%)

Fig. 11. Results of fuzzing Vericert using 155267 random C programs generated by Csmith.

5.4 RQ3: How quickly does Vericert translate the C into Verilog?
LegUp takes around 10× as long as Vericert to perform the translation from C into Verilog, show-

ing at least that verification does not have a substantial effect on the run-time of the HLS tool.

However, this is a meaningless victory, as a lot of the extra time that LegUp uses is on performing

computationally heavy optimisations such as loop pipelining and scheduling.

5.5 RQ4: How effective is the correctness theorem in Vericert?
“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D. E. Knuth (1977)

To gain further confidence that the Verilog designs generated by Vericert are actually correct,

and that the correctness theorem is indeed effective, we fuzzed Vericert using Csmith [Yang et al.

2011]. Yang et al. previously used Csmith in an extensive fuzzing campaign on CompCert and found

a handful of bugs in the unverified parts of that compiler, so it is natural to explore whether it can

find bugs in Vericert too. Herklotz et al. [2021] have recently used Csmith to fuzz other HLS tools

including LegUp, so we configured Csmith in a similar way. In addition to the features turned off

by Herklotz et al., we turned off the generation of global variables and non-32-bit operations. The

generated designs were tested by simulating them and comparing the output value to the results of

compiling the test-cases with GCC 10.3.0.

The results of the fuzzing run are shown in Figure 11. Out of 155267 test-cases generated by

Csmith, 26% of them passed, meaning they compiled without error and resulted in the same final

value as GCC. Most of the test-cases, 73.97%, failed at compile time. The most common reasons for

this were unsigned comparisons between integers (Vericert requires them to be signed), and the

presence of 8-bit operations (which Vericert does not support, and which we could not turn off due

to a limitation in Csmith). Because the test-cases generated by Csmith could not be tailored exactly

to the C fragment that Vericert supports, such a high compile-time failure rate is not unexpected.

Finally, and most interestingly, there were a total of 39 run-time failures, which the correctness

theorem should be proving impossible. However, all 39 of these failures are due to a bug in the

pretty-printing of the final Verilog code, where a logical negation (!) was accidentally used instead

of a bitwise negation (~). Once this bug was fixed, all test-cases passed.

6 RELATEDWORK
A summary of the related works can be found in Figure 12, which is represented as an Euler diagram.

The categories chosen for the Euler diagram are: whether the tool is usable, whether it takes a

high-level software language as input, whether it has a correctness proof, and finally whether that

proof is mechanised. The goal of Vericert is to cover all of these categories.

Most practical HLS tools [Canis et al. 2011; Intel 2020b; Nigam et al. 2020; Xilinx 2020] fit into

the category of usable tools that take high-level inputs. On the other end of the spectrum, there are

tools such as BEDROC [Chapman et al. 1992] for which there is no practical tool, and even though

it is described as high-level synthesis, it more closely resembles today’s logic synthesis tools.

Ongoing work in translation validation [Pnueli et al. 1998] seeks to prove equivalence between

the hardware generated by an HLS tool and the original behavioural description in C. An example

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Formal Verification of HLS 1:25

Standard HLS tools

[Canis et al. 2011; Intel 2020b]

[Nigam et al. 2020; Xilinx 2020]

Translation validation approaches

[Clarke et al. 2003; Kundu et al. 2008; Mentor 2020]

Vericert
Kôika [Bourgeat et al. 2020]

Lööw [2021]
Ellis [2008]

Perna and Woodcock [2012]

BEDROC [Chapman et al. 1992]

Correctness

proof

Mechanised

correctness proof

Usable tool High-level software input

Fig. 12. Summary of related work

of a tool that implements this is Mentor’s Catapult [Mentor 2020], which tries to match the states in

the 3AC description to states in the original C code after an unverified translation. Using translation

validation is quite effective for verifying complex optimisations such as scheduling [Chouksey

and Karfa 2020; Karfa et al. 2006; Youngsik Kim et al. 2004] or code motion [Banerjee et al. 2014;

Chouksey et al. 2019], but the validation has to be run every time the HLS is performed. In addition

to that, the proofs are often not mechanised or directly related to the actual implementation,

meaning the verifying algorithm might be wrong and hence could give false positives or false

negatives.

Finally, there are a few relevant mechanically verified tools. First, Kôika is a formally verified

translation from a core fragment of BlueSpec into a circuit representation which can then be printed

as a Verilog design. This is a translation from a high-level hardware description language into an

equivalent circuit representation, so is a different approach to HLS. Lööw and Myreen [2019] used

a verified translation from HOL4 code describing state transitions into Verilog to design a verified

processor, which is described by Lööw et al. [2019]. Lööw [2021] has also worked on formally

verifying a logic synthesis tool that can transform hardware descriptions into low-level netlists.

His approach translates a shallow embedding in HOL4 into a deep embedding of Verilog. Perna

et al. designed a formally verified translation from a deep embedding of Handel-C [Aubury et al.

1996] into a deep embedding of a circuit [Perna and Woodcock 2012; Perna et al. 2011]. Finally, Ellis

[2008] used Isabelle to implement and reason about intermediate languages for software/hardware

compilation, where parts could be implemented in hardware and the correctness could still be

shown.

7 LIMITATIONS AND FUTUREWORK
There are various limitations in Vericert compared to other HLS tools due to the fact that our

main focus was on formally verifying the translation from 3AC to Verilog. In this section, we

outline the current limitations of our tool and suggest how they can be overcome in future work,

first describing limitations to the generated hardware, and then describing the limitations of the

software input that Vericert accepts.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

7.1 Limitations and improvements to the hardware
This section describes the current limitations and possible improvements that could be done to the

generated hardware.

Lack of instruction-level parallelism. The main limitation of Vericert is that it does not perform

instruction scheduling, which means that instructions cannot be gathered into the same state and

executed in parallel. However, each language in Vericert was designed with scheduling in mind,

so that these should not have to change fundamentally when it is implemented in the future. For

instance, our HTL language already allows arbitrary Verilog to appear in each state of the FSMD;

currently, each state just contains a single Verilog assignment, but when scheduling is added, it

will contain a list of assignments that can all be executed in parallel. We expect to follow the lead

of Tristan and Leroy [2008] and Six et al. [2020], who have previously added scheduling support to

CompCert in a VLIW context, by invoking an external (unverified) scheduling tool and then using

translation validation to verify that each generated schedule is correct (as opposed to verifying the

scheduling tool itself).

Lack of pipelined division. Pipelined operators can execute different stages of an operation in

parallel, and thus perform several long-running operations simultaneously while sharing the

same hardware. The introduction of pipelined operators to Vericert, especially for division, would

alleviate the slow clock speed observed in the PolyBench/C benchmarks with divisions included

(Fig. 9). In HTL, pipelined operations could be represented in a similar fashion to load and store

instructions, by using wires to communicate with an abstract computation block modelled in HTL

and later replaced by a hardware implementation.

7.2 Limitations and improvements to the software input
This section describes the limitations and possible improvements to the software input accepted by

Vericert.

Limitations with I/O. Vericert is currently limited in terms of I/O because the main function cannot

accept any arguments if the Clight program is to be well-formed. However, just like CompCert, Veri-

cert can actually compile main functions that have arbitrary arguments and will handle the inputs

appropriately. Still, the main correctness theorem in CompCert assumes that the main function does

not have any arguments, so it may be possible that unexpected behaviour is introduced. Moreover,

external function calls that produce traces have not been implemented yet, but once they have,

they could enable the C program to read and write values on a bus that is shared with various other

components in the hardware design.

Lack of support for global variables. In CompCert, each global variable is stored in its ownmemory.

A generalisation of the stack translation into a RAM block could therefore be performed to translate

global variables in the same manner. This would require a slight generalisation of pointers so that

they store provenance information to ensure that each pointer accesses the right RAM. It would

also be necessary to generalise the RAM interface so that it decodes the provenance information

and indexes the right array.

Other language restrictions. C and Verilog handle signedness quite differently. By default, all

operators and registers in Verilog (and HTL) are unsigned, so to force an operation to handle the

bits as signed, both operators have to be forced to be signed. Moreover, Verilog implicitly resizes

expressions to the largest needed size by default, which can affect the result of the computation.

This feature is not supported by the Verilog semantics we adopted, so to match the semantics to the

behaviour of the simulator and synthesis tool, braces are placed around all expressions to inhibit

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Formal Verification of HLS 1:27

implicit resizing. Instead, explicit resizing is used in the semantics, and operations can only be

performed on two registers that have the same size.

Furthermore, equality checks between unsigned variables are actually not supported, because this

requires supporting the comparison of pointers, which should only be performed between pointers

with the same provenance. In Vericert there is currently no way to determine the provenance of a

pointer, and it therefore cannot model the semantics of unsigned comparison in CompCert. This is

not a severe restriction in practice however, because, since dynamic allocation is not supported

either, equality comparison of pointers is rarely needed, and equality comparison of integers can

still be performed by casting them both to signed integers.

Finally, the mulhs and mulhu instructions, which fetch the upper bits of a 32-bit multiplication,

are not translated by Vericert, because 64-bit numbers are not supported. These instructions are

only generated to optimise divisions by a constant that is not a power of two, so turning off constant

propagation will allow these programs to pass without error.

8 CONCLUSION
We have presented Vericert, the first mechanically verified HLS tool for translating software in C

into hardware in Verilog. We built Vericert by extending CompCert with a new hardware-specific

intermediate language and a Verilog back end, and we verified it with respect to a semantics for

Verilog due to Lööw and Myreen [2019]. We evaluated Vericert against the existing LegUp HLS

tool on the PolyBench/C benchmark suite. Currently, our hardware is 27× slower and 1.1× larger

compared to LegUp, though it is only 2× slower if inefficient divisions are removed.

There are abundant opportunities for improving Vericert’s performance. For instance, as discussed

in Section 5, simply replacing the naïve single-cycle division and modulo operations with C

implementations increases clock frequency by 8.2×. Beyond this, we plan to implement scheduling

and loop pipelining, since this allows more operations to be packed into fewer clock cycles. Other

optimisations include resource sharing to reduce the circuit area, and using tailored hardware

operators that use hard IP blocks on chip and can be pipelined.

Finally, it’s worth considering how trustworthy Vericert is compared to other HLS tools. The

guarantee of full functional equivalence between input and output that Vericert provides is a strong

one, the semantics for the source and target languages are both well-established, and Coq is a

mature and thoroughly tested system. However, Vericert cannot guarantee to provide an output

for every valid input – for instance, as remarked in Section 4.5, Vericert will error out if given a

program with more than about four million instructions! – but our evaluation indicates that it

does not seem to error out too frequently. And of course, Vericert cannot guarantee that the final

hardware produced will be correct, because the Verilog it generates must pass through a series of

unverified tools along the way. This concern may be allayed in the future thanks to recent work

by Lööw [2021] to produce a verified logic synthesis tool.

REFERENCES
Matthew Aubury, Ian Page, Geoff Randall, Jonathan Saul, and Robin Watts. 1996. Handel-C language reference guide.

Computing Laboratory. Oxford University, UK (1996). 25

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and Krste

Asanović. 2012. Chisel: Constructing hardware in a Scala embedded language. In DAC Design Automation Conference
2012. IEEE, 1212–1221. https://doi.org/10.1145/2228360.2228584 3

K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. 2014. Verification of Code Motion Techniques Using Value Propagation.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 8 (Aug 2014), 1180–1193. https:

//doi.org/10.1109/TCAD.2014.2314392 2, 25

Frédéric Besson, Sandrine Blazy, and PierreWilke. 2018. CompCertS: AMemory-Aware Verified CCompiler Using a Pointer as

Integer Semantics. Journal of Automated Reasoning 63, 2 (Nov. 2018), 369–392. https://doi.org/10.1007/s10817-018-9496-y

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/TCAD.2014.2314392
https://doi.org/10.1109/TCAD.2014.2314392
https://doi.org/10.1007/s10817-018-9496-y

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

14

Sandrine Blazy and Xavier Leroy. 2005. Formal Verification of a Memory Model for C-Like Imperative Languages. In

Formal Methods and Software Engineering, Kung-Kiu Lau and Richard Banach (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 280–299. https://doi.org/0.1007/11576280_20 8

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The Essence of Bluespec: A Core Language for

Rule-Based Hardware Design. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). ACM, New York, NY, USA, 243–257. https://doi.org/10.1145/3385412.3385965

3, 25

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason Helge Anderson, Stephen Dean

Brown, and Tomasz S. Czajkowski. 2011. LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In

FPGA. ACM, 33–36. https://doi.org/10.1145/1950413.1950423 1, 3, 20, 24, 25

R. Chapman, G. Brown, and M. Leeser. 1992. Verified high-level synthesis in BEDROC. In [1992] Proceedings The European
Conference on Design Automation. IEEE Computer Society, 59–63. https://doi.org/10.1109/EDAC.1992.205894 24, 25

Pankaj Chauhan. 2020. Formally Ensuring Equivalence between C++ and RTL designs. https://bit.ly/2KbT0ki 2

Y. Choi and J. Cong. 2018. HLS-Based Optimization and Design Space Exploration for Applications with Variable Loop

Bounds. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8. https://doi.org/10.1145/

3240765.3240815 20

R. Chouksey and C. Karfa. 2020. Verification of Scheduling of Conditional Behaviors in High-Level Synthesis. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems (2020), 1–14. https://doi.org/10.1109/TVLSI.2020.2978242 2,

25

R. Chouksey, C. Karfa, and P. Bhaduri. 2019. Translation Validation of Code Motion Transformations Involving Loops.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 7 (July 2019), 1378–1382. https:

//doi.org/10.1109/TCAD.2018.2846654 2, 25

E. Clarke, D. Kroening, and K. Yorav. 2003. Behavioral consistency of C and Verilog programs using bounded model checking.

In Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451). 368–371. https://doi.org/10.1145/775832.

775928 25

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees A. Vissers, and Zhiru Zhang. 2011. High-Level Synthesis

for FPGAs: From Prototyping to Deployment. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30, 4 (2011), 473–491.
https://doi.org/10.1109/TCAD.2011.2110592 4

Martin Ellis. 2008. Correct synthesis and integration of compiler-generated function units. Ph.D. Dissertation. Newcastle
University. https://theses.ncl.ac.uk/jspui/handle/10443/828 3, 25

Dan Gajski, Todd Austin, and Steve Svoboda. 2010. What input-language is the best choice for high level synthesis (HLS)?.

In Design Automation Conference. 857–858. https://doi.org/10.1145/1837274.1837489 3

Stephane Gauthier and Zubair Wadood. 2020. High-Level Synthesis: Can it outperform hand-coded HDL? https:

//bit.ly/2IDhKBR White paper. 1

David J. Greaves. 2019. Research Note: An Open Source Bluespec Compiler. CoRR abs/1905.03746 (2019). 3

David J. Greaves and Satnam Singh. 2008. Kiwi: Synthesis of FPGA Circuits from Parallel Programs. In FCCM. IEEE Computer

Society, 3–12. https://doi.org/10.1109/FCCM.2008.46 3

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021. An Empirical Study of the Reliability of

High-Level Synthesis Tools. In 29th IEEE International Symposium on Field-Programmable Custom Computing Machines.
https://yannherklotz.com/docs/drafts/fuzzing_hls.pdf (to appear). 2, 24

Ekawat Homsirikamol and Kris Gaj. 2014. Can high-level synthesis compete against a hand-written code in the cryptographic

domain? A case study. In ReConFig. IEEE, 1–8. https://doi.org/10.1109/ReConFig.2014.7032504 1

Enoch Hwang, Frank Vahid, and Yu-Chin Hsu. 1999. FSMD functional partitioning for low power. In Proceedings of the
conference on Design, automation and test in Europe. 7–es. https://doi.org/10.1109/DATE.1999.761092 6

2006. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001) (April
2006), 1–590. https://doi.org/10.1109/IEEESTD.2006.99495 3, 10

2005. IEEE Standard for Verilog Register Transfer Level Synthesis. IEC 62142-2005 First edition 2005-06 IEEE Std 1364.1 (2005),
1–116. https://doi.org/10.1109/IEEESTD.2005.339572 10

Intel. 2020a. High-level Synthesis Compiler. https://intel.ly/2UDiWr5 1, 3

Intel. 2020b. SDK for OpenCL Applications. https://intel.ly/30sYHz0 24, 25

Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Validating LR(1) Parsers. In Programming Languages and
Systems, Helmut Seidl (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 397–416. https://doi.org/10.1007/978-3-642-

28869-2_20 3

C Karfa, C Mandal, D Sarkar, S R. Pentakota, and Chris Reade. 2006. A Formal Verification Method of Scheduling in

High-level Synthesis. In Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED ’06). IEEE
Computer Society, Washington, DC, USA, 71–78. https://doi.org/10.1109/ISQED.2006.10 2, 25

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/0.1007/11576280_20
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/EDAC.1992.205894
https://bit.ly/2KbT0ki
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1109/TVLSI.2020.2978242
https://doi.org/10.1109/TCAD.2018.2846654
https://doi.org/10.1109/TCAD.2018.2846654
https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/775832.775928
https://doi.org/10.1109/TCAD.2011.2110592
https://theses.ncl.ac.uk/jspui/handle/10443/828
https://doi.org/10.1145/1837274.1837489
https://bit.ly/2IDhKBR
https://bit.ly/2IDhKBR
https://doi.org/10.1109/FCCM.2008.46
https://yannherklotz.com/docs/drafts/fuzzing_hls.pdf
https://doi.org/10.1109/ReConFig.2014.7032504
https://doi.org/10.1109/DATE.1999.761092
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2005.339572
https://intel.ly/2UDiWr5
https://intel.ly/30sYHz0
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1109/ISQED.2006.10

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Formal Verification of HLS 1:29

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi,

Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application

Accelerators. In PLDI. ACM, 296–311. https://doi.org/10.1145/3192366.3192379 3

Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. 2008. Validating High-Level Synthesis. In Computer Aided Verification, Aarti
Gupta and Sharad Malik (Eds.). Springer, Berlin, Heidelberg, 459–472. https://doi.org/10.1007/978-3-540-70545-1_44 25

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107–115. https:

//doi.org/10.1145/1538788.1538814 2, 3, 15

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-Core Compiler Fuzzing. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR,

USA) (PLDI ’15). ACM, New York, NY, USA, 65–76. https://doi.org/10.1145/2737924.2737986 1

Andreas Lööw. 2021. Lutsig: A Verified Verilog Compiler for Verified Circuit Development. In Proceedings of the 10th ACM
SIGPLAN International Conference on Certified Programs and Proofs (Virtual, Denmark) (CPP 2021). ACM, New York, NY,

USA, 46–60. https://doi.org/10.1145/3437992.3439916 25, 27

Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael Norrish, Oskar Abrahamsson, and Anthony

Fox. 2019. Verified Compilation on a Verified Processor. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 1041–

1053. https://doi.org/10.1145/3314221.3314622 3, 10, 25

Andreas Lööw and Magnus O. Myreen. 2019. A Proof-producing Translator for Verilog Development in HOL. In Proceedings
of the 7th International Workshop on Formal Methods in Software Engineering (Montreal, Quebec, Canada) (FormaliSE ’19).
IEEE Press, Piscataway, NJ, USA, 99–108. https://doi.org/10.1109/FormaliSE.2019.00020 2, 10, 11, 25, 27

Mentor. 2020. Catapult High-Level Synthesis. https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls

2, 25

P. Meredith, M. Katelman, J. Meseguer, and G. Roşu. 2010. A formal executable semantics of Verilog. In Eighth ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEMOCODE 2010). 179–188. https://doi.org/10.

1109/MEMCOD.2010.5558634 3, 10

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and

Zhiru Zhang. 2020. Predictable Accelerator Design with Time-Sensitive Affine Types. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). ACM, New York,

NY, USA, 393–407. https://doi.org/10.1145/3385412.3385974 24, 25

R. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level specifications. In Proceedings. Second
ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. 69–70.
https://doi.org/10.1109/MEMCOD.2004.1459818 3

D. H. Noronha, J. P. Pinilla, and S. J. E. Wilton. 2017. Rapid circuit-specific inlining tuning for FPGA high-level synthesis.

In 2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig). 1–6. https://doi.org/10.1109/

RECONFIG.2017.8279807 5

Ian Page and Wayne Luk. 1991. Compiling Occam into field-programmable gate arrays. In FPGAs, Oxford Workshop on Field
Programmable Logic and Applications, Vol. 15. 271–283. 3

P. G. Paulin and J. P. Knight. 1989. Scheduling and Binding Algorithms for High-Level Synthesis. In Proceedings of the
26th ACM/IEEE Design Automation Conference (Las Vegas, Nevada, USA) (DAC ’89). ACM, New York, NY, USA, 1–6.

https://doi.org/10.1145/74382.74383 20

Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, and François Berry. 2016. Design productivity of a high level synthesis

compiler versus HDL. In 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS). 140–147. https://doi.org/10.1109/SAMOS.2016.7818341 1

Juan Perna and Jim Woodcock. 2012. Mechanised Wire-Wise Verification of Handel-C Synthesis. Science of Computer
Programming 77, 4 (2012), 424 – 443. https://doi.org/10.1016/j.scico.2010.02.007 25

Juan Perna, Jim Woodcock, Augusto Sampaio, and Juliano Iyoda. 2011. Correct Hardware Synthesis. Acta Informatica 48, 7
(01 Dec 2011), 363–396. https://doi.org/10.1007/s00236-011-0142-y 25

Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework for the high level synthesis of memory-intensive

applications. In FPL. IEEE, 1–4. https://doi.org/10.1109/FPL.2013.6645550 1, 3

A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. In Tools and Algorithms for the Construction and Analysis
of Systems, Bernhard Steffen (Ed.). Springer, Berlin, Heidelberg, 151–166. https://doi.org/10.1007/BFb0054170 2, 24

Louis-Noël Pouchet. 2020. PolyBench/C: the Polyhedral Benchmark suite. http://web.cse.ohio-state.edu/~pouchet.2/

software/polybench/ 3, 20

Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. 2013. Polyhedral-based data reuse optimization

for configurable computing. In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays.
29–38. https://doi.org/10.1145/2435264.2435273 20

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1007/978-3-540-70545-1_44
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1109/FormaliSE.2019.00020
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/RECONFIG.2017.8279807
https://doi.org/10.1109/RECONFIG.2017.8279807
https://doi.org/10.1145/74382.74383
https://doi.org/10.1109/SAMOS.2016.7818341
https://doi.org/10.1016/j.scico.2010.02.007
https://doi.org/10.1007/s00236-011-0142-y
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1007/BFb0054170
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/2435264.2435273

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD: A Multi-Level Intermediate Representation

for Hardware Description Languages. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). ACM, New York, NY, USA, 258–271. https://doi.org/10.1145/

3385412.3386024 3

Cyril Six, Sylvain Boulmé, and David Monniaux. 2020. Certified and efficient instruction scheduling: Application to

interlocked VLIW processors. Proc. ACM Program. Lang. OOPSLA (2020). 26

David B. Thomas. 2016. Synthesisable recursion for C++ HLS tools. In ASAP. IEEE Computer Society, 91–98. https:

//doi.org/10.1109/ASAP.2016.7760777 5

Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification of Translation Validators: A Case Study on In-

struction Scheduling Optimizations. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (San Francisco, California, USA) (POPL ’08). ACM, New York, NY, USA, 17–27.

https://doi.org/10.1145/1328438.1328444 2, 26

Girish Venkataramani and Seth C. Goldstein. 2007. Operation chaining asynchronous pipelined circuits. In 2007 IEEE/ACM
International Conference on Computer-Aided Design. 442–449. https://doi.org/10.1109/ICCAD.2007.4397305 20

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3, Article 22 (June 2013), 50 pages. https://doi.org/10.

1145/2487241.2487248 14

Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF: Verified Separate Compilation of C

Programs into ELF Object Files. Proc. ACM Program. Lang. 4, OOPSLA, Article 197 (Nov. 2020), 28 pages. https:

//doi.org/10.1145/3428265 14

Xilinx. 2019. Vivado Design Suite. https://bit.ly/2wZAmld 21

Xilinx. 2020. Vivado High-level Synthesis. https://bit.ly/39ereMx 1, 3, 24, 25

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). ACM, New York, NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532 2, 24

Youngsik Kim, S. Kopuri, and N. Mansouri. 2004. Automated formal verification of scheduling process using finite state

machines with datapath (FSMD). In International Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat.
No.03EX720). 110–115. https://doi.org/10.1109/ISQED.2004.1283659 2, 25

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2017. COMBA: A comprehensive model-

based analysis framework for high level synthesis of real applications. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 430–437. 20

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. SIGPLAN Not. 47, 1 (Jan. 2012), 427–440. https://doi.org/10.1145/

2103621.2103709 3

Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason Cong. 2013. Improving polyhedral code

generation for high-level synthesis. In 2013 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 1–10. https://doi.org/10.1109/CODES-ISSS.2013.6659002 20

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1109/ASAP.2016.7760777
https://doi.org/10.1109/ASAP.2016.7760777
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1109/ICCAD.2007.4397305
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3428265
https://bit.ly/2wZAmld
https://bit.ly/39ereMx
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/ISQED.2004.1283659
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1109/CODES-ISSS.2013.6659002

	Abstract
	1 Introduction
	2 Designing a verified HLS tool
	2.1 An introduction to Verilog
	2.2 Translating C to Verilog, by example
	2.3 Optimisations

	3 A Formal Semantics for Verilog
	3.1 Changes to the Semantics
	3.2 Integrating the Verilog Semantics into CompCert's Model
	3.3 Memory Model

	4 Proof
	4.1 Main challenges in the proof
	4.2 Formulating the correctness theorem
	4.3 Forward simulation from 3AC to HTL
	4.4 Forward simulation of RAM insertion
	4.5 Forward simulation from HTL to Verilog
	4.6 Deterministic Semantics
	4.7 Coq Mechanisation

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: How fast is Vericert-generated hardware?
	5.3 RQ2: How area-efficient is Vericert-generated hardware?
	5.4 RQ3: How quickly does Vericert translate the C into Verilog?
	5.5 RQ4: How effective is the correctness theorem in Vericert?

	6 Related Work
	7 Limitations and Future Work
	7.1 Limitations and improvements to the hardware
	7.2 Limitations and improvements to the software input

	8 Conclusion
	References

