
Gated SSA
Mechanised Semantics for Gated Static Single Assignment

Yann Herklotz2 Delphine Demange1 Sandrine Blazy1

CAS Seminar, 31 October 2022
1 IRISA & Inria de l’Université de Rennes
2 Imperial College London

1

Overview

1 Refresher on SSA

2 Proof of SSA to GSA Translation

3 Summary and On-going Work

2

Refresher on SSA

About GSA and SSA

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

3

About GSA and SSA

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version

Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

3

About GSA and SSA

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!

Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

3

About GSA and SSA

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT. . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

3

From SSA to Gated SSA

SSA strengths
CFG-based representation: simple operational semantics
ϕ-functions already capture def/use dependencies

SSA weaknesses
Semantics of ϕ-functions depends on control-flow
Non-local semantics of ϕ-functions: S(f , l , rs) not enough
Some dependencies are still implicit
Gated SSA: gates turn control-dep. into data-dep.
Building block of Program Dependence Web [Ottenstein et al., 1990]
Ignore some dependencies [Havlak, 1994]
Symbolic analysis for parallelizing compiler [Tu and Padua, 1995]

4

From SSA to Gated SSA

SSA strengths
CFG-based representation: simple operational semantics
ϕ-functions already capture def/use dependencies
SSA weaknesses
Semantics of ϕ-functions depends on control-flow
Non-local semantics of ϕ-functions: S(f , l , rs) not enough
Some dependencies are still implicit

Gated SSA: gates turn control-dep. into data-dep.
Building block of Program Dependence Web [Ottenstein et al., 1990]
Ignore some dependencies [Havlak, 1994]
Symbolic analysis for parallelizing compiler [Tu and Padua, 1995]

4

From SSA to Gated SSA

SSA strengths
CFG-based representation: simple operational semantics
ϕ-functions already capture def/use dependencies
SSA weaknesses
Semantics of ϕ-functions depends on control-flow
Non-local semantics of ϕ-functions: S(f , l , rs) not enough
Some dependencies are still implicit
Gated SSA: gates turn control-dep. into data-dep.
Building block of Program Dependence Web [Ottenstein et al., 1990]
Ignore some dependencies [Havlak, 1994]
Symbolic analysis for parallelizing compiler [Tu and Padua, 1995]

4

Gated SSA: New Instructions

Gated SSA: extends ϕ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Gates pi discriminate arguments, local choice
Pure data-dependency

Loop-header join point: rd ← µ(r0, ri)Idea: no adequate gate for iterations
Introduce a special node, with built-in looping semantics
Analyze loop-carried dependencies
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA: New Instructions

Gated SSA: extends ϕ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Gates pi discriminate arguments, local choice
Pure data-dependency
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate gate for iterations
Introduce a special node, with built-in looping semantics
Analyze loop-carried dependencies

Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA: New Instructions

Gated SSA: extends ϕ-instructions with gates
Simple join points: rd ← γ(

»

(pi , ri))Gates pi discriminate arguments, local choice
Pure data-dependency
Loop-header join point: rd ← µ(r0, ri)Idea: no adequate gate for iterations
Introduce a special node, with built-in looping semantics
Analyze loop-carried dependencies
Loop exit point: rd ← η(p, rs)Idea: decouple loop-carried variable from end-of-loop usage
Gate p signals when rs has reached a stable value

5

Gated SSA (GSA): example

x0 := 10

i0 := 11

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

return x115

i1 := ϕ(i0, i2)
x1 := ϕ(x0, x5)

x5 := ϕ(x2, x3, x4)

SSA

x0 := 10

i0 := 11

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)

GSSA:
extends ϕ-instr. with gates 6

Gated SSA: State of Affairs

Recent usages
HLS, GPU code gen., parallelizing compilers
Non-verified translation validation for LLVM [Tristan et al., 2011]
Key component, alas not described in papers!
Numerous variants
Each come with own notion of dependencies
No reference implementation, no specification
No formal semantics, partial and informal prose

⇒We need a specification and a semantics
for this critical component

Disclaimer
Necessarily geared to application case
Baby steps: focus on gates and generation
No performance evaluation yet!

7

Gated SSA: State of Affairs

Recent usages
HLS, GPU code gen., parallelizing compilers
Non-verified translation validation for LLVM [Tristan et al., 2011]
Key component, alas not described in papers!
Numerous variants
Each come with own notion of dependencies
No reference implementation, no specification
No formal semantics, partial and informal prose

⇒We need a specification and a semantics
for this critical component

Disclaimer
Necessarily geared to application case
Baby steps: focus on gates and generation
No performance evaluation yet!

7

Gated SSA: State of Affairs

Recent usages
HLS, GPU code gen., parallelizing compilers
Non-verified translation validation for LLVM [Tristan et al., 2011]
Key component, alas not described in papers!
Numerous variants
Each come with own notion of dependencies
No reference implementation, no specification
No formal semantics, partial and informal prose

⇒We need a specification and a semantics
for this critical component

Disclaimer
Necessarily geared to application case
Baby steps: focus on gates and generation
No performance evaluation yet! 7

Overview of Implementation in CompCert

3AC

C
· · ·

· · ·
Asm

opt

SSA

opt

GSA

opt

· · · Hardware

8

Overview of Implementation in CompCert

3AC

C
· · ·

· · ·
Asm

opt SSA

opt

GSA

opt

· · · Hardware

8

Overview of Implementation in CompCert

3AC

C
· · ·

· · ·
Asm

opt SSA

opt

GSA

opt

· · · Hardware

8

Overview of Implementation in CompCert

3AC

C
· · ·

· · ·
Asm

opt SSA

opt

GSA

opt

· · · Hardware

8

Proof of SSA to GSA
Translation

Verified Compilers: Semantics Preservation

Theorem compi ler correct : f o r a l l P P ’ behavior ,
compiler P = OK P ’ −>
prog asm exec P ’ behavior −>
prog src exec P behavior .

Proof . [. . .] Qed .

1 Define syntax and semantics for languages:
Coq data-structures, Coq relations

2 Program the compiler: Coq function
3 State the correctness theorem: Coq property
4 Prove it, using a simulation diagram: Coq proof script

9

Verified Compilers: Semantics Preservation

Theorem compi ler correct : f o r a l l P P ’ behavior ,
compiler P = OK P ’ −>
prog asm exec P ’ behavior −>
prog src exec P behavior .

Proof . [. . .] Qed .

1 Define syntax and semantics for languages:
Coq data-structures, Coq relations

2 Program the compiler: Coq function
3 State the correctness theorem: Coq property
4 Prove it, using a simulation diagram: Coq proof script

9

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

10

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

µ instructions can be translated directly from ϕ instructions.

10

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

For every future γ node, get a
path-expression from the dominator s
to each of its predecessors v1, v2, ..., vn.

s

· · ·v1 vn

γ

10

Translating from SSA to GSA

Single-source path expression problem
“Find, for each vertex v , a regular expression P(s, v) which represents the set of all
paths in G from s to v .” — [Tarjan, 1981]

For every future η node, get a
path-expression from the corresponding µ

to this node.

µ

η

n

10

Different Ways of Verifying a Compiler Pass

Ideally you want to fully verify the translation.
What does that mean?
No proof code should be present at runtime.
Why might that not be possible?
Properties might be easy to check but tedious to prove.

11

Different Ways of Verifying a Compiler Pass

Ideally you want to fully verify the translation.
What does that mean?
No proof code should be present at runtime.
Why might that not be possible?
Properties might be easy to check but tedious to prove.

11

Verifying GSA Generation by Checking Properties

Instead of proving correctness of path expressions, check properties of predicates.

One core invariant we want to maintain is predicate evaluation:
Pi,1

Pi,2 · · · Pi,m

Pi,n

c1,n

c2,n

cm,n

12

Verifying GSA Generation by Checking Properties

Instead of proving correctness of path expressions, check properties of predicates.
One core invariant we want to maintain is predicate evaluation:

Pi,1

Pi,2 · · · Pi,m

Pi,n

c1,n

c2,n

cm,n

12

Verifying GSA Generation by Checking Properties

Instead of proving correctness of path expressions, check properties of predicates.
One core invariant we want to maintain is predicate evaluation:

Pi,1 Pi,2 · · · Pi,m

Pi,n

c1,n

c2,n

cm,n

12

Coherence Property

(Local) Coherence property f |= P coh (i ,n)
f is the SSA function
i and n are nodes in CFG of f , with i strictly dominates n

Pi,1 Pi,2 · · · Pi,m

Pi,n

∨
p∈preds(f ,n)(Pi,p ∧ cp,n)

⇓
Pi,n

c1,n

c2,n

cm,n

Evaluability of predicates
Predicates: piece of syntax
Variables in conditions not always defined at runtime: use of a 3-valued logic

13

Coherence Property

(Local) Coherence property f |= P coh (i ,n)
f is the SSA function
i and n are nodes in CFG of f , with i strictly dominates n

Pi,1 Pi,2 · · · Pi,m

Pi,n

∨
p∈preds(f ,n)(Pi,p ∧ cp,n)

⇓
Pi,n

c1,n

c2,n

cm,n

Evaluability of predicates
Predicates: piece of syntax
Variables in conditions not always defined at runtime: use of a 3-valued logic

13

Well-exclusivity of γ Predicates

Intuition
In rd ← γ((p1, r1), (p2, r2)),
p1 and p2 must be enough to pick one ri

Definition (Mutually exclusive predicates)

p1 and p2 are mutually exclusive, written p1 ⋉ p2, whenever
for all registers state rs they cannot both evaluate to true, i.e.
if rs |=p p1 ⇓ 1, then rs |=p p2 /⇓ 1.

14

Well-exclusivity of γ Predicates

Intuition
In rd ← γ((p1, r1), (p2, r2)),
p1 and p2 must be enough to pick one ri

Definition (Mutually exclusive predicates)

p1 and p2 are mutually exclusive, written p1 ⋉ p2, whenever
for all registers state rs they cannot both evaluate to true, i.e.
if rs |=p p1 ⇓ 1, then rs |=p p2 /⇓ 1.

14

Using an SMT Solver to Check Properties

• The properties we are trying to check are
arbitrary logic properties.

• The solver needs to use three-valued logic.
• SMT solvers can do all this.

∨
p∈preds(f ,n)(Pi,p ∧ cp,n)

⇓
Pi,n

15

Verifying an SMT Solver

We are not done... The SMT solver would have to be trusted, which does not integrate
with our proof.

SMTCoq1 is a formalisation of SMT unsatisfiability proofs.
However, their main use case is as:

1 a standalone tool, or
2 as a Coq tactic to solve Theorems in Coq.

We need a checker that can be integrated into the compiler, which will give us the
same correctness guarantees.

1https://smtcoq.github.io/
16

https://smtcoq.github.io/

Verifying an SMT Solver

We are not done... The SMT solver would have to be trusted, which does not integrate
with our proof.
SMTCoq1 is a formalisation of SMT unsatisfiability proofs.
However, their main use case is as:

1 a standalone tool, or
2 as a Coq tactic to solve Theorems in Coq.

We need a checker that can be integrated into the compiler, which will give us the
same correctness guarantees.

1https://smtcoq.github.io/
16

https://smtcoq.github.io/

Verifying an SMT Solver

We are not done... The SMT solver would have to be trusted, which does not integrate
with our proof.
SMTCoq1 is a formalisation of SMT unsatisfiability proofs.
However, their main use case is as:

1 a standalone tool, or
2 as a Coq tactic to solve Theorems in Coq.

We need a checker that can be integrated into the compiler, which will give us the
same correctness guarantees.
1https://smtcoq.github.io/

16

https://smtcoq.github.io/

Integrating the Verified Unsat Checker

The main workflow to prove the SMT solver:
1 Convert recursive predicates into efficient flat list structure using linear

arithmetic to implement three-valued logic:
P1 ∧ (P2 ∨ P3) into

− 1 ≤ P1 ≤ 1 ∧ −1 ≤ P2 ≤ 1 ∧ −1 ≤ P3 ≤ 1 ∧ −1 ≤ P4 ≤ 1 ∧ −1 ≤ P5 ≤ 1

∧ (P2 < P3?P4 == P3 : P4 == P2)

∧ (P1 < P4?P5 == P1 : P5 == P4)

∧ ¬(P5 == 1)

2 Reverse engineer any optimisations that SMTCoq would do on Coq goals.
3 Prove semantic preservation between initial predicates and SMTCoq formulas.

17

Integrating the Verified Unsat Checker

The main workflow to prove the SMT solver:
1 Convert recursive predicates into efficient flat list structure using linear

arithmetic to implement three-valued logic:
P1 ∧ (P2 ∨ P3) into

− 1 ≤ P1 ≤ 1 ∧ −1 ≤ P2 ≤ 1 ∧ −1 ≤ P3 ≤ 1 ∧ −1 ≤ P4 ≤ 1 ∧ −1 ≤ P5 ≤ 1

∧ (P2 < P3?P4 == P3 : P4 == P2)

∧ (P1 < P4?P5 == P1 : P5 == P4)

∧ ¬(P5 == 1)

2 Reverse engineer any optimisations that SMTCoq would do on Coq goals.

3 Prove semantic preservation between initial predicates and SMTCoq formulas.

17

Integrating the Verified Unsat Checker

The main workflow to prove the SMT solver:
1 Convert recursive predicates into efficient flat list structure using linear

arithmetic to implement three-valued logic:
P1 ∧ (P2 ∨ P3) into

− 1 ≤ P1 ≤ 1 ∧ −1 ≤ P2 ≤ 1 ∧ −1 ≤ P3 ≤ 1 ∧ −1 ≤ P4 ≤ 1 ∧ −1 ≤ P5 ≤ 1

∧ (P2 < P3?P4 == P3 : P4 == P2)

∧ (P1 < P4?P5 == P1 : P5 == P4)

∧ ¬(P5 == 1)

2 Reverse engineer any optimisations that SMTCoq would do on Coq goals.
3 Prove semantic preservation between initial predicates and SMTCoq formulas.

17

Finalising the Proof and Caveats

We can finally prove the SSA to GSA translation without assumptions.

Many Limitations

• Very slow compilation time due to many SMT checks.
• Some comparisons are not supported ((unsigned)x == (unsigned)y).
• Destruction of GSA is currently not proven correct.

18

Finalising the Proof and Caveats

We can finally prove the SSA to GSA translation without assumptions.
Many Limitations

• Very slow compilation time due to many SMT checks.

• Some comparisons are not supported ((unsigned)x == (unsigned)y).
• Destruction of GSA is currently not proven correct.

18

Finalising the Proof and Caveats

We can finally prove the SSA to GSA translation without assumptions.
Many Limitations

• Very slow compilation time due to many SMT checks.
• Some comparisons are not supported ((unsigned)x == (unsigned)y).

• Destruction of GSA is currently not proven correct.

18

Finalising the Proof and Caveats

We can finally prove the SSA to GSA translation without assumptions.
Many Limitations

• Very slow compilation time due to many SMT checks.
• Some comparisons are not supported ((unsigned)x == (unsigned)y).
• Destruction of GSA is currently not proven correct.

18

A Note on GSA to Hardware Conversion
x0 := 10

i0 := 11

i1 < n3

x1 < 94

x2 := x1 + 25 x1 > 507

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)
• Currently we only

implemented control-flow
semantics for GSA.

• One can formulate Dataflow
semantics.

• It should map quite nicely to
circuits (however efficiency
becomes an issue).

19

A Note on GSA to Hardware Conversion
x0 := 10

i0 := 11

nop3

nop4

x2 := x1 + 25 nop7

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)
• Currently we only

implemented control-flow
semantics for GSA.

• One can formulate Dataflow
semantics.

• It should map quite nicely to
circuits (however efficiency
becomes an issue).

19

A Note on GSA to Hardware Conversion
x0 := 10

i0 := 11

nop3

nop4

x2 := x1 + 25 nop7

x3 := x1 + 18 x4 := 2 ∗ x110

i2 := i1 + 112

return x615

i1 := µ(i0, i2)
x1 := µ(x0, x5)

x5 := γ((x1 < 9, x2),

(x1 ≥ 9 ∧ x1 > 50, x3),

(x1 ≥ 9 ∧ x1 ≤ 50, x4))

x6 := η(i1 ≥ n, x1)
• Currently we only

implemented control-flow
semantics for GSA.

• One can formulate Dataflow
semantics.

• It should map quite nicely to
circuits (however efficiency
becomes an issue).

19

Summary and On-going Work

Summary, and On-going Work

Implementation within CompCertSSA
Prior pass needed for Gated SSA: loop normalization
Gated SSA: syntax and semantics
Correct generation of Gated SSA
On-going work: destruction of Gated SSA to SSA
• Rebuild control-flow information, conforms to CFG

Future work: 3 Ph.D. projects starting in Rennes and London
Full-fledge gated SSA as a dependency graph
Integrate into verified dynamic HLS toolchain

20

Thank you

Any Questions?

21

Semantics of Gated SSA

Eta
i = rd ← η(q, r) rs |=p q ⇓ 1 bη ⊢ rs E

⇝ rs′

⌊i :: bη⌋ ⊢ rs E
⇝ rs′[rd 7→ rs(r)]

Mergeγ

i = rd ← γ(
»

(q, r)) rs |=p qn ⇓ 1

bM, k ⊢ rs M
⇝ rs′

i :: bM, k ⊢ rs M
⇝ rs′[rd 7→ rs(rn)]

Mergeµ

i = rd ← µ(r0, r1) k ∈ {0, 1}
bM, k ⊢ rs M

⇝ rs′

i :: bM, k ⊢ rs M
⇝ rs′[rd 7→ rs(rk)]

NJoin
f .I(l) = ⌊Inop(l ′)⌋ f /⋎ l ′

f .E(l) ⊢ rs E
⇝ rs′

⊢ S(f , l , rs)→ S(f , l ′, rs′)

Join
f .I(l) = ⌊Inop(l ′)⌋ f ⋎ l ′

f .M(l ′) = ⌊bM⌋ f .E(l) ⊢ rs E
⇝ rs′

preds(f , l ′)k = l bM, k ⊢ rs′ M
⇝ rs′′

⊢ S(f , l , rs)→ S(f , l ′, rs′′)

22

References i

Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988).
Detecting equality of variables in programs.
In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’88, page 1–11, New York, NY, USA. Association for Computing Machinery.
Arenaz, M., Amoedo, P., and Touriño, J. (2008).
Efficiently building the gated single assignment form in codes with pointers in modern
optimizing compilers.
In Luque, E., Margalef, T., and Beńıtez, D., editors, Euro-Par 2008 – Parallel Processing, pages 360–369,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Derrien, S., Marty, T., Rokicki, S., and Yuki, T. (2020).
Toward speculative loop pipelining for high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):4229–4239.

23

References ii

Havlak, P. (1994).
Construction of thinned gated single-assignment form.
In Banerjee, U., Gelernter, D., Nicolau, A., and Padua, D., editors, Languages and Compilers for Parallel
Computing, pages 477–499, Berlin, Heidelberg. Springer Berlin Heidelberg.
Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990).
The program dependence web: A representation supporting control-, data-, and demand-driven
interpretation of imperative languages.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, page 257–271, New York, NY, USA. Association for Computing Machinery.
Sampaio, D., Martins, R., Collange, C., and Pereira, F. M. Q. (2012).
Divergence analysis with affine constraints.
In 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing,
pages 67–74.
Tarjan, R. E. (1981).
Fast algorithms for solving path problems.
J. ACM, 28(3):594–614.

24

References iii

Tristan, J.-B., Govereau, P., and Morrisett, G. (2011).
Evaluating value-graph translation validation for LLVM.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, page 295–305, New York, NY, USA. Association for Computing Machinery.
Tu, P. and Padua, D. (1995).
Gated ssa-based demand-driven symbolic analysis for parallelizing compilers.
In Proceedings of the 9th International Conference on Supercomputing, ICS ’95, page 414–423, New York,
NY, USA. Association for Computing Machinery.

25

Verified Compilers: CompCert

X.Leroy, S.Blazy et al. 2005-present https://compcert.org/

From CompCert C down to Assembly
20 passes, 11 IRs, targets PPC, ARM, x86, Risc-V
Optos: const. prop., CSE, DCE, tailcalls, inlining
Formally verified using the Coq proof assistant
Compiler programmed, specified, and proved in Coq
Extracted to efficient OCaml code

CompCert is mature, commercialized by AbsInt
Airbus (fly-by-wire soft.), MTU (control soft. for emergency power
generators)
Conformance to the certification process IEC 60880
Performance gain in estimated WCET
2022: ACM Software System award, ACM SIGPLAN Programming
Languages Software award

26

https://compcert.org/

Verified Compilers: CompCert

X.Leroy, S.Blazy et al. 2005-present https://compcert.org/

From CompCert C down to Assembly
20 passes, 11 IRs, targets PPC, ARM, x86, Risc-V
Optos: const. prop., CSE, DCE, tailcalls, inlining
Formally verified using the Coq proof assistant
Compiler programmed, specified, and proved in Coq
Extracted to efficient OCaml code
CompCert is mature, commercialized by AbsInt
Airbus (fly-by-wire soft.), MTU (control soft. for emergency power
generators)
Conformance to the certification process IEC 60880
Performance gain in estimated WCET
2022: ACM Software System award, ACM SIGPLAN Programming
Languages Software award 26

https://compcert.org/

This Work

• Gated SSA, a compiler IR famous for:
• optimizations in parallelizing compilers [Arenaz et al., 2008]
• high-level synthesis [Derrien et al., 2020]
• code generation for GPUs [Sampaio et al., 2012]

• Semantics and correctness of generation
• Focus on gates, in isolation of other challenges

27

Static Single Assignment (SSA)

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT, . . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

28

Static Single Assignment (SSA)

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT, . . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version

Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

28

Static Single Assignment (SSA)

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT, . . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!

Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

28

Static Single Assignment (SSA)

Introduced in late 80’s [Alpern et al., 1988]
Now widely adopted in compiler community
GCC, LLVM, Java HotSpot JIT, . . .
SSA: Variables with unique definition point

Straight-line code
Definitions: fresh variable, version number
Uses: rename variable, pick right version
Control-flow join points
Which version should be used? Depends!
Dedicated instruction x3 ← ϕ(x1, x2)Based on control-flow, select right argument

28

CompCertSSA: an SSA-based Middle-end for CompCert

Middle-end: optimization
RTL: 3-address code, virtual registers, CFG representation
SSA: RTL + ϕ-instructions + invariants
Realistic implementation: GVN, sparse cond. c. pro., coalescing
State-of-the-art, similar to LLVM and GCC

Ultimate goals
Understand semantic foundations of SSA techniques
Same formal guarantees as CompCert
No negative impact on code performance

https://compcertssa.gitlabpages.inria.fr/

29

https://compcertssa.gitlabpages.inria.fr/

CompCertSSA: an SSA-based Middle-end for CompCert

Middle-end: optimization
RTL: 3-address code, virtual registers, CFG representation
SSA: RTL + ϕ-instructions + invariants
Realistic implementation: GVN, sparse cond. c. pro., coalescing
State-of-the-art, similar to LLVM and GCC
Ultimate goals
Understand semantic foundations of SSA techniques
Same formal guarantees as CompCert
No negative impact on code performance

https://compcertssa.gitlabpages.inria.fr/

29

https://compcertssa.gitlabpages.inria.fr/

SSA: semantics

Challenges: integrate well in CompCert compiler chain
Be close to RTL semantics
Be as intuitive as informal definition given in [Alpern et al., 1988]
Execution states and transition relation, as in RTL

⊢ S(f , l , rs)→ S(f , l ′, rs′)

Execute in a single small-step:
1 current instruction
2 and potential ϕ-block at successor label

Remarks:
Prior RTL normalization: only an Inop can lead to a join point
Parallel assignment semantics for ϕ-blocks

30

From SSA to Gated SSA

SSA strengths
CFG-based representation: simple operational semantics
ϕ-functions already capture def/use dependencies
SSA weaknesses
Semantics of ϕ-functions depends on control-flow
Non-local semantics of ϕ-functions: S(f , l , rs) not enough
Some dependencies are still implicit
Gated SSA: gates turn control-dep. into data-dep.
Building block of Program Dependence Web [Ottenstein et al., 1990]
Ignore some dependencies [Havlak, 1994]
Symbolic analysis for parallelizing compiler [Tu and Padua, 1995]

31

Gated SSA: State of Affairs

Key component, alas not described in papers!
Numerous variants
Each come with own notion of dependencies
No reference implementation, no specification
No formal semantics, partial and informal prose
⇒We need a semantics and some expected properties for this critical component

Disclaimer
Baby steps: focus on gates and generation
No performance evaluation yet!

32

Invariants for Gates: Coherence and Exclusivity

Predicates: Main technical point in generation algorithm
Generation algorithm: Single-source path expression problem (regexp on path cond.)
[Tarjan, 1981]
Predicate matrix P
Gates: syntactical, global information
Pi,j = set of paths from i to j in CFG of f

Two intrinsic properties for rd ← γ((p1, r1), (p2, r2))

• Coherence: gates are characterizing correct paths
• Well-exclusivity: gates in γ-functions are precise enough

Intuition: in rd ← γ((p1, r1), (p2, r2), (p3, r3)),
p1, p2 and p3 must be enough to pick one ri

33

Coherence Property of Predicates

(Local) Coherence property f |= P coh (i ,n)
f is the SSA function
i and n are nodes in CFG of f , with i strictly dominates n

Pi,1 Pi,2 · · · Pi,m

Pi,n

∨
p∈preds(f ,n)(Pi,p ∧ cp,n)

⇓
Pi,n

c1,n

c2,n

cm,n

Evaluability of predicates
Predicates: piece of syntax
Variables in conditions not always defined at runtime: use of a 3-valued logic

34

Summary, and On-going Work

Implementation within CompCertSSA
Prior pass needed for Gated SSA: loop normalization
Gated SSA: syntax and semantics
Correct generation of Gated SSA
On-going work: destruction of Gated SSA to SSA
• Rebuild control-flow information, conforms to CFG

Future work: 3 Ph.D. projects starting in Rennes and London
Full-fledge gated SSA as a dependency graph
Integrate into verified dynamic HLS toolchain

35

	Refresher on SSA
	Proof of SSA to GSA Translation
	Summary and On-going Work

