Imperial College
London

MATHEMATICS COURSEWORK

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Numerical Analysis of ODEs using
Matlab

Group: 25

Authors:

Mwanakombo Hussein (email: mh4115@ic.ac.uk)
Aufar Laksana (email: apl115@ic.ac.uk)

Zihan Liu (email: z16114@ic.ac.uk)

Calvin Chan (email: cc6815@ic.ac.uk)

Yann Herklotz (email: ymh15@ic.ac.uk)

Date: March 15, 2017

CONTENTS CONTENTS

Contents
1 Introduction 4
2 RL Circuit 5
21 RCEquation. i i i i ittt it i et e 5
2.2 ErrorAnalysis e 16
3 RLC Circuit 20
3.1 RLCCircuitEquation 20
3.2 Runge-Kutta and Coupled Equations 20
3.2.1 Runge-Kutta., 20
3.2.2 Coupled Equations, 21
3.3 Matlab Script e 21
3.3.1 Runge-Kutta 3/8 Function 21
3.3.2 RLCScript. o e e e e e e 22
3.4 Testing differentinputs 22
3.4.1 Step-Signal e 22
3.4.2 Impulsive Signal withdecay 23
3.4.3 SquareWave e 23
344 SineWaveo 26
4 Finite Differences for PDE 28
4.1 1-DHeatEquation 28
4.2 Method e 28
4.3 Matlab Script 28
4.3.1 Boundary Conditions 29
4.3.2 Central Algorithm 29
4.3.3 Choosing Constants, 30
4.3.4 PlottingResults, 30
4.4 Solving the Heat Equation 30
4.4.1 TentFunction, 31
4.4.2 Sinusoidal Function, 31
4.4.3 Inverse HyperbolicSine 32
4.4.4 Exponential 33
5 Bonus 34

5.1 [Initial condition that does not match one or both boundary conditions 34
5.2 Further extend by including constant, non-zero boundary conditions. 35

5.3 Further extend to include time-varying boundary conditions. 36
Appendix: RL Circuit 37
Al HeunMethod e 37
A1l heunm e 37
A.1.2 heunscriptm 37
A2 MidpointMethod L 42

CONTENTS

CONTENTS

A.2.1 midpointm
A.2.2 midpoint scriptm
A3 RalstonMethod
A3.1 ralstonm
A.3.2 ralstonscriptm
A4 ErrorAnalysis
A4.1 errorscriptm
A.4.2 exactsolutionm

B Appendix: RLC Circuit

B.1 RK4Second.m
B.2 RLCscriptm

C Appendix: Finite Differences for PDE

C.1 finitescriptm
C.2 getfunction.m

1 INTRODUCTION

1 Introduction

In this coursework, we focus on solving the differential equation related to circuit
analysis, in particular, RL circuits and RLC circuit using numerical analysis tech-
niques such as the Runge-Kutta method and Heun’s method. Furthermore, we also
simulate the 1-D heat equation and compare the difference of each method in Mat-
lab.

In part one we encounter a high-pass filter (RL circuit) which takes an input signal
and only passes the higher frequency components. The purpose of this exercise is
to calculate the output signal using midpoint, Heun’s and Ralston’s method. We
further compare the output we have to an exact solution to determine the error in
each numerical method.

Figure 1: Series RL Circuit

In part two we encounter a harmonic oscillator (RLC circuit), namely a device that
resonates to a sinusoidal input signal. RLC circuits are commonly used as a bandpass
filter circuit. The purpose of this exercise is to calculate the output signal using
Runge-Kutta 3/8 method, which is introduced in the original paper of Numerical
Analysis of Runge-Kutta but not as commonly used as the classic Runge-Kutta 4th
order method.

Then, we encounter the 1-D heat equation in part 3, which is an equation to
calculate the thermal energy transfer from regions of higher temperature to regions
of lower temperature in a period of time. In this case, we are not using the physical
property of the heat/diffusion equation. Instead, we use the finite difference method
with zero boundary condition which is outlined in lectures to solve and simulate the
equation.

2 RL CIRCUIT

2 RL Circuit

2.1 RC Equation

1. Step signal with amplitude Vin = 3.5V

With the step signal as an input we observed the current of the inductor increas-
ing from O to 7A gradually (Figure 2), since the current through the inductor cant
change instantaneously. To preserve the fact that the inductor is unable to change
instantaneously, the output voltage jumps to 3.5 volts creating no voltage difference
across the RL components, thereby no current flow. For current to flow the voltage
decreases exponentially, since the voltage across the inductor can change instantly
(Figure 3). The rate of change (the slope) is greatest at the beginning, when the cur-
rent is highest. The ratio R/L determines the steepness of the exponential response.

(Heaviside) VM versus time (Heaviside) Vom versus time

0

. \
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.5 1 1.5 2 25 3 3.5 4

Time Time «10%
(seconds) (seconds)

Figure 2: Heaviside V,,; against Figure 3: Heaviside V,,; against
Time Time

Kirchoff’s is applied:

Viult) = Rig (1) + Ly (1

dt
When we rearrange the equation we get:
diL—(t) — —Bdt
; ‘/ill
(-2 L
We integrate both sides:
J‘lL(t) dx R Jf
0o x-Yuld " L),

result of integration:

2 RL CIRCUIT

2.1 RC Equation

i(t) _ ViR(f) R
P T
ir(0) - =
I0 is the current at t(0) once we take inverse log we get

Vi (t . Vo (t). _r

i(0) = 00 (iy(0) - YD) o-f

Initially IO is O therefore we get:
Viat) _ Vinlt) _,
R

(1) =
i(t) = =12
using the equation supplied the output is given by:

Vour = Vin(t) — RiL(2)
The step input results to the expected output with all three second-order Runge

Vour versus time (original function)

3.5

Kutta methods: Heun, Midpoint and Ralston.

VOu versus time (Heaviside)

3.5

05F N
0 L L B — =S L
0 0.005 0.01 0.015 0.02 0.025 0.03
Time
(seconds)

051 .
DO 0.[;05 0.1‘)1 — 0.0‘1; - 70.‘02 0.625 0.03
(seggl'ijs)
Figure 5: The Ralson method Heavi-

The Midpoint method
side

Figure 4:
Heaviside

2. Impulsive signal and decay
) 2
Vin = Vin(t)exp{_?}

Vin = V:in(t)exp{_;}

With V;,, = 3.5V and 7 = 150(us)? resp.
Using the same argument above, we see that with an input of an exponential
function, we numerically expect V,,,; to be an exponential function as well. This was

observed using Heun, Midpoint and Ralston.

2 RL CIRCUIT

2.1 RC Equation

3. Sine Wave with amplitude V;,, = 4V and different periods T = 150 us, T
= 15us, T = 400us, T = 1100us.

Heun We observe with Heun that with periods of 150us increasing to 1100us, the
expected output of a sinewave is seen. However when the period is much smaller,
the input sinewave produces an incorrect output that resembles a triangle wave, as
seen for the example of 15us.

(Sine wave) Vom versus time (T=0.000015)
T T T T

4
| | | | | | | | |
st] (\ A Y A I
| i | | I | | i Il | i
I I { | \ I [I [\ I\ \
[I I ‘M | I [I ‘\ |
LI \ | | | I I
G T T S A B A
M L O R O R R
| | | | | \ | |
IS | \ \ | o \ \
|| || NI AEAEEEE
| \ | | [| |
3% ol [| | | []
> 2 “ || | | [)
\ | | | | |
I [|) | |
af b F [L]
I T ‘\ ‘ [| | I ‘\ |
N | |
»2w TR \‘\ || Vo ‘\
i \| \ \ | \ i \ | |
Y A | N VB [A BT R
| | |
| \l Il | \(|| | \l \ |
K \ | | | | | \ | |
(/N N S R D
4 I I
2,002 2.0925 2,003 2.0935 2.004 2.0945
Time «10%
(seconds)
.
Figure 6: T = 150pus
(Sine wave) V, Versus time (T=0.0011)
4 ¥ T T T T
. [| | O | |
[A O A L I
3k || | | \‘ \‘ N I I il ““ I
H “\ ‘\ A \“ ‘\ ‘\ A R
O Il
2 || | ‘ ‘ | | | | | ‘ [
‘ | | | ‘ [N |
‘ NI I AN AN
|
1? ‘ ‘ | o | R “ I
|
ol | 1] “ [| “ | “ Ll |
<= || | || . 1]
>g§ NN ‘ “ ‘ | | |1 \‘ | “ Ll
ap RN N
| | | | | [
‘ ‘ ‘ ‘ NN | | [‘\ | |
o | NIRRT IRIRI
200 RN
‘M I \“ \“ [1] | | | “ ‘\ i
Eya | | | | | [T Tt
|l]
\/ [/ B . I vt
Y U/ J J v v J J i
5
1.36 1.38 1.4 1.42 1.44 1.46 1.48
Time 104
(seconds)

Figure 8: T = 1100pus

(Sine wave) Vom versus time (T=0.00015)
T T 7 T T

4 - ‘ A
I\ I\ I\ | \ | \ \ I\
| N I | | N
| | Lo | |

L O
| |
| AR “ [I “‘ | H | “ I

oL | M1 ‘\ I I | | Mol oA
\ ININININININInIn NI
| | [[1 | | [1] [[|1 | |

1h | | | | | I | |
. | | |
ERANEEERERARRNRRERRNRE R
ol | | R [[I | [(I
sz | |
83 “ ‘ | “ L “ ERE L] ‘ “ I “ |

R Ry [1] LT ‘ B

|| | | | | | |
| | P

|| | | L] 1] L]
| N ‘ | Il | []

2t || | [| | 1
‘ [\ || \ I ‘

I | | [[| | [

| | I | [N | | I

E1 | | |1 ‘“ | \“ [1] M‘ | “‘
| | | |

VoV

al ! [A / V
.

2992 2994 2996 2998 3 3002 3004 3006 3.008 301 3012

Time «10%
(seconds)
.
Figure 7: T = 15us
(Sine wave) Vom versus time (T=0.0004)

4 i T R T n T m
| N N | [I\ [l
| | | | |

ab | o [A A A O A R A I
| | A R -
[N | | | | I |
A | L “ ‘ [|

| |

2t [|] || | . | “ |
| N | I | [
| Lo | [| ‘\ L | .

1k | | [|| | e
[| | ||| [| 1]]| I

| | |
[| | |
2o (] F] L
3% | | L] N O A A | | I
=41 [Ll L ‘

AP NN

I . | | | [N
1 I A O | | | |

2 {1 |

2r | [| \ || | [0
| [o | [|
| I | | |

3t | W | | I \“ | “‘ | || |

| | | |/ | | \ | | \ |
| |/ |/ | |/ | | \[| \/
i 1] 1 | 1/ 1/ i \/

all V V Y V U v

5

4350 4400 4450 4500 4550 4600 4650 4700 4750 4800

Time
(seconds)

Figure 9: T = 400pus

2.1

RC Equation

2 RL CIRCUIT

Midpoint The opposite is observed with midpoint. Periods smaller than 1100us
produce an incorrect output resembling a triangle wave. It is observed that the
midpoint method requires a period 1100us and above to form a correct sinusoidal
output.

out
(volt)

out
(volt)

Vom versus time (T=0.000015) (Sine wave)

.
35 4 4.5 5 55
Time
(seconds)

Figure 10: T = 150pus

Vom versus time (T=0.0011) (Sine wave)
T T

Time
(seconds)

Figure 12: T = 1100us

.
13
x107

Vout

out
(volt)

(volt)

Voul versus time (T=0.00015) (Sine wave)

Figure 13: T = 400us

I T T I |
i | \ i i | i i i
AL | O L | Y O | IO | N1
1 1 | A S | N | N | O | I
| | | I | N A T T L A A R
I .
I T I IR O R R \ \ \ AR
[| | | A N O I T O
T L L I O O O B A
1 L Y O Y O A IO O
ERERERERERARARERERRRRERR
. \\‘ M‘ H VIV L]
T I O A O O O O Y L R A
(S [‘ R N
R L R T T O R T R
A R O B Y BT
| R A I | |
1 A | I | B R | | | | i
| N | R A O SO (|
\ | I | | | |l | I
AN T T (N A N S A A B
4 45 5 55 6 6.5 7
Time 1073
(seconds)
Figure 11: T = 15us
Vom versus time (T=0.0004) (Sine wave)

T | I
Tt rrrTol
LI I| | I | | | \ ”\ ‘H‘ i f
N | O A | | I | Lo
1 R O O A
o I O B I B

| I | | [|
IR AN A A A A A A A A
AN A A
I Y A | | |

Y A Y (O I N A | | | .

L [[] |
VOV Y Y e
VLtV VLV

[| |

RN RTRTaT
IR/RRIRIRREE
|| | | I 1] | | | | | |
| | | | 1 | || | | | |

i [| 1/ 1] | | |
/| | | L O O O |
/A A A I A

[S A A L A R A

0‘.5 1‘ 1‘.5 é 2‘.5 3‘ 8‘.5 4
Time %1073

(seconds)

2 RL CIRCUIT

2.1 RC Equ

ation

Ralston From the graph we can observe a result very similar to the midpoint
method.

out
(volt)

(volt)

VOm versus time (T=0.000015) (sine function)

Figure 16: T = 1100us

\ \ | | | \ |
| I I \ I |
I I \ \ | I I
I I I I | I I
I Il \ || | I
I I A A T \)

\ | || \ \ 1
|| “ “ \ |\ | | \‘ \ \
VT O L O B T
| | A T A TR I B \ (I

0 Y Y L T (O O \ :
J J [R | x
| | | L [\
g w Y w]
| ‘\ | ‘\ | \ \ | \
| \ | \ 1
\‘ ‘ ‘ | ‘ “‘ “ “‘ | \ |
| | | | | |l
\ | | | || | | \ Il
| | | | | | | \ |
\| ‘ \| \| \ \| \| \|
|/ \ \| \l | \ \| H‘
‘H\ | \ \ |l | \ 1
| | | | | l | |
.
85 9 95 10 105
Time %107
(seconds)
.
Figure 14: T = 150pus
Vom versus time (T=0.0011) (sine function)

T n n n A A A
| [[I [/']
| | | [I | [
| | | [| [[
| [| | | |
“ (T Y A Y B I A
| || | [| | [
“ [Y L T N I T A !
| [[[| | |
| [| Y T
| | | | | | | | | |
‘ T Y O Y B |
| | (. I | | |
| | | | | | | | |
w [I A T ‘

| | | | | | |

: N \

| | |
e‘ oy o v]

| i i 1 | | | |

|/ | | | | l “ |
| i | | I | -

\ | | \ \ ¥ “‘ |

\/ / ‘\Jﬂ \/ \ |

.
0.01 0.011 0012 0013 0014 0015 0016 0.017

Time
(seconds)

Vou

Vout

(volt)

(volt)

Vom versus time (T=0.00015) (sine function)

L
0.013

I I

0.014 0.0145
Time

(seconds)

L
0.0135

Figure 15: T = 15pus

Vom versus time (T=0.0004) (sine function)

.

8.5 9 9.5 10
Time

(seconds)

Figure 17: T = 400us

105 1

2.1 RC Equation 2 RL CIRCUIT

3. Square Wave with amplitude V;, = 4V and different periods T = 150 ys,
T = 15us, T = 400us, T = 1100us.

Heun We expect the RL circuit output to be a squarewave responding to a square-
wave excitation. This is what is oberved with the Heun method. Heun is not perfect
as we see that with periods shorter than 150us the output does not resemble a
squarewave and is instead, distorted. As the period of the squarewave increases the
output is corrected and resembles a squarewave at 1100ps.

Vout versus time (T=0.000015) (Square wave) Vom versus time (T=0.00015) (Square wave)
6 T T T T T T T

5
4r - . .
J | MONNnn
3—‘ ‘ ‘ ‘
\ \ \
o nornorn 2H ‘ 1
b || IR AN AN A
VI | | Wl
‘ . T I O A O B ‘
5= | | | | | 5=
=2V =2 | ‘ "
| | | | | | | 1 |
| | | |
IR T T
| | | | | | | | | ‘
2 | | | || | | | | || |]
Vol | | || | I 20 || ‘ \ ‘ i
| | | | | | | | | ‘
| | | | | | |
| | | I I 1 | | i 3l 1
at I [| .
Il | Il | Il I |l I
| . I O T 4 | | | |
I I | I I I I I | I I - - S ek - b
Y 5
3.0035 3.004 3.0045 3.005 3.0055 3.006 1.495 1.5 1.505 1.51 1515
Time «x10% Time 104
(seconds) (seconds)
. .
Figure 18: T = 150us Figure 19: T = 15pus
Vom versus time (T=0.0011) (Square wave) V . Versus time (T= 00004) Square wave)
5 T T T T T T T T T 5 T
4l N\ \\ “\\ 7\\\ N ak NN N \
3H 1 3+
2 2
1H 4 1k
>§§ oh ‘ 1 >§§ or
oh 1 ol
-3 H e 3t
4/ / a ,,// ‘/'/’ / 4t VLYl L
5 5
1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 . 7 128 1. 3 . 1 132
Time %104 Time x10%
(seconds) (seconds)
. .
Figure 20: T = 1100us Figure 21: T = 400us

10

2 RL CIRCUIT

2.1 RC Equation

Midpoint The Midpoint method responds worse than the Heun method since the
output is distorted using any period shorter than 400us.

out
(volt)

out
(volt)

Vout versus time (T=0.000015) (Square wave)

.
6.8 7 7.2 7.4 7.6 7.8 8
Time %102
(seconds)

Figure 22: T = 150pus

Vom versus time (T=0.0011) (Square wave)
T T T T

J J
/ \/ S/ ‘ / ‘ / | % . /\)
V L/ % / | |
.
0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016
Time
(seconds)

Figure 24: T = 1100us

Vout
(volt)

out
(volt)

5
"N NN NN NN T
\‘MH\“W NOANNANNDN]
3l H \“ “\‘ H\\‘H H“‘H\H“\‘f
\ RN \ [
T ‘\ | “‘ I

<L>

T

Vom versus time (T=0.00015) (Square wave)

6
4k
| | 1 1 1 -
I \ | \
Vo (I A A A
2t | \ [[|
| | | |
Y A N [
| [R |
| | | | |
| | | | | | |
0F | | (. | \
\				
				\
	1]	i		
2k				
]				
\	\	\ \		
V. \[.				
\l	/		l	/ \/
a4k		l \/ \l \l \| \|		
I	f i \l I			
! ! | | I |
6l
6 62 64 66 68 7 72 74 78 78 8
Time %1073
(seconds)

Figure 23: T = 15pus

V0 . Versus time (T=0.0004) (Square wave)
T T T T

\‘H

‘ LT [T
| \M‘\“\“H‘u‘m“‘ HHH“N
\‘\‘H“ i ‘\ il
AEaInaim M“

|

| e |
2] “““ [1] “ ““‘\“ \H\‘ “‘“
iinnN “ I ‘ “ ‘ IRIRINI ‘ | I
yyyy buugul U JRINIRIninini

.
0008 0009 001 0.011 0012 0013 0014
Time
(seconds)

Figure 25: T = 400us

11

2.1 RC Equation

2 RL CIRCUIT

Ralston The Ralston method responds worse than both the Heun and Midpoint
method since the output is distorted using any period shorter than 1100ps.

Vou(versus time (T=0.000015) (square function)

out
(volt)
=)

.
5 5.2 5.4 5.6 5.8 6 6.2 6.4
Time
(seconds)

Figure 26: T = 150us

V 1 Versus time (T 0.0011) (square functlon)

.
6.6 6.8
%1073

©

“
4\\
“\ ‘H |

Il \ H‘

- ~

out
(volt)
°

&

V

\\ Il
i
i
H
\\H

.
0.008 0.01 0.012 0.014 0.016 0.018
Time
(seconds)

Figure 28: T = 1100us

L L
0.02 0.022

(volt)

(volt)

ch versus time (T=0.00015) (square function)

4 — — M M

.
6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
Time %1073

(seconds)

Figure 27: T = 15pus

Vom versus time (T=0.0004) (square function)
T T

.
0.013 0.0135 0.014 0.0145 0.015 0.0155 0.016 0.0165
Time
(seconds)

Figure 29: T = 400us

12

2 RL CIRCUIT 2.1 RC Equation

3. Sawtooth Wave with amplitude V;,, = 4V and different periods T = 150
us, T = 15us, T = 400us, T = 1100us.

Heun The RL circuit response is meant to be a sawtooth wave responding to a
sawtooth wave input. The Heun method gives a great response at periods 1100us
and larger. Any periods smaller than this produces distorted outputs, but can still be
identified as sawtooth waves.

Vm versus time (T=0.000015) (Sawtooth wave) Vom versus time (T=0.00015) (Sawtooth wave)

6 5
4t 4
4 / | | | | l
3 / ‘ / ‘ / / [/
\ | 2 ‘ / / ‘ | ‘ [/ / 1
2 I\ \ ‘ / | | ‘ / /
| / / ‘ / / [/ |
[\ \ 1F | [‘ / / | i
5= \ sz ‘ [| ‘ | | /
S >80 | | [] | /
1 | ‘ [‘ / / ‘ [
| | | / /
-2 ‘ i / | ‘ / |
27 ‘ / |/ ‘ / [
3l “f‘ / / ‘ ‘
) / /
\ , ' ¥ |
4t 4
Y - 5L
2.438 2.4382 2.4384 2.4386 2.4388 2.439 2.4392 2.4394 2.4396 2.4398 2.44 2678 2.68 2.682 2.684 2.686 2.688 2.69
Time %104 Time x10*
(seconds) (seconds)
. .
Figure 30: T = 150us Figure 31: T = 15pus
Vom versus time (T=0.0011) (Sawtooth wave) Vom versus time (T=0.0004) (Sawtooth wave)
4 T T T T T T T 5 T T T T T T
| ‘ 1 | [| 1
|/ / / / / / / / [| | ns
s / | / / / / / / / | I | | i | | | I
. 3f) |
2if / [[|
1+ / / | | |
it N
0 / | [/
52 52 | / | /
58 >°2 0f [[
1k | |
| | | [| [[[| / - | / [| / / [/
S I N A A N
‘ | | | ‘ ‘ | | 2F | | I [| [| | | /
M | | | | | | | | | [8r \“ [‘ [/ | ‘ [
P I \ [S B B 1 1 A A N N O O A
. 5
132 133 134 135 136 137 138 1.39 1.4 141 142 2135 214 2145 215 2155 216 2.165 217
Time %104 Time «10%
(seconds) (seconds)

Figure 32: T = 1100us Figure 33: T = 400pus

13

2.1 RC Equation 2 RL CIRCUIT

Midpoint The maximum voltage output increases with the period increases, and it
performs the best at 400us.

Vou(versus time (T=0.000015) (Sawtooth wave) Vom versus time (T=0.00015) (Sawtooth wave)
5 T T T T T 5 T T T T T
4t 4-
A ‘ I \ A A ‘
\ [\ I\ \ |
\ |\ |\ |
Vo A |
[\ [\ |
Vool [\
L= Vol Vo = |
3% \ \ \ EE -
>0 3 \ | > 2 \
| \ |
\ | \
\ | \ |
\ | \/ \/ \ \|
V \ | \| \| \
-2+ \ v \ 1 \‘)‘ R
3 3+
4t 1 4]
5l 5L
0.0126 0.0128 0.013 0.0132 0.0134 0.0136 0.0138 0.014 0.0142 0.0144 0.0146 0.014 0.0145 0.015 0.0155 0.016 0.0165
Time Time
(seconds) (seconds)
. .
Figure 34: T = 150us Figure 35: T = 15us
Vom versus time (T=0.0011) (Sawtooth wave) Vom versus time (T=0.0004) (Sawtooth wave)
4 1‘ y » — T 47 : T : T : T . T : 7
/ / / / / / f /\ / / /| \
J / / | | / I N | \‘ /| “ |
[A | R I a /| u a x |
/ /| / / /| \ /| /
2 [[| [| ‘ . 2f | | | /o {
/ / \ \ [
/| [\ [\ / | | | \ \
o [‘ | \ , 1k | “ | |
/ / \ \ w ‘ |
‘ [‘ \ | \ \ ‘
| / / \
_or/ ‘ / ‘ i | ‘ [1 _or | | | \ |
53 o | 3% ‘r \ ‘ “
2 / |/ / | / > 2 \ | |
Sy / | I A | \ x |
/ / / / | |/ | |/
[o ‘) V x
2 ‘ [/ ‘ [‘ / [21 !
3 / ‘ / / 3t
A
4l 1 4t
. 5L
0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.016 0.0162 0.0164 0.0166 0.0168 0.017 0.0172 0.0174 0.0176 0.0178 0.018
Time Time
(seconds) (seconds)

Figure 36: T = 1100us Figure 37: T = 400pus

14

2 RL CIRCUIT

2.1 RC Equation

Ralston The trend of Ralston plot is similar to the other methods.

ch versus time (
T

(T=0.000015)(sawtooth function)

L
0.0155 0.016

L L L
0.0165 0.017 0.0175

Time
(seconds)

Figure 38: T = 150us

4 T T

Va .t Versus time (T=0.0011)(sawtooth function)

0.01 0.011

0.013 0.014 0.015
Time
(seconds)

Figure 40: T = 1100us

0.016

Vom versus time (T=0.00015)(sawtooth function)
5 T T T T T T T T

4l L L L L L L L L L L
0.0146 0.0148 0.015 0.0152 0.0154 0.0156 0.0158 0.016 0.0162 0.0164 0.0166

Time
(seconds)

Figure 39: T = 15pus

Vaut versus time (T=0.0004)(sawtooth function)
4 T T T T T

0.0145 0.015 0.0155 0.016 0.0165
Time
(seconds)

Figure 41: T = 400us

0.017

15

2.2 Error Analysis 2 RL CIRCUIT

2.2 Error Analysis

The exact solution was obtained using the reliable method of manually calculating
the differential equation.

Exact solution derivation: The error was obtained as a function of t: Error is the
term used to denote the amount by which an approximation fails to equal the exact
solution. This is given by:

Error = Exact(Exact Solution) Vout(Numerical Solution).
Below are the graphs of the error function.

HEUN ERROR (LOGLOG PLOT)

Error
{volts)
&

-0t

| |||| VY R A T AR VA '|||| |
ap YU 'J vVouov

1 4400 4600 4800 5000 5200 5400 5600 5800
Step size
(h)
Figure 42
MIDPOINT ERROR
3 T T T T
n \ f f f
) |I I|nlI || || |I"'|| |I'.| |||’I|| |||"I|| l('lll |||| || ||| || ||| || |II |
A A A A A Mo
L L
AR AR
NN INInininEnE
QE||||||||||||||||||||||||||||||_
méu|||||||||||||||||||||| ||||||||||||
RIBIRIRIRIRIRIRIRIREE
HIRIRT IR IRIA
INIRINIEIREIEnEn
NIRRT
. Y Y Y R T R AN T
: lll vV vy l'J l'J l'..ll I'..'I U l'JI lhll lhll
-3 L L L L L
(5] 6.2 6.4 6.6 6.8 7 72 74 76
Time «103
(sec)
Figure 43

16

2 RL CIRCUIT 2.2 Error Analysis

RALSTON ERROR

Error
(volts)
o

0.014 0.01420.0144 0.0146 0.0148 0.015 0.01520.0154 0.0156 0.0158
Time
(sec)

Figure 44

The results are realistic since the exact and numerical solution are both cosine
waves, therefore the error between the two waves is expected to be a cosine wave
as well.

To obtain an accurate log-log plot to show the order of the error by varying the
step size h we took these steps:

We programmed a for loop that increases the value of the step size by a power of
2 each time. The for loop starts with the index at 16 and loops 10 times. This was
done since the step size was updated using the equation h = 271"4¢X After trial and
error, we observed indexes too small led to a step size thats too large and thereby
produces large errors as results. The index and the range were chosen carefully. The
index starts at 16 and increases as this is the range whereby the error produced by
each method was a stable sine graph.

The for loop produces decreasing h values from 2716 to 2725.
Log-log Error Analysis

There are two types of truncation errors we can analyse with these methods.

1. Local Error This is the error within one step due to application of the numerical
method.

2. Propagation Error This is the error due to previous local errors. Global Trun-
cation Error = Local + Propagation

17

2.2 Error Analysis 2 RL CIRCUIT

When the local truncation error is O(h"*!)then the global truncation error is O(h").
Midpoint and Heun both have a Local Error (k%) and Global Error O(h?). Second
order Runga Kutta methods have a global truncation error of O(h?). According to
the truncation error we have derived previously, the log-log graphs gradient should
be theoretically at h?.

Therefore, we expect the global error of error of the Heun, Midpoint and Ralston
methods to be the same. We observe this with the Ralston and Midpoint method.
We can clearly observe how close the errors of these two methods are in the below
figure.

ERROR COMPARISON

ERROR COMPARISON
0.948 *

* Ralston{loglogjerror
Heun(loglogerror
* Midpointiloglogjeror

* Ralston(loglog jerror
* Midpoint{loglogleror

0.846

0.944

N 52
s &8 o =
= = o 18
”t_lgomz * S
1.6
0.94 1.4
E
1.2
0.938
* 1 * * * * * * * * *

0.936 \ \ . \
El 15 14 13 A2
Step size
(h)

15 4 3 12 -1 -18 A7 -16
Step size

(h)

8 A7 16

Figure 46: Heun - Midpoint - Ralston
error comparison

Figure 45: Ralston - Midpoint error
comparison

These are the log-log plots that show the order of the error to be O(h?) for all
methods (Heun, Midpoint and Ralston) since the shape of these graphs resemble
a parabola on a non log-log plot. We observe for all the methods a straight line in
the log-log plot when the step size is less than 1076 which is what we as a group
expected to see. This is based off our understanding of plotting non linear graphs
onto a log-log plot to make it linear. We also observed that since our error is very
small converting the plot to log-log using Matlabs’ log-log function would produce
a semilog graph(with log on the X axis) because of the small values on the y axis.
We also observed exponential increases in the error when the step size is too large(
in our case larger than 1076) thereby causing our straight line log-log graph to no
longer be linear as the step size is increased. This result is due to the fact that when
step size is increased the approximation methods becomes more inaccurate thereby
leading to a larger error that’s no longer O(h).

It is obvious that the truncation error is small in our case because the exact
mathematical formula we used is precise and accurate. Furthermore, it is clear that
the error produced by the Heun method is much larger than both Midpoint and
Ralston which have much smaller errors. However, in general, all the methods we
have used perform linearly in the log-log graphs.

18

B

2 RL CIRCUIT

2.2

Error Analysis

Error

Error

(volts)

Error

12.25

12.2

(volts)

12.15

121

12.05

HEUN ERROR

10"

10°€ 10°° 10°
Step size
(h)
Figure 47
MIDPOINT ERROR

0.35

0.34

0.33

0.32

0.31

0.3

0.29

0.28

0.27

0.26

+*

L " $ L

107

"
10°8 10°%° 10
Step size

(h)

Figure 48

0.33

0.32

0.31

0.26

RALSTON ERROR

*
L " S L

10°¢ 10° 1074
Step size

(h)

Figure 49

19

3 RLC CIRCUIT

3 RLC Circuit

3.1 RLC Circuit Equation

An RLC circuit consists of a resistor, capacitor and an inductor. For the purpose of
this example, we have a series RLC circuit, as shown in the figure below.

L
+ E{ -
+ ["+
Vin @) vR §R Vot
_ _
- Ue 4
| |
| |
o

Figure 50: Series RLC Circuit

By applying Kirchoff’s Voltage Law for each of the three components of the
circuit, we can obtain the differential equation representing the circuit.

VR + VL + Ve = Viy(t)

t

d
LEZL(f) + RZL(f) + %J; iL(T)dT = Vin(t)

L ety + REqety+ Lac() = Vint)
dtqu + dth +ch = Vin

We assume that the capacitor is pre-charged at time t = 0, with q¢(0) = 500nC.
We also assume that no current flows through the inductor at time t = 0, so i;,(0) =
£4c(0) = OA.

We were also given the values of resistances, capacitance and inductance of the
components in the circuit:

R = 250Q), C = 3uF, L = 650mH

3.2 Runge-Kutta and Coupled Equations
3.2.1 Runge-Kutta

Runge-Kutta 4th order method is a numerical technique used to solve ordinary dif-

ferential equations of the form % = f(x,v), where y(0) = yy. Therefore, we can only

use it to solve first order ordinary differential equations.

20

3 RLC CIRCUIT 3.3 Matlab Script

3.2.2 Coupled Equations

In order to solve the RLC equation derived earlier, we need to rewrite the equation
in a coupled form. We take the equation:

2 d 1
Lo5ac(t)+ R=qc(t) + =4c(t) = Via(t)
By letting y = %qc(t) =gandy = j—:zqc(t) = ¢, we can do:

|
Li+Rq+=q=Vin

. 1
Ly+Ry+=q=Vin

And we end up with:

Equation 1:
y=4q
Equation 2:
_ Vin—Ry-2q
- L

3.3 Matlab Script
3.3.1 Runge-Kutta 3/8 Function

The Runge-Kutta 3/8 method is similar to the classical method, since it evaluates
the integrand f(x,y) four times per step. In order to obtain the next step in the
approximation, we must calculate:

1
Viel =i+ g(kl + 3k, + 3k3 + ky)

Where:

ki =hf(x;,v;)

B h kq
ko = hf(x; + 5:}?1 + g)

2h k
ks =hf(x; +?:%’ —§1+k2)

k4 = hf(xi +h,yi +k1 —k2 +k3)

and x; = xo +ih

21

3.4 Testing different inputs 3 RLC CIRCUIT

3.3.2 RLC Script

The RLC script was used to simulate the circuit, by setting up the values of the
resistor, capacitor, inductor and the initial conditions. It was also used to determine
the step-size h, as well as the number of iterations. In order to test the circuit, we
used several different inputs, such as a step-function, an impulse with an exponential
decay, a square wave and a sinusoidal wave.

3.4 Testing different inputs
3.4.1 Step-Signal

For this input, we have a step-function with an amplitude of 5V. When the capacitor
gets charged, there is no further change in voltage, so no current passes and so the
voltage across the resistor goes to zero.

From manual calculation, we can obtain the Resonance Frequency, wg = \L%C =
716rad/s = 113Hz. We can also get the Attenuation, which is a measure of how fast
the transient response will die away after the input is removed, a = 2—RL =192. By
comparing the attenuation value with the resonance frequency, we can determine
that the system is underdamped, since w, > . This gives us a response of a decaying

oscillation, of frequency w,; = /wg —a? = 110Hz. This frequency can be seen in the
figure below.

The system experiences a transient behavior when the input function is a step
function, the transient happened because the voltage of a capacitor does not change
instantaneously. And because of out combination of input resistance, capacitance
the system have a nature of underdamping.

0.8 | \
0.6 [
|
04l |

0.2

Amplitude

0.2 f \

04 \ /"‘

0.6
0 0.005 0.01 0015 002 0025 0.03 0.085 0.04

Time

Figure 51: Output to a 5V Step-Function

22

3 RLC CIRCUIT

3.4 Testing different inputs

3.4.2

Impulsive Signal with decay

Here we apply an impulse at the input which decays exponentially, described by the

t2
_?}

equation:

Where 7 = 3x107°

Vin = V_inexp{

0 0.005 0.01 0015 0.02

0025

0.03

0.035

Figure 52: Impulsive Signal input

0.04

Amplitude

0.5 7“

-0.5F

-1.5

0

0.02 0.025 0.03 0.035

Time

0.005 0.01 0.015

Figure 53: Output of RLC circuit

From the figures, we can see that the impulse decays to zero very quickly, in less
than 0.0005 seconds. When the impulse is initially applied to the circuit, we can see
the transient response in the output, where it begins to rise, to a maximum of 0.75V.

In comparison, when we applied the step-function to the input, the output reached
1.2V, even though initially, the impulse is of infinite amplitude, and the step-function
had an amplitude of 5V. This is because the impulse decays to zero quickly, which
prevents the RLC circuit from rising.

3.4.3 Square Wave

For this input, we have three square waves with constant amplitudes of 5V. Further
change in voltage was observed due to the nature of the square wave and the con-
stant discharge time of the capacitor. The behavior of the output also changes with

the input square wave frequency.

Amplitude V;, =5V

Vin = V;n *quuare(znf)

f = 5Hz Here we input the square wave with a frequency of 5 hz

23

0.04

3.4 Testing different inputs

3 RLC CIRCUIT

151

0.4

Q |
o
= |
S 057 7
€ |
<C
0r /’A\,jf_,
05 / .
/
AV
1 . ,
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time
4
3 | -
2t \]
|
1 \ .
o)
E | |
= | |
= 0 /\f \\Vv ‘\ﬁ |
£ | |
<< ‘ '
LA T
|
2} ‘]
3+ 4
4 . , . . . , .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time

Figure 54: Output of a 5Hz Squarewave-Function

In the graphs above we can see that the square wave has a similar behavior as
the step function when we set the finishing time to 0.04. This behavior is because
a small section of the square wave acts like a step function. In order to observe the
whole behavior of the function, we then increase the time frame to 0.4.

We can think of the square wave as a set of the step function in both positive
and negative domain, and the transient happens when there is a sudden change in
voltage. Since the input is of a low frequency of 5Hz, we see the transient part decay

before the capacitor has recharged.

f = 100Hz We then apply a square wave of frequency 100Hz
From the figure, we can see that the underdamped input has a much shorter

3.4 Testing different inputs

3 RLC CIRCUIT

8
61 [[[
[| “
| |
4+ ‘ | | | [‘
‘ | I‘ ‘ | ‘\
| |
\ ‘ \ |
J A R A
) | | | ‘ I
E 0 } | | | |
-_—]
2 | | f
< | | [
2 |
/ | | |
|
-4 | | |
| |
| | |
/ | |
-6 F / / J /
0 0.01 002 003 004 0.05 006 0.07 0.08 0.09
Time

Figure 55: Output of a 100Hz Squarewave-Function

time of changing the behavior of the circuit than the last frequency.

f = 500Hz Finally we change the input to a square wave with a frequency of 500Hz

1.5
[
Y
«‘/ ‘ |
| ‘ [
| J N
0.5 | | |
| / / | |
(0] \“ | | ’ (| | | |
o | | | | |
E | | N
R A L
IS | | |
< J Lo
|
05F | | /
|
| “ “‘ |
At [
|
|
-1.5 * : 3
0 0.005 0.01 0.015 0.02
Time

Figure 56: Output of a 500hz Squarewave-Function

Here we have an even higher frequency, thus the output is almost becoming
a sawtooth function, the peak point of each sawtooth function actually shows the

underdamped behavior of the circuit if you link them together.

25

3.4 Testing different inputs 3 RLC CIRCUIT

3.4.4 Sine Wave

Here, we are testing the RLC output response to sinusoidal waves at the input, V;, =
5sin(2m ft). We applied sinusoids of different frequencies to the input, 5Hz, 100Hz
and 500Hz and observed the output of the circuit.

f = 5Hz When we apply a 5Hz sine wave to the input, we get the following re-
sponse:

0.6

Amplitude

08 L
0 0.005 0.0 0.015 0.02 0.025 0.03 0.035 0.04

Time

Figure 57: A small df value does not show the full response

We notice that the output has not reached a steady state by 0.04 seconds. If we
increase the df value used, we get:

0.6
04|
02|]
0 W

0.2

Amplitude

0.4

0.6

08 : : : : : : : : :
0 005 01 015 02 025 03 035 04 045 05

Time

Figure 58

26

3 RLC CIRCUIT 3.4 Testing different inputs

As we can see from the figure, there is a change in frequency of the output.
Initially, the capacitor is charging up from the sinusoidal input, but since it is an
under damped system, it eventually oscillates at 5Hz. However, we notice that the
amplitude of the sinusoid is about 0.1V, and not the original 5V input.

f = 100Hz When we apply 100Hz to the input of the system,

o
o

s
3 3
2 2
1 % 1
0 %_ 0
1 E El
-2 2
3 3
4] 4
_SD 0.005 0.1 0.015 0.02 0.025 0.03 0.035 0.04 -SD 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Time
Figure 59: 100Hz Sine Wave Figure 60: Output of RLC circuit

From the figure, we can see that in the output, there is a slight phase shift, as
seen by the graph going below the x-axis at time t = 0. This is due to the capac-
itor introducing a phase shift of -90°, since it is the dominating component at low
frequencies. Furthermore, we note that the square wave input becomes a sinusoidal
output, this is due to the capacitor charging and discharging times.

f = 500Hz When we apply 500Hz to the input of the system, we note that the
amplitude of the response is once again quite low. In comparison, at 100Hz, the
amplitude of the response is close to the original 5V sinusoid applied at the input.

This is because the RLC circuit acts as a bandpass filter. We can calculate the
centwe frequency w, = \L%c = 113.97Hz. We can also workout the bandwidth of

the filter Aw = % = 61.21Hz, which means that frequencies between 52.76Hz and
175.18 will be passed, and frequencies outside that range will be suppressed, which
is why the 5 Hz and 500Hz sine wave inputs have a low output amplitude.

27

0.04

4 FINITE DIFFERENCES FOR PDE

05 [

Amplitude

-0.5 1

15
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time

Figure 61: 500Hz sine wave

4 Finite Differences for PDE

4.1 1-D Heat Equation

The 1-D heat equation

dy 9%y
E_W’ 0<x<1, t>0

with zero boundary conditions y(0,t) = y(1,¢) = 0 and initial conditions
v(x,0) = yo(x) can be solved numerically using the finite difference method.

4.2 Method

The finite difference method consists of approximating a differential equation using
difference equations. As the 1-D heat equation depends on x and ¢t we can use
the finite difference method to approximate the heat equation when ¢ = 0 and then

increment ¢ to get the heat equation as it changes over time.

4.3 Matlab Script

There were certain aspects of the finite difference method that had to be considered
when implementing it in Matlab. We had to find the right values that would give the
precision that we wanted and display the results properly. We used a (N +1)x(m+1)
matrix to store all the results from the finite difference method. The matrix has 1

28

4 FINITE DIFFERENCES FOR PDE 4.3 Matlab Script

added to N and m because Matlab starts its index at 1 and we want to go from 0..N
and from 0..m (see Appendix C.1).

4.3.1 Boundary Conditions

First of all, we had to find a way of adding the boundary conditions that we wanted
to use for the finite differences method and still be able to change these easily, be-
cause we had to test different ones. We solved this by writing a Matlab function that
enabled us to choose the function that we wanted to use as a boundary condition.
We could then easily add more functions that could then be used as a boundary
conditions and we could easily test these boundary conditions. The boundary con-
ditions can also be expressed as Uy’, UJ/. This meant that we just had to set all the
numbers at index 1 and index N + 1 to be equal to the initial condition. This way
we could also set the initial condition to be a different constant, or even an equation
that changed with time.

For example, in our script (see Appendix C.1), to get a time varying boundary
condition with function sin(27x), we just assign the right function to the boundary
variables as seen in the example code below.

res(l, :) = sin(2xpi*(0:1/m:1));
res(N+1, :) = sin(2«pi»(0:1/m:1));

4.3.2 Central Algorithm

The main part of the finite difference method is the central algorithm, as this is the
algorithm that is derived from the approximations of the initial differential equation
that we want to solve.

The central algorithm for the 1-D heat equation is calculated by using the fol-
lowing approximations

*y(x,t) y(x+ht)—2y(x,t)+y(x—h,t)
dx? h?

Thenletx=x; — x+h=xjy

1R

PY(Xjty) V(Xja1stm) = 29(Xj,) + 9(Xj1, E)

o0x? h?

_ 1 m m m .

= ﬁ(Uj+1 —2U"+UM) j=1,23,..,N-1

We then can do the same with the left hand side of the heat equation and calculate
using the forward difference method

dy(xt) _y(xt+k)-y(xt)

ot k

N 8y(x]’ tm) _ y(x]" tm+1) _y(le tm)
o k

29

4.4 Solving the Heat Equation 4 FINITE DIFFERENCES FOR PDE

— %(U}”+1 + U]-”’) m=0,1,2,..

When equating both sides we get the following equation that lets us find the value
for the next time period using previously calculated values.

1
Ut = vUM +(1-20)U" +vUfY, %

We want to implement this algorithm for every value from 0..m that we set, and
every value from 0..N. This can be done by using two for loops that will iterate over
the matrix, and for every m, to get m + 1 we will pass the required values to the
equation.

As we have a matrix with all the previous values that have been calculated, we
can use it to get the values of U]."fl, U].m, U].’ﬁl directly from the previous column of
the matrix.

4.3.3 Choosing Constants

We also had to choose a constant value for h, the step size, and k, which is the
difference in time. We did this by setting v = k% = 0.25 as v < 0.5 so that the finite
difference method does not overshoot and give the wrong result, then set & to the
desired precision and calculated k from that.

4.3.4 Plotting Results

We plotted the results on two different graphs. The first one was a 2D plot of the
matrix, where every different line represents a different time. This gave a good
idea of how the heat equation changed over time for constant boundary conditions.
However, when making the boundary conditions a function that varies with time as
well, it became unclear how the heat equation changed over time. That is why we
also plotted the heat equation on a 3D plot. This made the result much more visible
and one could instantly see how the function changed with time.

Another problem we faced was, that as we increased m, because we wanted
the heat equation to run for longer so that we could see the complete effect, we
started to plot too many functions on one graph and couldn’t distinguish between
the different lines anymore. We, therefore, added a variable called step, which skips
the functions with that specific interval. This made it possible to decrease the value
of h by a lot, but still see the full effect of the heat equation over time.

4.4 Solving the Heat Equation

Using the script that we wrote in Matlab we were now able to test it for different
initial conditions, while keeping the boundary conditions constantly at O.

30

4 FINITE DIFFERENCES FOR PDE

4.4 Solving the Heat Equation

4.4.1 Tent Function

Figure 62: Heat equation with tent
function as initial condition, using
N =150, m =7500, step = 500.

Figure 63: Heat equation with tent
function as initial condition, using
N =150, m =5000, step =50.

As we can observe in Figure 62 and Figure 63, the tent function becomes parabolic
over time and also decreases in amplitude over time. This is visualized in Figure 63
as we can clearly see how the amplitude decreases over time. This is expected from
the 1-D heat equation, as over time the heat will disperse through the ends of the

1-D line.

4.4.2 Sinusoidal Function

Figure 64: Heat equation with
Yo(x) = sin(27x) as initial condition,
using N = 150, m = 5000, step =
500.

Figure 65: Heat equation with
yo(x) = sin(27x) as initial condition,
using N =150, m = 5000, step = 50.

Over time, because the sine function has a maximum and a minimum, which are
symmetrical to each other, it means that they will cancel each other out according to
the heat equation, which can be observed in Figure 64.

31

4.4 Solving the Heat Equation 4 FINITE DIFFERENCES FOR PDE

Figure 66: Heat equation with

Yo(x) = [sin(27x)| as initial condition, Figure 67: Heat equation with
using N = 150, m = 5000, step = vo(x) = |sin(27cx)| as initial condition,
500. using N = 150, m = 5000, step = 50.

For yy(x) = |sin(27x)| as initial condition, the function now has two maximum points
instead of a maximum and a minimum. Instead of canceling out over time, it instead
produces a similar result to the tent function and produces a parabolic looking func-
tion over time. This is because, as the boundary condition are constantly 0, the heat
will converge towards the center which is shown by the figures above.

4.4.3 Inverse Hyperbolic Sine

1 Hest cqustion over time, be = 1 30 plt of 10 et squaton over time, b = 1

/ \

Figure 68: Heat equation with Figure 69: Heat equation with
vo(x) = 5sinh™(27x) as initial con- vo(x) = 5sinh™ (27x) as initial con-
dition, using N = 150, m = dition, wusing N = 150, m =
5000, step =500. 5000, step = 50.

As an additional initial condition, we chose to cover yy(x) = 5sinh™'(27x). We
thought it would be interesting to see how the heat equation would react if the
initial condition did not match up with one of the extremes of the function itself,
such as in this case. As we expect with the heat equation, the heat converges to-
wards the center over time to form a symmetrical parabolic function when the initial
conditions are constantly O.

32

4 FINITE DIFFERENCES FOR PDE 4.4 Solving the Heat Equation

4.4.4 Exponential

Figure 70: Heat equation with Figure 71: Heat equation with
Yo(x) = 5e7>* as initial condition, us- Yo(x) = 5e7>* as initial condition, us-
ing N =150, m = 5000, step = 500. ing N =150, m = 5000, step = 50.

We also chose to test the exponential function yy(x) = 5e™>* as this function had
both x = 0, x = 1 were not equal to the boundary conditions of 0, even though as x
increases it will slowly converge towards 0. As the boundary condition is 0, the heat

equation will ensure that the peak moves towards the center and the boundaries will
smooth out where x =0, x =1.

33

5 BONUS

5 Bonus

In this section we continued to experiment on the 1-D heat equation and solved it
with different boundary conditions and different initial conditions to see what results
we can get.

5.1 Initial condition that does not match one or both boundary
conditions

Plots of 1D Heat equation over time, bc =1

—m=0
0.8 ——m =500
m = 1000

0.6 —m=_.
—— m = 5000

X

Figure 72: Heat equation with

Yo(x) = cos(2mx) as initial condition, Figure 73: Heat equation with
using N = 150, m = 5000, step = yo(x) = cos(2mx) as initial condition,
500. using N = 150, m = 5000, step = 50.

We used pg(x) = cos(27tx) to see how the heat equation will run over time when the
initial condition does not match both boundary conditions. As we can see, when
m = 0, the function jumps from O to 1 because that is where the cosine function
would normally start. However, as time goes by, the function converges towards
being a straight line at y(x) =0

34

5 BONUK2 Further extend by including constant, non-zero boundary conditions.

5.2 Further extend by including constant, non-zero boundary con-
ditions.

Figure 74: Heat equation with Figure 75: Heat equation with

Yo(x) = |sin(27x)| as initial condition,
using N =150, m = 5000, step = 500
and boundary conditions = 1.

yo(x) = [sin(27x)| as initial condition,
using N = 150, m = 5000, step = 50
and boundary conditions = 1.

We also tested how the heat equation would develop over time if the initial condi-
tions did not match both boundary conditions and the boundary conditions were not
constantly at 0. We set the boundary conditions to 1, and as we can see in Figure
74 and in Figure 75, instead of converging to y = 0, the function now converges to
y =1 as we let the heat equation run over time.

Figure 76: Heat equation with Figure 77: Heat equation with
vo(x) = 5sinh™(27x) as initial con- vo(x) = 5sinh™(27x) as initial con-
dition, using N = 150, m = dition, using N = 150, m =

5000, step = 500 and boundary con-
ditions = 12 and 0.

5000, step = 50 and boundary con-
ditions = 12 and 0.

For this part we also wanted to see what would happen if the boundary conditions
both didn’t match the initial condition and were different themselves. We predicted

that using an initial condition of 12 and 0 would eventually produce a straight line
with the equation y = —75. As we can observe above in Figures 76 and 77, the line

is approaching that function as time increase to infinity.

35

5.3 Further extend to include time-varying boundary conditions. 5 BONUS

5.3 Further extend to include time-varying boundary conditions.

Figure 78: Heat equation with Figure 79: Heat equation with
vo(x) = 5sinh™(27x) as initial con- vo(x) = 5sinh™(27x) as initial con-
dition, wusing N = 150, m = dition, wusing N = 150, m =
5000, step = 50, where x = 0 bound- 5000, step = 50, where x = 0 bound-
ary condition = 10e* and x = 1 ary condition = 10e* and x = 1
boundary condition = 5sinh™!(27x) boundary condition = 5sinh™!(27x)

Using time-varying boundary conditions produced much more interesting plots that,
however, still followed the pattern that we observed until now. For the first plot
seen in Figures 78 and 79 we observed that, even though the initial boundary condi-
tions did not match up with initial condition of y,(x) =5 sinh™!(27x) it would slowly
converge towards them, even though they varied with time. We used two different
boundary conditions for these plots, at x = 0 the boundary condition was 10e* and
when x = 1 the boundary condition was 5sinh™ (27tx). These two boundary condi-
tions are very hard to distinguish in the 2-D plot, however, one can easily see them
on the left and right hand side of the 3-D plot.

10 Hest squation overtim, b - inEprE2405 o 30 lot o 10 Hestaquation over tme, b = sin(2p012+0.5

-4 N
/ \
Figure 80: Heat equation with the Figure 81: Heat equation with the
inverse hyperbolic sine function as inverse hyperbolic sine function as
initial condition, using N = 150, m = initial condition, using N = 150, m =
5000, step = 500. 5000, step = 50.

We also plotted y,(x) = |sin(27x)| using boundary conditions of 227 o

show that as time increases, even though the boundary conditions are varying at a
constant frequency, the middle, where x = 0.5 averages out and tends to y = 0.5 as
time goes on. This is interesting because the boundary conditions are forcing the
extremities of the function to vary, but the center stays constant.

36

A APPENDIX: RL CIRCUIT

A Appendix: RL Circuit

A.1 Heun Method
A.1.1 heun.m

function [x,y] = heun(func, xa, ya, h)

%caluclate next x by incrementing by the stepsize
X = xa + h;

gradientl = feval(func, xa, ya); %calculate the gradient at t
ypredictor=ya+h=gradientl1; %calculate predictor for the next valu
gradient2=feval (func, x, ypredictor); %calculate the gradient at t + h
y = ya + h/2«(gradientl + gradient2);

end
A.1.2 heun_script.m

function heun_script (tf) %tf is the end time

%initailise the circuits
R = 0.5;

L = 0.0015;

h = 0.0001; %step size

%initailise the container

N = round(tf/h); %number of iterations
t = zeros(1l, N);

Vout = zeros(1l, N);

current = zeros(1,N);

%input voltage
% step function of 3.5 volt
Vin = @(t)3.5«heaviside (t);

%the initial condition
t(1) = 0;
current (1) = 0;

%the equation
func = @(t,current) (Vin(t)-R=(current))/L; %Function input for differe

37

A.1 Heun Method A APPENDIX: RL CIRCUIT

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

%plot

figure (1);

plot (Vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({ ’V_{out}’, ’(volt)’});

title ('’ (Heaviside)._.V_{out}._versus._time’);

figure (8);

plot(t, current);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’'(volt)’});

title ('V_{out}._.versus._time._(Heaviside) ’);

%- — — S — —— — —
%initailise the circuits information at the top

%input voltage
tau = 0.000150;
A= 3.5;

Vin = @(t) A ~ exp(-t."2/tau);

%the initial condition
t(1) = 0;
current (1) = 0;

%the equation
func = @(t,current) (Vin(t)-Rx(current))/L; %Function input for differe

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

38

A APPENDIX: RL CIRCUIT A.1 Heun Method

%plot

figure (2);

plot (Vout);

xlabel ({ 'Time’, ’(seconds)’});

ylabel ({ ’V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time._(Exponential _square._function._#1)’);

9%- — — — — — — —
%initailise the container information at the top

%input voltage
tau = 0.000150;
A = 3.5;

Vin = @(t) A » exp(—t/tau);

%the initial condition
t(1) = 0;
current (1) = 0;

%the equation
func = @(t,current) (Vin(t)-R«(current))/L; %Function input for differe

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

%plot

figure (3);

plot (Vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({ 'V_{out}’, ’'(volt)’});

title (’V_{out}._.versus._time._(Exponential .#2)’);

% % - -

39

A.1 Heun Method A APPENDIX: RL CIRCUIT

%initailise the circuits information at the top

N = round(tf/h); %number of iterations
t = zeros(1l, N);

Vout = zeros(1, N);

current = zeros(1,N);

%input voltage

% step function of 5 volt

% T= 0.00015, 0.000015, 0.0004, 0.0011
T = 0.0011;

Vin = @(t)4+sin(2«pixt/T);

%the initial condition
t(1) = 0;
current (1) = 0;

%the equation
func = @(t,current) (Vin(t)-Rx(current))/L; %Function input for differe

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

%plot

figure (4);

plot (Vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time._.(T=0.0011)(Sine._wave) ’);

9%- — — — — —
%initailise the circuits information at the top

%input voltage
% step function of 5 volt
A = 4;

40

A APPENDIX: RL CIRCUIT A.1 Heun Method

T = 0.0011;
Vin = @(t) A * square(2xpixt/T);

%the initial condition
t(1) = 0;
current(l) = 0;

%the equation
func = @(t,current) (Vin(t)-Rx(current))/L; %Function input for differe

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

%plot

figure (5);

plot (Vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time._(T=0.0011)_(Square_wave) ’);

%- — — — — — — —

%initailise the circuits information at the top

%input voltage

% step function of 5 volt
A= 4

T = 0.0011;

Vin = @(t) A » sawtooth(2xpixt/T);
%the initial condition

t(1) = 0;
current (1) = 0;

%the equation
func = @(t,current) (Vin(t)-Rx(current))/L; %Function input for differe

41

A.2 Midpoint Method A APPENDIX: RL CIRCUIT

%Huen
for j =1 : N-1

[t(j + 1),current(j + 1)] = heun(func, t(j), current(j), h);

Vout(j + 1) = Vin(t(j)) — Rxcurrent(j); %Create Vout array from Iout
end

%plot

figure (6);

plot (Vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({ ’V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time._(T=0.0011)._(Sawtooth._wave) ’);

end

A.2 Midpoint Method

A.2.1 midpoint.m
function [x, y] = midpoint(f, tO, tfinal, yO, h)

%calculate number of steps

N = round ((tfinal - t0) / h);
%initialise the array

ya = zeros(1,N);

ta = zeros(1,N);

ya(l) = y0;

ta(l) = t0;

for i =1 : N-1
ta(i+1) = ta(i) + h;
halfstep = ta(i) + 1 = h / 2;
gradientl = f(ta(i), ya(i));
ypredict = ya(i) + 0.5 = h gradientl;
gradient2 = f(halfstep, ypredict);
ya(i+1) = ya(i) + h gradient2;

end
X = ta;
y = Yya;

42

A APPENDIX: RL CIRCUIT A.2 Midpoint Method

A.2.2 midpoint script.m

clear;

ts = 0; % set initial value of x_0
is = 0;

h = 0.0001; % set step-size

tf = 0.03; % stop here

R = 0.5;

L = 0.0015;

vin = @(t) 3.5;
func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout x R;

figure (1);

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’'(volt)’});

title ('V_{out}._.versus._time._(Heaviside) ’);

00 _ L _____
h = 0.0001;

tf = 0.03;

figure;

A= 3.5;

tau = 0.00015;

vin = @(t) A « exp(—t."2/tau);
func = @(t, iout) (vin(t) — iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout x R;

figure (2);

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’(volt)’});

title (’V_{out}_versus._time._(Exponential_square._function.#1)’);

Y _
h = 0.0001;

tf = 0.03;

figure;

A= 3.5;

tau = 0.00015;

43

A.2 Midpoint Method A APPENDIX: RL CIRCUIT

vin = @(t) A ~ exp(—t/tau);
func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout = R;

figure (3);

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’'(volt)’});

title ('’V_{out}._.versus._time_(Exponential .function._#2)’);

Yo _ .
h = 0.0001;

tf = 0.03;

figure;

A = 4;

T = 0.0011;

vin = @(t) A x sin(2+«pixt/T);
func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout = R;

figure (4);

plot(t,vout);

xlabel ({ 'Time’, ’(seconds)’});

ylabel ({ 'V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time.(T=0.0011)._(Sine._wave) ’);

7
h = 0.0001;

tf = 0.03;

A = 4;

T 0.0011;

vin = @(t) A % square (2xpi*t/T);
func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout = R;

figure (5);

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({ ’V_{out}’, ’(volt)’});

title (’V_{out}._.versus._time._(T=0.0011)_(Square_wave) ’);

44

A APPENDIX: RL CIRCUIT A.3 Ralston Method

h = 0.0001;

tf = 0.03;

A = 4;

T = 0.0011;

vin = @(t) A * sawtooth(2«pixt/T);

func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = midpoint(func, ts, tf, is, h);

vout = vin(t) - iout = R;

figure (6);

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({ 'V_{out}’, ’'(volt)’});

title (’V_{out}._.versus._time._(T=0.0011)._(Sawtooth._wave) ’);

A.3 Ralston Method

A.3.1 ralston.m

function [xa,ya] = ralston(func, tO, tf,i0O , h)
%calculate number of steps

N = round ((tf) / h);

%initialise the array

xa = zeros(1,N);

ya = zeros(1,N);

xa(1)=t0;

ya(1l)=i0;

Y%param
al=1/3;
a2=2/3;
pl=3/4;
ql1=3/4;

for i=1: N - 1
xtemp=xa (i);
ytemp=ya (i);

kl=func (xtemp,ytemp);
k2=func (xtemp+pl+h, ytemp+qll«kl+h);

ya(i+1)=ytemp+(alxkl+a2+k2)«h;
xa (i+1)=xtemp+h;
end

45

A.3 Ralston Method A APPENDIX: RL CIRCUIT

A.3.2 ralston script.m

clear;

ts = 0; % set initial value of x_0
is = 0;

h = 0.0001; % set step-size

tf = 0.03; % stop here

R = 0.5;

L = 0.0015;

% vin = @(t) 3.5;

% func = @(t, iout) (vin(t) — iout+R) / L; % define func
% [t, iout] = ralston(func, ts, tf, is, h);

%

% vout = vin(t) — iout * R;

% plot(t,vout);

% xlabel ({’Time’, ’(seconds)’});

% ylabel ({’V_{out}’, ’(volt)’});

% title ('V_{out} versus time (original function)’);

9% 9% _ _ .
% h = 0.0001;

% tf = 0.03;

% figure;

% A = 3.5;

% tau = 0.00015;

%

% vin = @(t) A » exp(-t."2/tau);

% func = @(t, iout) (vin(t) — iout+R) / L; % define func
% [t, iout] = ralston(func, ts, tf, is, h);

%

% vout = vin(t) — iout * R;

% plot(t,vout);

% xlabel ({’Time’, ’(seconds)’});

% ylabel ({’V_{out}’, ’(volt)’});

% title ('V_{out} versus time (exponential square funtion)’);

% h = 0.0001;

% tf = 0.03;

% figure;

% A = 3.5;

% tau = 0.00015;

%

% vin = @(t) A » exp(-t/tau);

% func = @(t, iout) (vin(t) - iout+R) / L; % define func
% [t, iout] = ralston(func, ts, tf, is, h);

%

46

A APPENDIX: RL CIRCUIT A.3 Ralston Method

% vout = vin(t) — iout * R;

% plot(t,vout);

% xlabel ({’Time’, ’(seconds)’});

% ylabel ({’V_{out}’, ’(volt)’});

% title ('V_{out} versus time (exponential function)’);

Yo _
h = 0.0001;

tf = 0.03;

figure;

A = 4;

T = 0.000015;

vin = @(t) A x sin(2+«pixt/T);

func = @(t, iout) (vin(t) - iout=R) / L; % define func
[t, iout] = ralston(func, ts, tf, is, h);
vout = vin(t) - iout = R;

plot(t,vout);

xlabel ({ "Time’, ’(seconds)’});

ylabel ({'V_{out}’, ’(volt)’});

title (’V_{out}.versus.time.(T=0.000015)_(sine_function) ’);

% % % _ _ _ ol __
% h = 0.0001;

% tf = 0.03;

% figure;

% A = 4;

% T = 0.0011;

%

% vin = @(t) A » square(2xpi*t/T);

% func = @(t, iout) (vin(t) — iout+R) / L; % define func
% [t, iout] = ralston(func, ts, tf, is, h);

%

% vout = vin(t) — iout * R;

% plot(t,vout);

% xlabel ({’Time’, ’(seconds)’});

% ylabel ({’V_{out}’, ’(volt)’});

% title (’V_{out} versus time (T=0.0011) (square function)’);

% 9 _ _ ol ll_____
% h = 0.0001;

% tf = 0.03;

% figure;

% A = 4;

% T = 0.000015;
%

47

A.4 Error Analysis A APPENDIX: RL CIRCUIT

% vin = @(t) A * sawtooth(2+pi*t/T);

% func = @(t, iout) (vin(t) — iout+R) / L; % define func
% [t, iout] = ralston(func, ts, tf, is, h);

%

% vout = vin(t) — iout * R;

% plot(t,vout);

% xlabel ({’Time’, ’(seconds)’});

% ylabel ({’V_{out}’, ’(volt)’});

% title ('V_{out} versus time (T=0.0011)(sawtooth function)’);

A.4 Error Analysis

A.4.1 error_script.m

clear;

ts = 0; % set initial value of x_0
is = 0;

tf = 0.03; % stop here

R = 0.5;

L = 0.0015;

A = 6;

T = 0.00015;

vin = @(t) A * cos(2+«pixt/T);
func = @(t, iout) (vin(t) - iout=R) / L; % define func

figure (1);

for ind=16:25
% This increments the time step
%by 2°-n every time where n = 16, 17, 25
%we started from 16 as we observed
%the results with larger step sizes
%gave irregular data

h1=2"(-ind); % set stepsize

%obtaining the exact solution with favorite method
[t, i_Exact] = exact_solution(R,L,T, tf ,hl);
exact = vin(t) - R+i_Exact;

%call appropriate method

%[t, iout] = heun_methodforerror(func, ts, tf, is, hl);
%[t, iout] = ralston(func, ts, tf, is, hl);

[t, iout] = midpoint(func, ts, tf, is, hl);

48

A APPENDIX: RL CIRCUIT A.4 Error Analysis

vout = vin(t) — Rxiout;

%error as a function of t
errorl = exact — vout;
error_final = max(abs(errorl));

%this plots a log lgo plot to show the order of the error
plot(log(hl),log(error_final), ’«g’); % log/log plot stepsize vs err
xlabel ({ "Step_size’, ’(h)’});
ylabel ({ "Error’, ’(volts)’ });
title (’'RALSTON_ERROR. (LOGLOG_PLOT) .’);
hold on;

end

%this gives us the error function for the above method
figure (2);

plot(errorl);

xlabel ({ 'Time’, ’(sec)’});

ylabel ({ "Error’, ’(volts)’});

title (’RALSTON_ERROR’);

A.4.2 exact_solution.m

%this is our exact solution using our favorite method into a function
function [t, i_Exact] = exact_solution(R,L,T, tfinal , h)

%initial arrays

N = round ((tfinal) / h);
t = zeros(1,N);

i_Exact = zeros(1,N);

%for loop calculating next exact current
for i =1 : N-1

t(i+1) = t(i) + h;

i_Exact(i+1) = (6/L)«((2+pi)/T » sin((2«pi)/T+t(i)) + (R/L)*cos((2x*f
end

49

B APPENDIX: RLC CIRCUIT

B Appendix: RLC Circuit

B.1 RK4Second.m

function [xnext, ynext] = RK4second(t, x, y, h, f1, f2)
%source from http://www. mymathlib.com/diffeq/runge—kutta/runge_kutta
kyl = f2(t, x, y);
ky2 = f2(t, x + h/3, y + hxkyl/3);
ky3 = f2(t, x + 2+«h/3, y - h+xkyl/3 + hxky2);
ky4 = f2(t, x + h, y + hxkyl - h«xky2 + h«ky3);
%yi+1 = yi + 1/8 (k1 + 3 k2 + 3 k3 + k4)
%xi = x0 + i h
xnext = x + h«f1(t, x, y);
ynext = y + h/8«(kyl + 3+ky2 + 3xky3 + ky4);

end

B.2 RLC script.m
function RLC_Script (tf)

%initialise the circuits
R = 250;

L = 650+10"(-3);

C = 3%x10"(-6);

h = 0.00001; %step sigze

%initialise the container

N = round(tf/h); %number of iterations
qc = zeros (1, N); %x

qc_dash = zeros(1, N); %y

t = zeros(1l, N);

Vout = zeros(1, N);

%input voltage
Wostep function of 5 volt
%Vin = @(t)5+heaviside (t);

9eImpulse with Exponential Decay
Tau = 3+(10"-6);
Vin = @(t)5+exp(—(t."2)/Tau);

9oSquare Wave (5Hz, 100Hz, 500Hz)
WVin = @(t)5+square(2+pi+5+t);

50

B APPENDIX: RLC CIRCUIT B.2 RLC.script.m

9%96Sine Wave (5Hz, 100Hz, 500Hz)
wVin = @(t)5+sin(2xpi*5=t);

%the coupled equation
funcl = @(t, qc, qc_dash)qc_dash;
func2 = @(t, qc, qc_dash)(Vin(t) - qc/C - Rxqc_dash)/L;

%the initial condition
qc_dash (1) = 0;

qc(l) = 500+%(10."-9);
t(1) = 0;

%Runge Kutta

for i =1 : N-1
t(i + 1) = t(i) + h;
[qc(i + 1), gc_.dash(i + 1)] = RK4second(t(i), qc(i), qc_dash(i), h,
Vout(i) = Rxqc_dash(i);

end

%Plot the input function
plot(t, Vin(t));

%Plot the output of the system
figure

plot(t, Vout);

xlabel (’Time’);

ylabel (’Amplitude ’);

end

51

C APPENDIX: FINITE DIFFERENCES FOR PDE

C Appendix: Finite Differences for PDE
C.1 finite script.m

% This script implements the finite difference method to solve the heat
% equation

clear;
steps = 100;

% Set the number of samples to take
N = 150;

% Set the total time to run
m = 5000;

% Declare final size of matrix for speed
res = zeros(N+1, m+1);

% Set v
v = 0.25;

% Get h and k
h = 1/N;
k =h"2 + v;

% Set Initial condition
res(:, 1) = get_function(N, h, 3)’;

% Set boundary conditions
res(1l, :) = zeros(1l, m+1);
res(N+1, :) = zeros(1l, m+1);

% Calculate M+1 and plot it continuously
for ¢ = 1:m
for i = 2:N
res(i, c+1) = v = res(i-1, ¢) + (1-2xv) * res(i, ¢) + v = res(i+
end
end

% Plot 2D

figure;

Z = zeros(N+1, m/steps+1);
count = 1;

52

C APPENDIX: FINITE DIFFERENCES FOR PDE

C.1

finite_script.m

for i = 1:mt+1

if rem(i, steps) == 1
plot(0:h:1, res(:, i));
Z(:, count) = res(:, i);
hold on;
count = count + 1;
end
end
hold off;

xlabel (’x’);
ylabel (’y’);

title ('Plots.of_1D_Heat_equation._.over.time, _bc.=.1");

legend(’'m.=.0", 'm.=.100", 'm.=.200",

% Plot 3D

figure;

x = (0:m/steps) / (m/steps);
y = (0:N) / N;

[X,Y] = meshgrid(x, y);
surf (X, Y, Z);

xlabel (time./_t’);
ylabel (’x’);
zlabel (’y’);

b

'm.=.5000");

title (’3D_plot_of_1D_Heat_.equation.over.time, _bc.=.1");

53

C.2 get function.m C APPENDIX: FINITE DIFFERENCES FOR PDE

C.2 get function.m

function y = get _function(N, h, f)
y = 0:N;

if f ==
count = 1;
for i = 0:h:1
if i < 0.5

y(count) = 2xi;
else
y(count) = 2-2x1i;
end
count = count + 1;
end
elseif f ==
y = sin(2+pix(0:h:1));
elseif f ==
y = abs(sin(2«xpi«(0:h:1)));
elseif f ==
%add func
y = 5+«asinh(2+«pi«(0:h:1));
elseif f ==
%add
y = 5«exp(-5%(0:h:1)); % exponential
end
end

54

	1 Introduction
	2 RL Circuit
	2.1 RC Equation
	2.2 Error Analysis

	3 RLC Circuit
	3.1 RLC Circuit Equation
	3.2 Runge-Kutta and Coupled Equations
	3.2.1 Runge-Kutta
	3.2.2 Coupled Equations

	3.3 Matlab Script
	3.3.1 Runge-Kutta 3/8 Function
	3.3.2 RLC Script

	3.4 Testing different inputs
	3.4.1 Step-Signal
	3.4.2 Impulsive Signal with decay
	3.4.3 Square Wave
	3.4.4 Sine Wave

	4 Finite Differences for PDE
	4.1 1-D Heat Equation
	4.2 Method
	4.3 Matlab Script
	4.3.1 Boundary Conditions
	4.3.2 Central Algorithm
	4.3.3 Choosing Constants
	4.3.4 Plotting Results

	4.4 Solving the Heat Equation
	4.4.1 Tent Function
	4.4.2 Sinusoidal Function
	4.4.3 Inverse Hyperbolic Sine
	4.4.4 Exponential

	5 Bonus
	5.1 Initial condition that does not match one or both boundary conditions
	5.2 Further extend by including constant, non-zero boundary conditions.
	5.3 Further extend to include time-varying boundary conditions.

	A Appendix: RL Circuit
	A.1 Heun Method
	A.1.1 heun.m
	A.1.2 heun_script.m

	A.2 Midpoint Method
	A.2.1 midpoint.m
	A.2.2 midpoint_script.m

	A.3 Ralston Method
	A.3.1 ralston.m
	A.3.2 ralston_script.m

	A.4 Error Analysis
	A.4.1 error_script.m
	A.4.2 exact_solution.m

	B Appendix: RLC Circuit
	B.1 RK4Second.m
	B.2 RLC_script.m

	C Appendix: Finite Differences for PDE
	C.1 finite_script.m
	C.2 get_function.m

