//------------------------------ // Module name: bin2bcd_16 // Function: Converts a 16-bit binary number to 5 digits BCD // .... it uses a shift-and-add3 algorithm // Creator: Peter Cheung // Version: 2.0 (Correct mistake - problem with numbers 0x5000 or larger) // Date: 24 Nov 2016 //------------------------------ // For more explanation of how this work, see // ... instructions on wwww.ee.ic.ac.uk/pcheung/teaching/E2_experiment module bin2bcd_16 (B, BCD_0, BCD_1, BCD_2, BCD_3, BCD_4); input [15:0] B; // binary input number output [3:0] BCD_0, BCD_1, BCD_2, BCD_3, BCD_4; // BCD digit LSD to MSD wire [3:0] w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13; wire [3:0] w14,w15,w16,w17,w18,w19,w20,w21,w22,w23,w24,w25; wire [3:0] w26,w27,w28,w29,w30,w31,w32,w33,w34,w35; wire [3:0] a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13; wire [3:0] a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25; wire [3:0] a26,a27,a28,a29,a30,a31,a32,a33,a34,a35; // Instantiate a tree of add3-if-greater than or equal to 5 cells // ... input is w_n, and output is a_n add3_ge5 A1 (w1,a1); add3_ge5 A2 (w2,a2); add3_ge5 A3 (w3,a3); add3_ge5 A4 (w4,a4); add3_ge5 A5 (w5,a5); add3_ge5 A6 (w6,a6); add3_ge5 A7 (w7,a7); add3_ge5 A8 (w8,a8); add3_ge5 A9 (w9,a9); add3_ge5 A10 (w10,a10); add3_ge5 A11 (w11,a11); add3_ge5 A12 (w12,a12); add3_ge5 A13 (w13,a13); add3_ge5 A14 (w14,a14); add3_ge5 A15 (w15,a15); add3_ge5 A16 (w16,a16); add3_ge5 A17 (w17,a17); add3_ge5 A18 (w18,a18); add3_ge5 A19 (w19,a19); add3_ge5 A20 (w20,a20); add3_ge5 A21 (w21,a21); add3_ge5 A22 (w22,a22); add3_ge5 A23 (w23,a23); add3_ge5 A24 (w24,a24); add3_ge5 A25 (w25,a25); add3_ge5 A26 (w26,a26); add3_ge5 A27 (w27,a27); add3_ge5 A28 (w28,a28); add3_ge5 A29 (w29,a29); add3_ge5 A30 (w30,a30); add3_ge5 A31 (w31,a31); add3_ge5 A32 (w32,a32); add3_ge5 A33 (w33,a33); add3_ge5 A34 (w34,a34); add3_ge5 A35 (w35,a35); // wire the tree of add3 modules together assign w1 = {1'b0,B[15:13]}; // w_n is the input port to module a_n assign w2 = {a1[2:0], B[12]}; assign w3 = {a2[2:0], B[11]}; assign w4 = {1'b0,a1[3],a2[3],a3[3]}; assign w5 = {a3[2:0], B[10]}; assign w6 = {a4[2:0], a5[3]}; assign w7 = {a5[2:0], B[9]}; assign w8 = {a6[2:0], a7[3]}; assign w9 = {a7[2:0], B[8]}; assign w10 = {1'b0, a4[3], a6[3], a8[3]}; assign w11 = {a8[2:0], a9[3]}; assign w12 = {a9[2:0], B[7]}; assign w13 = {a10[2:0], a11[3]}; assign w14 = {a11[2:0], a12[3]}; assign w15 = {a12[2:0], B[6]}; assign w16 = {a13[2:0], a14[3]}; assign w17 = {a14[2:0], a15[3]}; assign w18 = {a15[2:0], B[5]}; assign w19 = {1'b0, a10[3], a13[3], a16[3]}; assign w20 = {a16[2:0], a17[3]}; assign w21 = {a17[2:0], a18[3]}; assign w22 = {a18[2:0], B[4]}; assign w23 = {a19[2:0], a20[3]}; assign w24 = {a20[2:0], a21[3]}; assign w25 = {a21[2:0], a22[3]}; assign w26 = {a22[2:0], B[3]}; assign w27 = {a23[2:0], a24[3]}; assign w28 = {a24[2:0], a25[3]}; assign w29 = {a25[2:0], a26[3]}; assign w30 = {a26[2:0], B[2]}; assign w31 = {1'b0,a19[3], a23[3], a27[3]}; assign w32 = {a27[2:0], a28[3]}; assign w33 = {a28[2:0], a29[3]}; assign w34 = {a29[2:0], a30[3]}; assign w35 = {a30[2:0], B[1]}; // connect up to four BCD digit outputs assign BCD_0 = {a35[2:0],B[0]}; assign BCD_1 = {a34[2:0],a35[3]}; assign BCD_2 = {a33[2:0],a34[3]}; assign BCD_3 = {a32[2:0],a33[3]}; assign BCD_4 = {a31[2:0],a32[3]}; endmodule